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1. Summary

" A fundamental problem in optimal periodic control
may be formulated as follows: Suppose one has an opti-

0
mal steady state x corresponding to a comstant con-

trol uo. Can performance be improved by allowing for
trajectories x and controls u being periodic with
some common period T > 0? TIf this is the case, the
problem is called proper. TFor systems governed by
ordinary differential equations the so called Il-criter-
ion is a second order variational test for (local) prop-
erness. It has been proposed by Bittanti, Fronza, and
Guarbadassi [1] and proven by Bernstein and Gilbert [3];
the most general version can be found in Bernstein [2].
Watanabe, Nishimura and Matsubara [12] gave a variant

of the [I-criterion ('singular control test' or 'infinite
frequency T-criterion’') which tests properness for
sufficiently high frequencies and requires significantly
less computational effort.

The T-criterimis of some relevance in chemical
engineering and aircraft flight performance optimization
(cp. Sincic and Bailey [9], Speyer [11l] and the survey
papers by Matsubara, Nishimura, Watanabe, Onogi [7] and
Noldus [8]).

This paper presents a generalization to functional
differential systems of the Tl-criterion and its "high-
frequency' variant.

2. Problem Formulation

We consider the following optimal periodic control
problem:

T
L o) utene

(0OPC) Minimize
/o
s.t. (2.1) x(t) = £(x(f),u(t)) a.a. t€ [0,T]
(2.2) x, = %

: = x(t+s)ER", s€ [-h,0],
The

maps f : C(—h,O;IRn}><Ian->1Rn and g cRY<E® >R are
assumed to be twice continuously Fréchet differentiable.

where T > 0 1is fixed, xt(s)

u(t)Eﬂfn, and h > 0 1is the length of the delay.

The controls u are taken in Lw(O,T; r").

In this problem formulation, the periodicity condi-
tion for x is incorporated into (2.2). Observe that
the finite dimensional condition

x(0) = x(1)

does not guarantee periodic extendability of x to a
solution of (2.1) for t > 0 (with periodic extension
of u). Instead we have to consider the constraint
(2.2) involving the states X and x_ We impose the
following b
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For every initial function

Assumption:
m

X = € C(~h,0; IRn) and every control u€ Lw(O,T; R ),

equation (2.1) has a unique absolutely continuous solu-

tion x.

The optimal steady state problem corresponding to
(OPC) has the following form.

(088) Minimize g(x,u)
xEEﬁ,uEEJ
s.t. (2.3) 0 = f(x,u)

where xE€E C(-h,O;IRn) is the constant function

;(s) D= X,
We are interested in the property specified by
the following definition.

Definition: Let (xo,uo)€ﬁRn X Hgl be an optimal solu-

tion of (0SS). Then (xo,uo) is called locally proper
if for all € > 0 there exist x and u satisfying

(2.1) and (2.2) with [[x - §0Mm< g, |u - GOHQO < ¢ and

rT
lJ g(x(t),u(t)dt< g ,ud).
Yo

3. Tests for Properness

Let (xo,uo)EanXIRm be a steady state, i.e.,
satisfy (2.3). Then we can linearize the system equa-

tion (2.1) around (QO,GO) and find
x(t) = Lu_ + Bu(t) , a.a. £€ [0,7]

where

ol
il

- vlf&o,uo):c(-h,o; RY > ®P

sz&o,uo>e RrY™,

The corresponding characteristic matrix A4(z) is given
by

(2.6) A(z) : =21 - L(e%') :z€aq,

where e”" denotes the function exp(z8), 6€ [-h,0],
and I is the nxn unit matrix. Introduce the

function H:C(~h,0; ROIXR"xR™ + R
, t
H{y,u,h) + = g(0),u) + X £(U,u).

3 =v=D).

Then the following expressions exist (here
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p(L) : = DlDlH(EO,uO,x)<ej“',e'j“'>

—0 0 . ji.
Qw) & = DZDIH(X ,uo, ) (e3% )
R : = DZD2H(§0,uO,k).
. . , , nxn
We identify P(w), Q(x), and R with elements in C ,
nXm mXm . .
q , and TR , respectively. Define for ww€IR the

complex mxm - matrix T(w) by

(2.10) | T ¢ = 35T -3t pw)a T Gy
+ 0002w + BT -3 o)
l +R.
The matrix II(w) is Hermitian. We assume that the

following normality condition for (0SS) is satisfied:

®" = {le(;o,uo);[x€IRn} + {sz(;o,uo)u‘UEIRm}.

-

Then the following I - Criterion is valid:

Theorem l: Suppose that (xD,uO) erR"xR" is an opti-

mal solution of (0SS) and that jku, K€ Z, is not a
zero of 4(z), for w = 27/T.
(i) Then there exists AER” such that

0= 0G0

0= 0,560,000,
(ii) Let »er™ satisfy (i) and suppose that there is
n€R" with

2T no<o.
0 0 . R
Then (x ,u ) 1is locally proper. Suppose that 4(z)
has no zeros in the closed right half plane
ZEC : Re 2 > 0}. Then a high frequency variant of

this I-criterion can be obtained through the following

series expansion of I(w): Let
AL) @ = L(eju')
and define
RO : =R
R, = [0 (-w) B%{Am o T 1
P () AT o).
Then -
- N =k
Tw = ) (Gw (w) .
k=0 Rk

and one can prove the following high-frequency I-Cri-
terion.
> 0 such that for all

Theorem 2: There exists

0
w > “g either of the following conditions implies that
the optimal steady state (xo,uo) is locally proper:
(i) For &ll k = 0,1, 2f-1 one has Rk(w) =0

and there exists r€R" such that (—i}zrtRzn(u)n < 0.
(i1) R (w) =0

there exists

i+l .t
(-1 ! in

For all k = 0,1,...,2% one has and

ﬁERm

Rppa1 (907

such that
<0.

Remark: The system equation (2.1) also allows the de-
lays to depend on state and time. Manitius [6] com-
puted the corresponding Frechet derivatives. Sincic,
Bailey [10] use the same formulae for the derivatives,
and indicate the formulae for the second derivatives.

They give a (formal) proof of the I-Criterion in this
rase,
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