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0. Introduction

This paper deals with necessary optimality conditions for time delay
systems with fixed final state and pointwise control restrictions.
Since the state of a time delay system is given by a function
segment, the end condition is infinite dimensional. This causes
particular difficulties (see the surveys [1,2] and also the more
recent paper [7]). In the presence of pointwise control restrictions,
as considered here, only Bien and Chyung [3] have established the
existence of non-trivial Lagrange multipliers for systems with a
single constant delay. However, they have to impose a very strict
a-priori condition on the optimal solution. In particular, the
number m of control inputs must be not less than the dimension n of
the phase space. This latter condition appears also in non-linear

problems with energy constrained controls [7].

We shall deal with the relaxed problem in the sense of Warga. In
terms of the original problem this means that the end condition has

to be satisfied with arbitrary accuracy (see [12,4]). This relaxa-
tion of the problem allows to treat a much broader class of systems
where the condition m > n may not be satisfied.

For a detailed study of relaxed controls we refer to Warga's book
f121, in particular to the heuristic discussion in Chapter III and

to the exact definition and characterization of the set :P of relaxed
controls in sections IV. 1 and 2.

This paper is built up as follows: In section 1 first the existence
o * 0

of non-trivial Lagrange multipliers (lo,l) €R+X(Wn’ [-h,0]) is

established. Then it is shown, that in the case of regular reach-
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ability, 1 can be identified with an element of w*’% [-h,0].

This regularization of the Lagrange multiplier is the key for the
proof of a global, pointwise maximum principle and constitutes the
main result of this paver. The maximum princivle is formulated with-
out proof {(compare {6]).

In section 2, regular reachability is characterized for linear re-
laxed systems. Regqularity turns out to be a generic property of

those trajectories leadina to interior voints of the reachable set.
The consequences for the validity of the maximum principle are dis-

cussed.

Notation and Conventions

Cn[a,b] is the Banach space of continuous functions on [a,b] with
values in Rn. For 1= pegco , Wn’p[a,b] is the Sobolev svace of
absolutely continuous functions x:[a,b]._;Rn with derivative

*e Lg[a,b], that is with p-integrable, resp. essentially bounded
derivative. The norm in the Banach space W ’'F[a,b] is given by
ﬂxﬂ:=l(x(a),”§ﬁL )], where | - | denotes the Euclidean norm in

Rn+1. Wn’p[a,b] ¥s identified in the canonical way with RnxL;{a,b].
The topological dual of a Banach space X is denoted by X*. For a sub-
set AcRr® X,
interior and coA its convex hull; for §> o, intgA  is the set of
all peints in intA havinag at least distance £ to the boundary of A,
For the compact subset (1 < R™ of control values, ¥ denotes the set

is the characteristic function of A, int A is its

of relaxed controls v defined on the fixed time interval T:={t0,tJ

with values in the set rpm({)l) of Radon probability measures on {1
{see f12]). Relaxed controls v satisfy the followinag weak measur-
ability requirement:

t—rc{v(t)) = gc(w)v(t) (dw)
K¢

is measurable for each continuous function c:{]l —R. For f satisfying
assumption (a) of Theorem 1 below, we define
£(x,,v(t) ) 2= jf(xt,w,t)v(t) @w).
A
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1. Reqgularization of Lagranage Multiovliers

We treat the following vroblem

(p)
Minimize G(x,v) :=§q {(x(t),v(t),t)dt

S.t. T
(1.1 X (£)=£(x,,v(t),t) a.e. teT,
(1.2) X, = ’
=
(1.3) v e,
(1.4) xy = Y.

where xt(s) s=x{t+s) e R? for s e [-h,o] and o<«<h <oo, t1—h>to,
g:R%xR™xT—R, £:C"[-h,0] xR™xT — R, and ‘f’o, ‘ﬂ]e c?[-h,0] are aiven.

h is the lenath of the time delay.

The following theorem contains conditions on the oroblem data im-
plying that this problem is well-defined. It establishes necessary
optimality conditions.

Theorem 1 Let (x°,v®) be an optimal solution of Problem (P), where
we assume that the following assumotions are satisfied:

(a) f and g are jointly continuous in the first two arcuments and
measurable in the third; the Fréchet derivatives D1f(‘f’ yw, t)

and D1g(y,w,t) with respect to the first argument exist and are con-

tinuous in (¥ ,w,t) and (y.w), respectively;

(b} for each relaxed control v ¢¥, there is a unigque solution-x(v)
of (1.1) and (1.2) with x(v)|T ¢ W'’ (T) devendina in a conti-

nuously Fréchet differentiable way on ve ;

{c} consider the linearized relaxed system

z (t) D1f(x§,v°(t) )z +E (x‘,z,v(t)-v"(t) ,t) a.e.teT

(1.5)
z = 0

t
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The attainable set }4' defined by

4 .= {‘f’ewn'”[-h,o]: there is ve ¥ s.t. the trajectory
z(v) of (1.5} satisfies z(v) = ¥
has a non-empty interior. T
Under these assumptions, there are non~trivial Lacrance multipliers
(1,1 € Rx 0" [h,0)* s.t.

(1.6)  1.0,6(x%,v")z(W)+1 6%, v-v")+1(z(v), )20 for all ve .
1
This theorem is a consequence of [S,Theorem 1.3] and the chain rule.

Remark 1: See f8} for results on the existence of unique solutions
for time delay equations on closed intervals. Differentiability of
the trajectory x(v) with resvect to relaxed controls v can be analyzed
using the results in [12, section II.3].

Remark 2: Observe that for the linearization of the relaxed system

no differentiation with respect to we (] 1s needed.

Theorem 1 is only a oreliminary result. The optimality condition
(1.6) involves the Ladrance multiplier 1=(1,,1,) € (ur® [~h,o])x=
Rnx(Li[—h,o] )x. The dual space of L, 1is very complicated and 12
may not be identifiable with a real function. Thus further analysis
and a certain reqularity assumption are required in order to show
that 12 can be identified with an element of L:[—h,o] [l (L: [--h,o])*.

The following notion will be crucial:

Definition: Suppose x° is a trajectory satisfying (1.1)~(1.3). Then
?1 € W [<h,0)] is called reqularly reachable with x°  iff \F,f‘—'x:
and there is a neiaghbourhcod V of o€ R" s.t. 1

(1.7) Ve - \i,’l (t-t1) + co{f (xz,w,t) s weﬂ } a.e. te [t1—-h,t1] .
x° is called a reqular trajectory, iff x%l is reached
regqularly with x°.

Observe that ‘f’1 (t-t1)=f(x:,vo {t),t) a.e. t ¢ {t1—h,t1] for a

relaxed control vCeY¥ . Furthermore

{f(x:,v(t),t):ve\f} = co{f(xz,w,t):weﬂ} a.e.teT,
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Thus regqular reachability means that P is reachable with x° and
that a uniform neighbourhood of VH t—t ) 1is contalined in the set

of relaxed velocity vectors, if the system at time t is in the state
o

Xt.

Regular reachability is investigated in section 2.
Now we can derive the result on regularization of Ladgrandge multirliers.

Theorem 2: If x° is a reqular trajectory, the assertion of Theorem 1
holds with (10,1)6 R+an'w[—h,o].

Proof: Let 1_e R, and 1=(1;,1,) € (W '®[-h,0])*r"x 1] [-n, oh* be

the Lagrange multipliers existing by Theorem 1. We show that there
is a dense subsvpace E, of yz[—h,o] such that 12|Ea, is continuous
with L1—norm on Eg Then 12|Eoo can be extended to a continuous
linear functional l' on L [—h o] which by duality of L1
be identified with an element of L [—h o] Since 1, and 1) are con-

2
tinuous on L“[—h,o] and coincide on the dense subswace E_,, , they

and L,, can

N n
coincide on qw[—h,o].

Thus
l(z(v)t1)=11z(v,t1—h)+12(z(v)t1)=l1z(v,t1—h)+lé(2(v)t1)

=(1,,1}) (z(v), ),
and the theorem is proven.
We first construct E_, .
Consider the subspace Sc:Ln[t -h, t1] of simple functions., By [9,
Theorem 11.35), S is dense in L [t -h, t1] and hence also in

th[e,-h.t,] .

For p=1,00 define

}p:Lg[t1—h,t1]—-9L;[—h.o]

as the continuous linear map associatinag with each ye L; §t1' where
x is the (unique) solution of
. _ o _o - —
x(£)=D £ (x0,v°(t) ,£)x, +y (t) a.e. te [t,=h,e,] , %, _p=o



168

Then }.0 is an isomorvhism and it follows that
E:= §p(s>

is dense in Lg[~h,o], p=1,00.
For e¢E, , there is a unigue sé&5 with
(1.8) e= f,(s)= §,(s).
We can write s as

k

st)=> S s, X, (©)¥y(t), telt -h,t],
& o5 T Ty 3 1 1

where {Ai} is a measurable decomposition of [t1-h,t1] roSiy eR
and yj: [t1—h,t1]--—~-~->Rn are constant functions havino value O in all

components y for j#1 and y..>o.
j1 23]

We can choose Yj such that # Yj {t) e VvV, where V is a neighbourhood
of 0eR? satisfyina (1.7).

.‘7
Thus there are vj~e:]° s.t. for a.e. t e[t1—h,t1]

= o + _©
Yj (t)—f(xt,vj (£)=v  (t),t)
(1.9}
. o - _0
Yy (t)—f(xt,vj (ty—v () ,t) .

+
Let sij :=max(o,isi_]). Then for té[t1-—h,t1]

k n + -
(1.10) s(t)= PN XAi(t) [sijyj (t)-s (t),,j(t)} ,

e

and since §1 is an isomorvhism,

llelly, —» o implies for j=1,...n
1
k k
+, - + -
(1.11) | 1Z=1 XAi (sijﬁusij)llLfg\';T A(By) (sy4+875) —s0

X +
Define for i=1,...,%k, 3=1,...n, w‘{_}é\f by

o+
VJT(t) teh

+
(1.12) w'i‘j 3 = for
v© (¢) teT\A;.
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Taking together (1.8)-(1-10) and (1.12), we find

1,(e) = 1,(%,(s))

"L :‘;SZJ (1,0 %) (£ (x‘;,w;'j () v (8),£) & ¢ [£,-h,t,))
n k -

+5 3 s'.l'j.(12e21)((f(xz wij(t)—vo(t),t),te [t1~h,t1])).

=1 i=1 *

By definition of }1

b el =@, 6, e[ehe]))

A 4
a Z(wij)t-]
where = 1is the solution of the linearized system (1.5).
The variation of constants formula [8, Chapter 6, Theorem 2.1 ]
implies
(1.13) lzwe)] € c acm)

for a constant Cy>0 which is indevendent of e.

Apply Theorem 1 2nk times in order to obtain
1(>>—ani*{1DG(°°><+)1G(°*’-°>
2le) 2~ Siy oP1G(x,v zwij-tox,wi_)v
+
+l1z(wij,t1~h) }

k

- o o - (o] had <
& iZ-—-T sij {1001@,(x 5V )Z(W1j)ﬂoG(x ’wij 7 )
+11z(wij,t1-h)}

k
2-c E 5 st.+s7) Ay
= 1 =1 &= i %ij i

This follows from {1.13) and the

for a constant cy > 0.
properties of G.
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By (1.11) this last expression converges to O for ue ﬂL""é'o.
1

The same argument for =-e proves that lzie)——éo for ﬂeﬁﬁ—e.o.
1

O

Thus Theorem 2 is proven.

Remark 3: The proof is based on an idea in [1 1] .

Using this theorem, a pointwige olobal maximum princivle for Problem
(P) can be proven. It exploits the abstract ootimality condition in
Theorem 1. We restrict ourselves to its formulation, since the

proof involves only standard, although lengthy arguments (Compare [6]}.

We need a functional revpresentation for DTf . By the Riesz theorem,
there is a measurable nxn-matrixfunction ” defined on Tx [tD~h,t1]
8.t. for all xecn[to—h,t1]

s
DiEGGvO(s),8)xg= [ d (s, )xlt),  sem,

ty—h

and /rl(~,s) of bounded variation, left continuocus on (to-—h,s) and

frl(s,t):o for ta-s s<t 5t1'

Corollary {(Maximum Principle) Under the assumptions of Theorem 1,

let (x°,v®) be an optimal solution. If x° is a reaqular trajectory,
there are non-trivial Lagrange multipliers (10,11 ,12) € R+anxL: f—-h,o],
such that the adjoint variable "l'eLg(T) defined by

£

i 4 (t)=-loj D1g(x° (s),v°(s),s)ds~
t

1,, teft ,t,-n]

t
1 * 1
j /Vl(s,t} ~L{s)ds~-

t
12(t~t1),te(g-h¢g

satisfies the maximum condition
-1, (2 (£) ,vO () , &)+ V(e) £ (x‘;,v" (t),t)

> -1,gGC (), w, e+ Ve £ (D, w,t)  for all wel)l , a.e. ter.
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Remark 4: Por h=o, the assertion reduces to Pontryacin's maximum
principle for ordinary differential equations.

Remark 5: 1In svecial cases, cne can easily construct the functional
representation ﬁ .

Remark 6: With respect to the adjoint variable ¥, the non-triviality
condition reads as follows:

(0,0,0)#(1_, ¥(ty-h), ¥lile,~h,e.]) e R, xRxLg, [t -h,t,].

1

Remark 7: On [to,t1—h], ¥ can be identified with a function of
bounded variation [7,Remark 3.3}. In the case of comgtant delays, Y
is even absolutely continuous on {to,t1—h}.

2, Regular Reachability

The maximum princivle holds if ¥, is reached recularly with. the op-
timal txajectory x°. However, we do not know when this assumption is
satisfied. In fact, [5] contains an examole of a scalar ootimal
control problem where YG is not reached reqularly with the optimal
trajectory %% and the maximum princivle is not satisfied. Thus the

assumption of regularity is crucial.

In this section, we investigate reaular reachability for the follow-
ing class of linear relaxed systems {with performance index as in

Problem (P)):

(2.1) %(L)=L(t)x b (v(£)) a.e.teT,
2.2) xto= Yg,

(2.3) v ¢V,

(2.4) x, = \ﬂ,

1

where %L, ¥n and Y are as in (1.2)-(1.4), L is a measurable mao
from T into the space of bounded linear maps from Cn[—h.o] into R©

with ess sup IL(t)] < 00 , and b: 1 —R" is continuous.
teT
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Remark g§: The set of trajectories of the relaxed system (2.1),(2.3)
coincides with the set of trajectories of the followina system with
ordinary controls:
i(t)=L(t)xt+u(t) a.e. teT,

where u:T—»co b({l) is measurable (compare {12, Theorem IV.3.2]
and [4, Satz 2.5]) . Thus the reachability theories for this
system and (2.1), (2.3) are equivalent. However, the assoclated
control problems of tvve (P) will in aeneral have different ootimal

trajectories.
Define the reachable set R by

R:= {\PE Wn’“[-h,o}: there is a trajectory x

satisfying (2.1)-(2.3) with x =Y }
1

Observe that
R=A+ \P-l ’

for )4 defined as in assumotion (c) of Theorem 1. Hence intR=¢
iff int#4=@. Then the following provosition holds:

Proposition: {‘f’eR: there is ofle Wn’1[-h,o] s.t. (o,1)
are Laarange multipliers satisfying (1.6) }
is norm-dense in the norm~boundary of R.

Proof: The assertion (1.6} for lo=° can be rewritten as
Lix(v) -x(v?) 120 f.a. veV,
1 €4

where x{v} is the trajectory of (2.1) with initial condition (2.2}
corresponding to v.

Thus (0,1) satisfies (1.6) iff 1 is a support Ffunctional to R
in ‘F“ Since R 1is a convex and weakly* closed subset of Wn'w[—h,o],
the proposition follows by [10, Theorem 1] .

O

Remark 9: {4, Satz 4.?] alves an explicit characterization of those
final states ¥, for which there are non-trivial Lagrange multipliers
{o,1) € R+an’2 [-h,o].
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The propeosition shows that one can obtain the existence of
é#leWn‘1[—h,cl such that {(0,l) are Laaranae multivliers after a
slight perturbation of ‘]"1 in the boundary of R.

If int R#¥, then for all \P1 in the boundary of R there are non-
trivial Lagranage multioliers (o,l}€ R x(wn' {—h o]) . In the follow-
ing we exclude this abnormal case and restrict our attention to the
case where \f1 € int R. First, we prove the followinag simole, but
important

Lemma 1: Suppose that ¥°é R is reached with x° and +eR 1s
reached regqgularly with x! Then for all cce = 1,
v E i={1-¢) ’Y°+€Y1ER i8 reached reqularly with

:=(1- £ )x°+ ex'.

Proof: xs' is a trajectory satisfying (2.1)-(2.3), since Y is
convex and the system equation is linear. Obviously, xf':1= e,

By regularity of x! there is § > o s.t.

Her-Le)xl € tnty cob() , a.e. tele,-n,e].

Since io(t)—L(t)xg € cob(fl) and cob(fl) 1is convex, this imolies
for o <« ¢ < 1:

A ] 3

X (t)"L(t)xt

.© o .1 1
= (1-g) (x (£)-L{t)x+ €(x (£)-L(t)x})

€ int o cob({1) a.e. t € [t."-h,tJ.
This shows regularity of x€.

Theorem 3: (i) intR# ¢ iff intcob(L)#b ;
(ii) If ‘f’.l € intR , then l{’1 is regularly reachable;
(iii) If ¥, e intR, then

{xecn [to—h,td : x is a regular trajectory satisfying
2.1-2.0 }

is open and dense in

{xc—Cn[to—h,t1] : x satisfies (2.1) - (2.4)}.
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Proof: ad(i): Suppose that there is y e intcob({l)}. Then there is
vOe ¥ s.t. y=b (v°(£)})}, a.e.t € T. We claim that the corresponding
trajectory x° satisfying (2.1) and(2.2) is in int ® .

We have
xo(t)-—Lit)xz = yeintcob({l) a.e.teT.

Thus there are $>0 and a neighbourhood U of x°e L:(T) s.t. for
all x with lx-x°ll_ <& and all zeuU

z(t)—L(t)xt € cob ({1) a.e.t&T.
The set Z defined by
1= {‘fewn'“’{-—h,o]: ¥=x

n .
t1 for a x eC {to h,t1} with

bex®l< 8 % = ¥, kev 4

forms a neighbourhood of ‘-P1 e W [—h,ol . Farthermcre, all elements
of 2 are reached by trajectories satisfying (2.1)-(2.3). Thus <X,
Conversely, let tere be a neighbourhood % of \f’1 with 2 ¢ B, and
assume that intcob(fl)=g. Then there are e €éR" and c, € R s.t.
ye=c for all ye¢ cob(({l). Without loss of generality, we may assume
that s

Y, (s)+_£ @+t )e dr, se [-h,0]) ez

1 ;

for all oel [e,-n,e] with Jlal,, s 1.

Invoking a strong version of Lusin's theorem [12, Theorem I.5.26(2)},
we find that there is a subset N of [t1-h,t1] of positive measure
s.t. \f’1 (t-t,4) and L{t)x, are for all trajectories x of (2.1)-{(2.3)
continuous functions of t on N.

For a€Ll(N) with |Joc]_<€ 1 define
o{t) :=0, t‘Ich’tT] ~ N.

Then there are (x%,v%) satisfying (2.1)-{2.3) with

Pole-t)) + &(tle = x¥(t) = Lt)xy + b(vT(t)), teN.
Scalar product with e in r" yields

x(tree = [L ()X - Py (et )] erb (v (E))e

= [i'_.(t)x: - *?1 (t-t1)] e + Sy
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Since the right hand side 1s continuous on N, ee#o is a constant,
and X is an arbitrary element of LL (N}, this is a contradiction
proving {i).

ad (ii}) Let \f’1 e int R be reached with x°.
We have to show that there is a trajectory reaching ‘ﬂ, regularly.

By (i) there is vye int‘g cob(fl) for a § >0. Then there is v1e ¥
s.t. y=b (v1 (t)). The corresponding trajectory x1 satisfying (2.1)
and (2.2) is regqular. Application of Lemma 1 with 3= , ’\"1:=x1

tq

yields that the set of regularly reachable Y is dense in int R.
Thus for ‘P1g int R there is YPew ’™[-h,o0] s.t.

\f1+\f is regularly reachable, say with x1,

\{71— ¥ is reachable, say with x2.
Then, by Lemma 1 again, V1 is reached regularly with %x1+%x2, and
{ii} is proven.
ad{iii) By (ii) there is x1 reaching \91 regularly. Suppose
that x° is any trajectory reaching ‘~f1. Then apply Lemma 1 with

o=yl Y1 in order to see density. Openness is clear.

O

Remark l1o: Using Remark 8, one can deduce one direction in (i)
from well-known results in the theory of unconstrained hereditary
systems with ordinary controls. Let A be the affine subspace of
R" spanned by cob(fl). If intR# ¢, the system

x{t) = L{t)x, + u(t) a.e.teT

xto = \fo !

where the controls u take values in A, reaches each element of

W [—h,o]. For unconstrained linear hereditary systems, complete
reachability of Wn’p{-h,o], 1€« pc oo, implies that the dimension of
the control space is not less than the dimension of the phase space
(cf.e.g.[7, Proposition 4.3]). This can easily be seen to remain true
for systems with control values in an affine subspace of R" and
p=%. Thus a=R™. Since the interior of the convex set cob({l) in
A is non-empty, it follows that intcob(Jfl) # &.

Remark 11: [4] contains an example of a non-linear system, where

all trajectories reaching a certain final state ‘91 are regular.
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Remark 12: Suooose that fl contains at least n + 1 points. Then the
condition intco b(fl) # @ is~generically satisfied for b in the
Banach space of continuous functions defined on [) with values in

R" i.e. the set of functions b satisfying this condition is

open and dense. It does not presuppose a relation between the

number m of control inputs and the dimension n of the phase space.

Consider e.g. a n-dimensional system with scalar control where

w
uﬁ

n:=[0,1] ’ bl{w) =

.
wn

Then intco b ({])} # ¢ and the assertions (i)-(iii) of Theorem 3 avoly,

Only if we restrict ourselves to the non-dgeneric class of linear
functions b:!)——aRn, the condition ma n becomes necessary adain

for reqularity.

Theorem 3(iii) showsthat recularity is a ageneric proverty of trajec-
tories reaching an element in the interior of I{. Though it is

very difficult to decide in a varticular optimal control vroblem,
whether the (unknown) ovptimal trajectory is reaular, we find that
"almost all" trajectories are reqular. Thus use of the necessary
optimality condition in the maximum principle awvears to be

reasonable.
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