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Abstract
In this work, we investigate the coherence between inferable de-
ception and perceived sincerity in speech, as featured in the De-
ception and Sincerity tasks of the INTERSPEECH 2016 Compu-
tational Paralinguistics ChallengE (ComParE). We demonstrate
an effective approach that combines the corpora of both Chal-
lenge tasks to achieve higher classification accuracy. We show
that the naı̈ve label mapping method based on the assumption
that sincerity and deception are just ‘two sides of the same coin’,
i. e., taking deceptive speech as equivalent to non-sincere speech
and vice versa, does not yield satisfactory results. However, we
can exploit the interplay and synergies between these character-
istics. To achieve this, we combine our previously introduced
approach for data aggregation by semi-supervised cross-task la-
bel completion with multi-task learning, and knowledge-based
instance selection. In the result, our approach achieves signif-
icant error rate reductions compared to the official Challenge
baseline.
Index Terms: Computational Paralinguistics, Transfer Learn-
ing, Cross-Task Labelling, Multi-Task Learning, Deception and
Sincerity Identification

1. Introduction
Building multi-faceted descriptions of speech including speaker
states, traits and speaking styles has immediate applications in
content-based speech retrieval, as well as crime prevention and
forensics. This can be highly relevant to filter important con-
versations from large amounts of speech recordings, where the
issue of social signals detection particularly comes into play. The
lion’s share of today’s studies considers speech characteristics in
isolation, i. e., single or only few attributes are analysed at once.
There is very little exploitation of the interplay and synergies
between different characteristics, yet in reality, strong interde-
pendency between bits of paralinguistic information exists.

The INTERSPEECH 2016 Computational Paralinguistics
ChallengE (ComParE) [1] provides an interesting test bed for
holistic speech analysis by featuring two classification tasks that
are – intuitively – correlated but subtly different: the manifes-
tation of (quasi) objective deception in speech (induced by a
specifically designed scenario), as well as sincerity of speech as
subjectively perceived and estimated by human listeners. From
an engineering point of view, this motivates the usage of data
aggregation to improve performance on either task. Since the
training databases for each task are only labelled in one dimen-
sion, we rely on semi-autonomous annotation to complete the
missing target labels. Furthermore, we use multi-task learning
to exploit the hypothesised correlation between these tasks. Be-

sides improving performance, our aim is to shed light on the
question whether these tasks are so highly correlated that one
can be directly mapped to each other – and hence, they should
be considered as a single task, as is often done in emotion recog-
nition, where data sources with different underlying emotion
concepts can be united [2] –, or, whether there is a more complex
interplay, justifying to treat them as separate tasks. For this we
will investigate the accuracy of direct label mapping and transfer
learning.

Related Work: In the context of computational paralin-
guistics, multi-task learning [3, 4] has been exploited by [5, 6, 7],
and semi-supervised learning (SSL) [8, 9] has been investigated
for emotion recognition in [10, 11] and for sentiment analysis in
[12, 13]. In [14], we extended SSL to the Cross-Task Labelling
(CTL) method, yielding fully automatic annotations of speaker
trait databases with multiple labels. Related work in speech
recognition covered the completion of missing features [15],
however, these were not used as classification targets. As far as
we know, the application of all these techniques to deception or
sincerity classification is new.

Deception detection has been investigated in a few studies
involving audio and acoustic feature analysis [16, 17, 18]. The
prevailling view amongst philosophers is that a speech act is
sincere if the speaker is in the state of mind that the speech act
functions to express [19]. An alternative definition of sincerity
in speech as Spontaneity and as a Communicative Virtue can be
found in [20]. An interesting view is presented in [21], according
to which sincerity is anchored in the speaker’s and hearer’s
attitudes towards the propositions and thus to the illocutionary
level. The nature of sincerity as a subjective speech phenomenon
has been studied in [22, 23]. However, there has been in the
literature little work on the automatic identification of deceptive
and sincere speech from acoustic, prosodic, and lexical cues.

In the following, we detail the holistic speech analytic
method applied in this study, as well as the investigated data
sets, before presenting experimental results.

2. Methodology

Let us first introduce some required notation: Assuming a set
of L different classification tasks to be performed, x(l)

i ∈ X
denotes the i-th feature vector for classification task l, while
y
(l)
i ∈ Y

(l) denotes its gold standard label and Y(l) the set of
possible labels for task l. [·; ·] denotes the concatenation of
features.
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Table 1: Overview of the presented learning schemes.

Training data Cross-task training data Test data
Transfer learning – x

(m)
j , hm→l(y

(m)
j )

x
(l)
k , y

(l)
k

Data aggregation:
– direct mapping x

(l)
i , y

(l)
i x

(m)
j , hm→l(y

(m)
j )

– semi-supervised learning x
(l)
i , y

(l)
i x

(m)
j , ỹ(l)(x
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2.1. Transfer Learning

For transfer learning, we make use of the assumption that the
Sincerity and Deception tasks are just ‘two sides of the same
coin’, i.e., non-sincere speech is the same as deceptive speech
and vice versa. We can formalise such expert rules as mapping
functions hm→l : Y(m) → Y(l) that maps a label for task m
to the corresponding label for task l, l 6= m. In the scope of
this paper, l,m ∈ {Deception, Sincerity}, and the mappings are
bijective. Using hm→l, we can derive a straightforward transfer
learning scheme for the task l of interest, by re-labelling the
training data from task m. Note that, this is similar in spirit to
the strategies proposed for cross-corpus emotion recognition in
[2], where a hand-crafted mapping between emotional speech
labels in various categories and dimensions was defined and
applied to a set of corpora prior to joining them to obtain best
performance.

2.2. Data Aggregation: Baseline Strategies

Transfer learning is mainly useful when there is little or no
labelled training data for the task of interest. However, in the
scope of this paper, we can assume enough labelled training data
for both domains, and the question is how to combine them for
best performance. We can thus treat the problem similar to cross-
corpus data aggregation, cf. [2, 24]. As a baseline strategy for
the task l, we join the re-labelled training sets from the transfer
learning experiment with the original training set of the task l.
Furthermore, we can exploit simple semi-supervised learning,
exploiting a classifier ỹ(l) : X → Y(l) trained on the original
training set of task l.

2.3. Data Aggregation: Cross-Task Labelling

Cross-task labelling (CTL) [14] can be understood as a generali-
sation of semi-supervised learning to L-dimensional labels,
where each dimension corresponds to a classification task. The
algorithm is depicted in Figure 1. Starting from labelled train-
ing data from various ‘isolated’ tasks, we construct a ‘holistic’
database whose feature vectors comprise the union of instances
from all the tasks, and whose labels are defined for all instances
in all dimensions. In Figure 1, L(l) denotes the labelled training
set of a specific task l. U (l) comprises all the data where one
or more labels for the task l are still missing (⊥). In a double
nested loop, a form of iterative semi-supervised learning is ap-
plied for each task. In the inner loop, refined classifiers ỹ(l) are
constructed, based on a training algorithm denoted by Train().
The Select() function returns the indices of instances from the
set U (l), where the classifier outputs have a high confidence. For
simplicity, we assume that all instance indices are unique and
every instance j belongs to exactly one ‘original’ task, which is
denoted by lj . For the selected instances, the labels obtained by
the classifier ỹ(l) are taken as gold standard and are added to the

Algorithm: Cross-Task Labelling
Input: original data sets {(x(l)

i , y
(l)
i )}, 1 ≤ l ≤ L

Output: cross-labelled data sets
{(x(l)

i , ŷi = (ŷ
(1)
i , . . . , ŷ

(L)
i )>)}, 1 ≤ l ≤ L

Initialisation: For all i, l′:

ŷ
(l′)
i :=

{
y
(l)
i l = l′

⊥ otherwise
For l = 1, . . . , L:

Do:
U (l) := {x(l′)

i | 1 ≤ l′ ≤ L, ŷ(l)i = ⊥}
L(l) := {(x(l′)

i , ŷ
(l)
i ) | 1 ≤ l′ ≤ L, ŷ(l)i 6= ⊥}

ỹ(l) := Train(L(l))

J := Select(U (l), ỹ(l)) // according to highest confidence
For j ∈ J : ŷ(l)j := ỹ(l)(x

(lj)

j )

While U (l) 6= ∅

Figure 1: Pseudocode description of the Cross-Task Labelling
(CTL) algorithm.

multi-dimensional labels ŷj of the holistic database.

2.4. Multi-Task Learning

While all the previous methods can be used with standard single-
task learning, it seems conducive to combine data aggregation
and CTL with multi-task learning via auxiliary features in a
classifier chain, similar to [25]. The idea is to append labels for
a task m that is expected to be related to task l as features to
the vectors x(l). In case that the feature vector belongs to the
training or test set for task l, we have to rely on a hypothesised
label ŷ(m) obtained by CTL1. However, if the feature vector
belongs to the cross-task training set (from task m), we can use
the gold standard for m (y(m)) as attribute.

2.5. Knowledge-Based Instance Selection in CTL

The mapping hm→l, here from deception to sincerity labels and
vice versa, can also be interpreted as an expert rule that can be
exploited for instance selection in CTL. In doing so, we assume
that instances that violate the constraint imposed by hm→l, i. e.,
ŷ(l)(x

(m)
j ) 6= hm→l(y

(m)
j ), should be dropped from the cross-

task training set, as they are considered outliers.
Table 1 shows a summary of the learning schemes presented

in the previous sub-sections. We depict the pairs of feature
vectors and labels used from the training data of the task of
interest l, as well as a task m that is used for cross-task data

1For determining the auxiliary feature on the test set, we cross-label
the test set separately from the training set.
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Table 2: Class distribution among the original instances in the
DSD (Deception task), and those from the SSC (Sincerity task)
added by means of cross-task labelling (CTL).

# Train Test Σ Added by CTL Σ
D 311 121 432 297 729
ND 747 376 1 123 614 1 737
Σ 1 058 497 1 555 911 2 466

Table 3: Class distribution among original instances in the SSC,
and those from the DSD added by means of CTL.

# Train Test Σ Added by CTL Σ
S 326 151 477 661 1 138
NS 329 105 434 894 1 328
Σ 655 256 911 1 555 2 466

aggregation. In particular, when referring to experiments on the
Deception test set, the index l represents Deception and the index
m (cross-task) represents Sincerity. Conversely, in the context
of the Sincerity task, the roles of l and m are swapped.

3. Corpora
3.1. Deception

In this work, we use the official DECEPTIVE SPEECH DATABASE
(DSD) from the Deception Sub-Challenge of the ComParE 2016
Challenge [1], which is designed to investigate the manifestation
of inferable deception in speech. The full set of recordings in-
cludes approximately 162 minutes of speech from 72 speakers,
leading to a total of 1 555 instances (see Table 2). We use the
union of the training and development sets of the Challenge as
training set, and the official Challenge test set for evaluation.
The recordings were obtained in an empirical study where partic-
ipants were randomly assigned to one of two groups (thieves and
innocents) in a role-playing scenario. Participants were asked to
answer truthfully, or lie, in a structured interview, depending on
which experimental condition they were in. By the experimen-
tal design, the gold standard for each utterance can be defined
as a binary non-deceptive (ND) or deceptive (D) label. Note
that, participants who failed to behave in accordance with the
experimental condition were removed from the data set.

3.2. Sincerity

The SINCERITY SPEECH CORPUS (SSC) as used in the Com-
ParE 2016 Challenge [1] covers the perceived sincerity in speech.
It contains approximately 72 minutes of speech by 32 speakers
and a total of 911 instances (see Table 3). Test subjects were
asked to read six predefined sentences, each a form of apology,
in various prosodic styles. Each instance was rated in terms of
perceived sincerity using an ordinal rating scale by at least 13
annotators (up to a maximum of 19). The ratings were standard-
ised to zero mean and unit standard deviation on a per annotator
basis in order to eliminate individual biases. To determine the
gold standard for the Challenge, the average sincerity rating was
taken across all annotators. For the purpose of this study, the re-
sulting real number was discretised to a binary label: sincere (S)
or non-sincere (NS), based on whether the average normalised
rating is positive or negative.

Table 4: Unweighted average recalls (UARs) of the D/ND classes
(Deception task) and S/NS classes (Sincerity task), using the
learning schemes depicted in Table 1 with SVMs. Note that, the
Sincerity baseline is not an official baseline, as it uses discrete
instead of continuous labels.

UAR [%] Deception Sincerity
Baseline 68.3 70.9

Cross-task methods
Transfer learning 50.7 51.2
Data aggregation:
– direct mapping 66.8 69.4
– semi-supervised learning 69.7 69.1
– CTL, single-task learning 71.8 71.0
– CTL, multi-task learning 72.2 71.3
– with instance selection 68.9 70.4

4. Experiments and Results
4.1. Acoustic Features

The COMPARE feature set is the same as has been used in
the three previous editions of the INTERSPEECH ComParE
challenges [26, 27, 28], and contains 6 375 static features re-
sulting from the computation of various functionals over low-
level descriptor (LLD) contours. The configuration file is
IS13 ComParE.conf, which is included in the 2.1 public release
of openSMILE [29]. A full description of the feature set can be
found in [30].

4.2. Classifier Training

As classifier, we exclusively use Support Vector Machines
(SVMs) in this paper, as they are known to be robust to over-
fitting in large feature spaces such as the above named feature set.
We use the Sequential Minimal Optimisation (SMO) algorithm
to train SVMs, as implemented in Weka [31]. In the first set
of experiments, we keep the complexity parameter constant at
C = 10−4 for all learning schemes, which is optimal for the
ComParE challenge baseline [1].

Feature standardisation is crucial in cross-task experiments
[2, 32]. Here we follow a straightforward scheme that lends
itself to utterance-based processing at test time (i.e., no batch
processing required). The training set of task l is standardised to
zero mean and unit variance. The test set of task l is standardised
using the same scales and offsets. Then, the entire data set of
task m is standardised separately to zero mean and unit variance
prior to applying the labelling schemes (direct mapping, semi-
supervised learning or CTL). Finally, the standardised training
set and the cross-task data set are jointly used to train a classifier.
No further standardisation is applied during training and testing.

Due to the skewed class distribution in the DSD corpus, the
training instances of the D class were duplicated so as to reach a
more balanced distribution on the training set.

4.3. Cross-Task Labelling Results

Tables 2 and 3 show the number of instances in the original
Deception and Sincerity databases, as well as those that were
added by the CTL algorithm to each of the classes. If we compare
the numbers in the column ‘Added by CTL’ of Table 2 with the
ones we would obtain by direct mapping (from NS to D, as well
as from S to ND), it becomes apparent that there is a ‘shift’ of
NS instances (434) away from the D (297) and into the ND (614)
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Figure 2: UAR on the Sincerity task by SVM complexity:
baseline (official ComParE 2016 training sets), CTL-ST (cross-
labelled training set, single-task learning), CTL-MT (cross-
labelled training set, multi-task learning).

class. It is notable that, a similar trend (with swapped roles of
sincerity and deception) is also to be observed in the Sincerity
task (Table 3). We can thus conclude that the CTL algorithm
performs labelling against the initial assumption of a one-to-one
mapping between the classes of the Sincerity and Deception
tasks. The classification results below will elucidate which of
these ‘competing’ labellings is preferable in terms of accuracy.

4.4. Classification Performance

Table 4 shows the results in terms of an official ComParE 2016
challenge metric, unweighted average recall (UAR), where the
average is taken over the D/ND and S/NS classes, respectively.
First, it can be seen that transfer learning results hover around
chance level. It is therefore a fitting result that adding the original
training set to the transfer learning one, as done by the ‘direct
mapping’ strategy, merely restores the baseline performance on
both tasks.

For the Deception task, semi-supervised learning slightly
outperforms the baseline, and CTL yields another gain on top.
This can be attributed to the iterative self-training present in the
CTL method. The best performance is obtained by combining
CTL with multi-task learning, reaching 72.2 % UAR on the offi-
cial test set of the Deception Sub-Challenge2. The improvement
from the baseline (68.3 % UAR) to the CTL-MT method corre-
sponds to a 12 % relative error rate reduction and is significant at
α = 0.1 according to a one sided z-test. Finally, the results with
knowledge-based instance selection fall considerably behind the
CTL-MT UAR. This indicates the importance of instances that
are ‘inconsistent’ as regards their Sincerity and Deception labels.

On the Sincerity task, the baseline is considerably harder to
outperform by our data aggregation methods. One difference in
the nature of the SSC and DSD corpora is the speech style (read
vs spontaneous), and in future work we might use the prosodic
style annotation of the SSC corpus to further investigate into how
this may affect performance. Besides, we investigated whether
this result could be due to a sub-optimal tuning of the SVM
complexity parameter. Figure 2 shows the UAR obtained with
various complexity parameters set in SVM training. It can be
seen that, while the optimal choice of C for the CTL-ST/-MT
methods leads to slightly better performance than the optimal
choice of C for the baseline, for other values of C the difference

2Our results run out of competition since participants can perform
only five evaluations on the test set and part of the authors are organisers.
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Figure 3: ROC of deception detection using the baseline and
CTL-MT methods.

is more substantial. In particular, the superior performance of
CTL-ST/-MT at C = 10−5 provides evidence of added value of

the cross-labelled instances when the optimisation algorithm is
forced to select fewer support vectors.

4.5. Deception Detection Performance

Motivated from possible applications of deception detection in
crime prevention and forensics, and the fact that deceptive speech
is less prevalent in the present data set than non-deceptive speech,
let us now investigate the performance of deception detection
using the ComParE baseline as well as the CTL-MT method.
The resulting receiver operating characteristic (ROC) curve can
be seen in Figure 3. In line with the results above, CTL-MT
yields superior or equivalent true positive rates at a given false
positive rate w.r.t. the baseline, resulting in areas under the ROC
curve (AUC) of 0.781 (CTL-MT) vs 0.760 (baseline).

5. Conclusions
We have presented a study on the fully automatic classification
of deception and sincerity in speech, where the methodology
was motivated by the assumption that these tasks are correlated.
The hypothesis that de facto deception and perceived sincerity
are ‘two sides of the same coin’ was falsified in its generality
by the inferior performance of simple relabelling based on this
hypothesis. In contrast, the performance analysis of the CTL
method demonstrates that an iteratively self-trained classifier
is able to select ‘appropriate’ instances from another task that
complement the available intra-corpus training data, and that
these labels need not match the intuitively expected ones. The
performance of CTL reported in this study is all the more no-
table since CTL was previously not able to improve performance
over standard single-task classification [14], which indicates that
there is a significant amount of interplay and synergies between
deception and sincerity. In future work, we will deepen the
performance analysis as regards the features that differ between
the ‘well-behaved’ instances (for which the label mapping as-
sumption is true) and the others. Furthermore, we will extend
our work to machine learning methods which are better capable
of exploiting the multi-dimensional target labels in the holistic
database obtained by CTL, such as deep neural networks.
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