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ABSTRACT

This paper introduces an approach for performing distributed
speech emotion recognition in a client-server architecture. In this
architecture, the client side deals only with feature extraction, com-
pression and bit-stream formatting, while the server side performs
bit-stream decoding, feature decompression and emotion recogni-
tion, which requires more computational resources. Taking into ac-
count the trade-off between the required transmission bandwidth and
recognition accuracy, we propose to employ a vector quantization
approach based on independent codebooks for feature sub-spaces.
Extensive test runs are conducted to reveal the impact of quanti-
zation parameters on the compression rate and recognition perfor-
mance. In the result, by using a quantization strategy involving 32
subvectors and 9 bit codeword length, almost 30 times compression
can be reached without a considerable increase of the error rate.

Index Terms— distributed speech emotion recognition, split
vector quantization

1. INTRODUCTION

With the emergence and exponential growth of Internet, a great deal
of effort has been made to integrate speech processing into Internet
technology with the purpose of facilitating the interface for human
users, as well as decreasing the demand for computing resources on
the client side. So far, there exist several speech-based Internet ap-
plications which have been well explored and even further applied in
practice, such as distributed speech recognition (DSR) focusing on
understanding users’ instructions by the use of the front-end speech
recognition technology [1, 2], and distributed speaker verification
which can simplify users’ authentication operations by verifying
their identity from short spoken phrases in a client-server paradigm
instead of forcing them to provide passwords and personal identifi-
cation numbers (PINs) [3]. Yet, in contrast to the attention paid to
the above speech-based applications, we are unaware of a study that
deals with speech emotion recognition (SER) over the Internet. Ac-
tually, there are at least two benefits for developing distributed SER
(DSER): 1) the development of DSER would facilitate integration
of SER technology into large-scale end-user applications, 2) DSER
could help enhancing ‘social competence’ of state-of-the-art Internet
interfaces. This paper focuses on the first perspective of DSER, es-
peically in the context of wireless networks with mobile terminals. A
further advantage of DSER is that models stored on the server can be
updated periodically on the server side rather than by the end-user.
Comparing to stand-alone SER, DSER involves diverse tech-
nologies including data compression, network data transmission pro-
tocols, distributed computing etc. Furthermore, similarly to other
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distributed applications, it must address three following criteria: 1)
the solution must be inexpensive to implement on the client side,
2) the required data transmission bandwidth for emotion recognition
must remain at a low level, and 3) the recognition accuracy must be
(at least) approximately equal to state-of-the-art SER.

To implement a DSER system meeting the above criteria, the
first problem that arises is how to distribute the components of the
recognizer over the Internet. To this end, the classic client-server
architecture, as adopted in the widely adopted European Telecom-
munications Standards Institute (ETSI) standard for DSR [4], can be
a natural choice. Based on an architecture of this kind, we separate
the emotion recognition processing into two parts — the feature ex-
traction and compression front-end executed on the client side and
the emotion recognition on the remote back-end, and only need to
send the parameterized representation of speech instead of speech
coding from client to server.

Another crucial problem is the establishment of a suitable fea-
ture compression strategy. Compared to speech recognition front-
ends where a low number of frame-wise features is extracted at a
high frame rate (typically, 100 13-dimensional vectors per second),
emotion recognition often involves computation of functionals from
frame-wise features to capture temporal variation across time pe-
riods of approximately one second. This can result in very high di-
mensional feature vectors; for instance, in the (relatively small) base-
line feature set for the INTERSPEECH 2009 Emotion Challenge, the
dimension of the features per speech sample is 384 [5]; other recent
studies in emotion recognition (e. g., [9]) employ thousands of fea-
tures. Thus, the required bandwidth for uncompressed transmission
of emotion recognition features is comparable to speech recogni-
tion applications. In this paper, to address feature compression, we
propose to employ a sub-division into feature subspaces which are
encoded independently (Split Vector Quantization algorithm, SVQ).
We then focus on the balance between the required transmission
bandwidth and satisfactory recognition performance.

The outline of this paper is as follows. Section 2 describes the
fundamental DSER architecture assumed in this study. Section 3
gives a brief description of the FAU Aibo Emotion Corpus used in
our experiments. Section 4 presents the experimental setup and re-
sults. Finally, conclusions are drawn in Section 5.

2. FUNDAMENTAL ARCHITECTURE OF DSER

There are three alternative strategies in the design of general dis-
tributed speech processing. The first is client-only processing in
which most speech processing is done on the client side and then
the results are transmitted to the server. The second is server-only
processing in which the speech signal is transmitted to the server in
the form of a waveform signal and then all processing is done on the
server side. The third is client-server processing. In this model front-
end processing including feature extraction is located on the client
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Fig. 1. The fundamental architecture of DSER. Figure (a) shows
blocks implemented on the client side and (b) shows blocks imple-
mented on the server side.

side, speech features are transmitted to the remote server, and finally
the remaining processing of speech are performed on the server side
[1].

The former two models both have obvious disadvantages. The
client-only model requires clients that are powerful enough to per-
form computationally expensive speech processing. As to the server-
only model, pure voice transmission requires high-speed network
bandwidth, and low bandwidth connections will cause recognition
performance degradation. In contrast, the client-server model moves
the heavy computing burden from the client to the server and only
requires a low bandwidth for transmission of small size feature data.
In fact, this model has been integrated in the ETSI DSR standard [4].

Based on the above discussion, we decided to build our DSER
architecture base on a client-server model. The proposed fundamen-
tal architecture of DSER is illustrated by Figure 1. This architec-
ture consists of two parts. In the client part, which is shown in Fig-
ure 1(a), acoustic features are calculated from the input signal in the
feature extraction block. Then, features are compressed and further
processed for channel transmission. On the server side (see Fig-
ure 1(b)), bit-stream decoding and decompression are applied before
further processing in the emotion recognition back-end. As a first
perspective, this paper mainly puts emphasis on the feature extrac-
tion, compression, decompression and speech emotion recognition
components. A detailed description of the first three components is
given in this section, while the discussion on the last component is
deferred to Section 4.

2.1. Feature Extraction

The audio feature set used is the INTERSPEECH 2009 Emotion
Challenge feature set with 384 features [5] brute forced by functional
application to low-level descriptors (LLD), extracted by our openS-
MILE [6] toolkit. In detail, the 16 LLD chosen are: zero-crossing-
rate (ZCR) from the time signal, root mean square (RMS) [rame
energy, pitch frequency (normalized to 500 Hz), harmonics-to-noise
ratio (HNR) by the autocorrelation function, and mel-frequency cep-
stral coefficients (MFCC) 1-12 in full accordance to HTK-based
computation. From each of these, the delta coefficients are computed
in addition. Next, twelve functionals including mean, standard de-
viation, kurtosis, skewness, minimum and maximum value, relative
position, and range as well as two linear regression coefficients with
their mean square error (MSE) are applied on a chunk basis as de-

LLD (16x2) | Functionals (12)

(A)ZCR mean

(A)RMS Energy | standard deviationenergy

(A)FO kurtosis, skewness

(A)HNR extremes: value, rel. position, range
(AMFCC 1-12 linear regression: offset, slope, MSE

Table 1. Feature set: low-level descriptors (LLD) and functionals.
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Fig. 2. Diagram of the Split Vector Quantization (SVQ) algorithm.

picted in Table 1. Thus, the total feature vector per chunk contains
16 x 2 x 12 = 384 attributes.

2.2. Feature Compression

To reduce the number of bits needed to represent each front-end
feature vector, the SVQ algorithm is employed in this paper. The
principle is to use a subspace quantization scheme, as shown in Fig-
ure 2. Specifically, the feature vector [ is first split into L sub-
vectors, X = [z1,---,zr], and then the subvectors are encoded
by using separate codebooks, V' = [v1,--- ,vz]. The resulting set
of index values is then used to represent the corresponding speech
chunk. The closest quantization centroid is found using a weighted
Euclidean distance to determine the index:

J J
d} =z — v,

7/:17L.7:177N17 (1)

argmin (d})W;(d)), @)

0<j<(N;—1)

idr; =

where v] denotes the jth codevector in the codebook v;, d denotes
the Euclidean distance between subvector x; and codevector vf, N;
is the size of the codebook, W; is the (possibly identity) weight ma-
trix to be applied for the codebook v;. and the idx; denotes the code-
vector index chosen to represent the vector x;. The indices are then
retained for transmission to the back-end.

2.3. Feature Decompression

Using the indices received from channel, estimates of the front-end
features are extracted with a codebook lookup on the server side:
& = 0", 3

where &; denotes the estimate of x;.



700 — Without
69.0 1 A ng
68.0 1 1l xL=4
P o — =
6701 a__S - .msé-——-j(‘;,——’ - mL-g
’__:;6': ----- T”,/’ ‘_‘_,—-"
66.0 1 b 5T + L=16
< 7 T _—-
5 640 - _F T laL-e
e _ - s
63.0 1. e X oL=128
g X
@201 -~ A
Lt A
610 ¥~ K a A
60.0 ‘ ‘ ‘ :
3 5 7 9 11
Codeword Length (Bit)

(a)

70.0 -] — Without
p— SRS vQ
6901 A o R — ,6,.,#—— A L=2
[--0"" Y
68.0 1 P X L=4
-7 e ]
67.0 /,/ _____'__-.-—-—--'"‘i —————— m =8
66.0 £ . + L=16
<
= 650 | o L=3
< o
Z60d{ X AL=62
i T o L=128
63.0 e
62.0 P pooh
61.0 1 BB
60.0 =27 : :
3 5 7 9 11
Codeword Length (Bit)

(b)

Fig. 3. Un-/weighted accuracies (UA (a) / WA (b)) for distributed speech emotion recognition with different numbers of feature subvectors

and codeword lengths. L denotes the number of subvectors

Table 2. Number of instances for two classes: NEGative and IDLe.

# |NEG [IDL [

train | 3358 | 6601 | 9959

test | 2465 | 5792 | 8257

5= [ 5823 [ 12393 | 18216
3. DATABASE

The FAU Aibo Emotion Corpus [7] used for the INTERSPEECH
2009 Emotion Challenge is chosen for our experiments. It is a cor-
pus that containts recordings of children interacting with Sony’s pet
robot Aibo. The corpus consists of spontaneous, German speech
that is emotionally coloured. The children were led to believe that
the Aibo was responding to their commands, while the robot was ac-
tually controlled by a human operator. The wizard caused the Aibo
to perform a fixed, predetermined sequence of actions; sometimes
the Aibo behaved disobediently, thereby provoking emotional reac-
tions. The data was collected at two different schools (‘MONT’ and
‘OHM’) from 51 children (age 10 — 13, 21 male, 30 female; about
9.2 hours of speech without pauses). Speech was transmitted with a
high quality wireless head set and recorded with a DAT-recorder (16
bit, 48 kHz down-sampled to 16 kHz).

The recordings were segmented into chunks which are manu-
ally defined based on syntactic-prosodic criteria. The whole corpus
consisting of 18,216 chunks and labelled into two classes is used in
this paper. The cover classes NEGative (subsuming angry, touchy,
reprimanding, and emphatic) and IDLe (consisting of all non-
negative states) are to be discriminated. The number of instances
of the two classes are given in Table 2. Speaker independence is
guaranteed by using the data of one school (OHM, 13 male, 13 fe-
male) for training and the data of the other school (MONT, 8 male,
17 female) for testing.

4. EXPERIMENTS AND RESULTS

To evaluate the effect of using vector quantized features for speech
emotion recognition, we employ unweighted accuracy (UA) which
was also the official 2009 Emotion Challenge performance measure
[5] and reflects the imbalance among the classes. It is equivalent to
the average recall of the IDL and NEG classes. Furthermore, we
consider the conventional weighted accuracy (WA) (weighted with
the prior class probabilities).

As classifier, we employ Support Vector Machines (SVMs)
which are presently one of the most used classifier in emotion recog-
nition. Thus, for representative results in our experiments, we chose
SVM with linear kernel, complexity 0.05, and pairwise multi-class
discrimination based on Sequential Minimal Optimization. Imple-
mentations in the Weka toolkit [8] were used for further repro-
ducibility and by that keeping in-line with the challenge baseline.

Compared to most distributed speech recognition systems which
have to transfer a set of only 39 features (13 Mel-Frequency Cepstral
Coefficients including deltas and double deltas), the feature space in
distributed emotion recognition is rather large (e. g., 384 features are
considered in this study, 6 554 features are used in [9]). Thus, we
experiment with a rather large number of encoded subvectors (2 to
128).

In order to investigate the influence of different numbers of sub-
vectors as well as different codebook sizes for DSER, we consider
the transmission of L = 128, 64, 32, 16, 8, 4, and 2 feature subvec-
tors, corresponding to K = 3, 6, 12, 24, 48, 96, and 192 features per
group. Each group is quantized using the same codebook size.

The SVQ codebook is constructed using the features from the
training set, ignoring the class labels. We applied the K-means al-
gorithm, which can be seen as a popular unsupervised clustering
method. As distance measure we use the Euclidean distance as stated
earlier. Various codebook sizes from 16 to 4 096 were used to quan-
tize the different subvector sets.

Figures 3 (a) and (b) show the unweighted accuracies (UA) and
weighted accuracies (WA) obtained for the two-class problem (dis-
criminating the affective states NEG and IDL) when evaluating var-
ious SVQ strategies with different numbers of subvectors and dif-
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Fig. 4. Relationship between un-/weighted accuracies (UA (a) / WA (b)) and feature compression rate for distributed speech emotion recog-
nition with several sets of permutations of codeword lengths and numbers of subvectors.

ferent codeword lengths. The seven trend lines (shown as different
line types) correspond to the considered numbers of subvectors (2
to 128). For a given number of subvectors (e.g., L = 16, shown as
‘plus’ signs), we obtain better accuracies as the codeword length in-
creases. Similarly, for a given codeword length (e. g., 7 bit), a larger
number of subvectors leads to higher accuracies. Of course both, a
large number of subvectors and a large codebook size increase the
bandwidth needed for transmission. In our experiments, the best
trade-off is obtained by using 32 subvetors and 9 bit codeword length
(codebook size 512). For this setting we get an unweighted accu-
racy of 67.4 % and a weighted accuracy of 69.1 % (shown as dia-
monds), which is almost equal to the baseline performance (67.5 %
UA; 69.3 %, WA) without SVQ processing (shown as solid line), but
reaches a factor 30 data compression for feature transmission.

Figure 4 depicts the general relationship between UA (a) / WA
(b) and feature compression rate employing K-means clustering and
the proposed SVQ strategy. As expected, it can be seen that the ac-
curacies decreases as the feature compression rate increases. For
a feature compression rate between 25 and 50 we still obtain an
acceptable recognition performance even though the transmission
bandwidth is dramatically reduced. Assuming a transmission rate
of one chunk-level feature set per second, only 288 bps bandwidth
are needed when using a codebook size of 512 and 32 subvectors,
compared to 12.35 kbps when transmitting the uncompressed feature
space. Thus, by employing SVQ we are able to save a significant
amount of bandwidth without observing a statistically significant re-
duction of recognition accuracy.

5. CONCLUSION

In this paper, we proposed and investigated a distributed speech emo-
tion recognition (DSER) approach. Distributed affective computing
is of great importance for internet-based large-scale real-life emotion
recognition applications as well as for mobile and wearable applica-
tions of emotion recognition. We performed extensive evaluations
on the FAU Aibo Emotion Corpus, strictly following the 2009 Emo-
tion Challenge protocol. We investigated split vector quantification
(SVQ) combined with unsupervised K-means clustering to reduce
the required bandwidth in our distributed emotion recognition set-
ting. Results show that the accuracy of DSER employing vector
quantization (67.4 %, (UA); 69.1 %, (WA)) is nearly same as the

baseline performance (67.5 %, UA; 69.3%, WA) obtained without
employing the SVQ strategy. At the same time, we obtain a factor 30
feature compression (288 bps in our scenario). In general, a feature
compression rate between 25 and 50 seems to be a good choice, as a
higher compression degrades the performance of automatic emotion
recognition.

Future experiments will focus on using different codeword
lengths for different subvector groups, depending on their impor-
tance in discriminating emotional states. Further we plan to imple-
ment new SVQ methods to achieve higher compression rates without
decreasing accuracy. Finally, DSER under noisy and reverberated
environments [ 10] will be taken into account.
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