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ABSTRACT

We address the robustness of features for fully automatic recognition
of vibrato, which is usually defined as a periodic oscillation of the
pitch (FO) of the singing voice, in recorded polyphonic music. Using
an evaluation database covering jazz, pop and opera music, we show
that the extraction of pitch is challenging in the presence of instru-
mental accompaniment, leading to unsatisfactory classification accu-
racy (61.1 %) if only the FO frequency spectrum is used as features.
To alleviate, we investigate alternative functionals of F0, alternative
low-level features besides F0, and extraction of vocals by monaural
source separation. Finally, we propose to use inter-quartile ranges
of FO delta regression coefficients as features which are highly ro-
bust against pitch extraction errors, reaching up to 86.9 % accuracy
in real-life conditions without any signal enhancement.

Index Terms— Singing style, music signal processing, feature
extraction

1. INTRODUCTION

Vibrato singing is usually characterized as a periodic oscillation of
the fundamental frequency (pitch) of the voice at a rate of 4-8 Hz.
Applications of automatic recognition of vibrato singing in recorded
polyphonic music include singer identification, as different singers
develop their own style of vibrato [1], as well as other music infor-
mation retrieval tasks such as structure and performance analysis.
Furthermore, it can be useful for highly efficient audio coding, e. g.,
as an attribute for sound synthesis [2].

Few performance studies exist on fully automatic recognition of
vibrato singing [3,4]; furthermore, these are limited to monophonic
recordings, which may be justified for applications such as coach-
ing of singing students. For retrieval applications in recorded music,
however, one has to cope with additional sources from accompani-
ment. Per definition, it can be assumed that automatic recognition
of vibrato strongly depends on robustness of pitch extraction, which,
however, is challenging in the condition of multi-source mono- or
stereophonic recordings [5].

In this study, we use an evaluation database of polyphonic mu-
sic covering different musical genres (jazz, pop and opera) to inves-
tigate the effect of ‘noise’ by instrumental accompaniment on pitch
extraction and resulting classification accuracy of vibrato. Besides
the obvious frequency analysis of the FO contour [2], we consider
other functionals of pitch itself, and besides, the contours of other
‘low-level’ features. Finally, we employ extraction of the leading
voice by unsupervised source separation to contribute to robustness
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Genre | Non-vibrato  Vibrato | Sum
Jazz 34 96 130
Pop 50 90 140
Opera - 160 160
Sum 84 346 430

Table 1: Number of instances per class (non-vibrato / vibrato) and
genre (jazz / pop / opera) in the evaluation database.

of pitch extraction. ‘Unsupervised’ in this respect means that no
a-priori knowledge about the nature of the accompaniment, or the
voice of the singer, is assumed [6].

The remainder of this contribution is structured as follows: Our
evaluation database is described in Section 2. We move on to out-
line our feature extraction approach in Section 3 and examine the
results of automatic classification experiments in Section 4. A statis-
tical perspective on the relevance of various functionals of the pitch
contour is given in Section 5 before concluding in Section 6.

2. EVALUATION DATABASE

Our evaluation database consists of 430 segments, each correspond-
ing to one sung note in professionally recorded music. 30 different
artists are found in the database, all of which are accomplished fe-
male singers. Genres cover jazz, pop and opera with 10 singers each,
and 130, 140 and 160 instances, respectively. The segments were ex-
tracted manually and labeled by experts as containing vibrato or not.
All opera segments are sung with vibrato while the percentage of vi-
brato segments is approximately 2/3 for pop and 3/4 for jazz. The
average note duration is 1.86 s with a standard deviation of 1.10 s and
considerably differs among genres, with jazz exhibiting at the same
time the longest average duration (2.12s) and the greatest standard
deviation (1.54s). In this study, unlike in [4], we do not pre-select
notes by their duration; further, to increase realism, we intentionally
include instances where vibrato is delayed in the note, as is often the
case in jazz: In our database, a delay occurs for 52 of 96 instances
(54 %), reaching up to 81 % of the total note duration.

In this study, we consider it as crucial to force a singer-
independent subdivision for automatic classification experiments, as
vibrato styles differ considerably among singers [1], and a singer-
dependent system would be prone to over-fitting to the specificities
of the singers in the database. Thus, we subdivided the database
into three folds for singer-independent cross-validation stratified by
genre, i. e., the class and genre distributions in each fold are approx-
imately equal. For the sake of reproducibility, these folds were ob-
tained as follows: For each genre, the ten singers were sorted alpha-
betically and assigned to fold 1 (singers 1-4), fold 2 (singers 5-7)



LLD Functionals
(A) Log. FO Extremes
(A) RMS energy Range

Position min., max.

Dist. min./max. from arith. mean
Moments

Std. dev., skewness, kurtosis
Temporal evolution

Mean crossing rate (MCR)

DCT coefficients 1-6
Percentiles

Inter-quartile ranges 1-2, 2-3, 1-3
DFT coefficients 1-10 (log. FO)
Arith. mean (of A)

(A) Auditory spectrum

Table 2: Feature extraction: Low-level descriptors (LLD) and func-
tionals.

or fold 3 (singers 8—10). Consequently, of the 430 instances in the
database, 170/ 130/ 130 are assigned to each of the three folds.

3. FEATURE EXTRACTION

3.1. Low-Devel Descriptors

As frame-wise low-level descriptors (LLDs), we extract pitch (FO),
root mean square (RMS) energy and auditory spectrum. All feature
extraction is performed without manual post-processing such as cor-
rection of octave errors. Pitch detection is based on the Subharmonic
Summation (SHS) algorithm [7] to identify pitch candidates in the
frequency domain. Thereby the power spectrum is transformed to
a logarithmic scale by spline interpolation and shifted spectra are
added to the original spectrum to sum up the harmonics. The result
is the so called SHS spectrum (SHSS). In theory there should be one
prominent peak at Fy; however, in practice higher harmonics are also
present. The N highest peaks in the SHSS are identified, and peak
position and amplitude are adjusted by three point quadratic regres-
sion using the peak and its left and right neighbors to fit a parabola.
A voicing probability is assigned for each candidate based on the
(adjusted) peak’s amplitude in the SHSS. The arithmetic mean (1)
of the bins in the SHSS is computed. For each pitch candidate 7 with
a pitch candidate score s¢; (= peak amplitude) greater than ps the
voicing probability p,; is computed as py; = 1.0 — ‘;1_1 Otherwise
(Sci < ps), pui = 0. The final pitch contour as well as the final
voicing decision is smoothed by dynamic programming where soft
penalties for jumps and out-of-range values are applied. The algo-
rithm is based on the Viterbi pitch smoothing as presented in [5],
which was slightly modified for the SHS pitch values and voicing
probabilities. This implementation of pitch extraction is available in
our open-source toolkit openSMILE [8].

To make the absolute amount of pitch variation independent of
the fundamental frequency, we use the natural logarithm of the pitch.
Pitch and RMS energy are extracted from 50 ms frames of the audio
signal windowed with a Gaussian function at 10 ms frame shift. The
auditory spectrum is computed by reweighting the Mel frequency
bands 1-26 obtained from a short-time Fourier transform (STFT)
with 25 ms frame size and a Hamming window function, similarly
to the procedure performed in extraction of Perceptual Linear Pre-
diction features.
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3.2. Functionals

To capture variation of the low-level descriptors, first order delta re-
gression coefficients (A)—a kind of discrete derivative often used
in speech processing—are extracted according to [9] spanning 5
frames. Furthermore, segment-wise functionals are computed from
both the low-level descriptors and their delta coefficients. To capture
pitch oscillations in the range relevant for vibrato, Discrete Fourier
Transform (DFT) coefficients 1-10 are extracted from overlapping
windows of 128 logarithmic FO points which are normalized (‘cen-
terized’) to zero mean, corresponding to a window size of 1.28s
to achieve sufficient frequency resolution. Windows overlap by 64
points and are multiplied by a Hamming function before applying the
Fourier transformation. Zero padding is applied for segments shorter
than the length of a single window (1.28 s); for segments longer than
a single window, incomplete windows at the end are discarded—
otherwise, we often observed the DFT coefficients from the previous
windows to be deteriorated by the alteration of the frequency distri-
bution in the last window due to zero padding. Finally, the mean
across windows is taken for each DFT coefficient.

Other, more generic functionals applied to all kinds of LLDs in-
clude moments, range (absolute difference of minimum and max-
imum), distance of minimum and maximum from the arithmetic
mean, standard deviation and higher order moments, mean crossing
rate, Discrete Cosine Transform (DCT) coefficients 1-6 and finally
inter-quartile ranges (IQR, absolute differences between quartiles).
These functionals are often used in segment-based functional ex-
traction from pitch and other LLDs for paralinguistic information
retrieval [10]. Frames (erroneously) classified as unvoiced are ex-
cluded from calculation of functionals and A coefficients from the
FO contour, except for DFT coefficients to preserve the frequency
of periodic oscillations—in that case, unvoiced frames are assumed
to be equivalent to the mean of the FO points in the corresponding
window(s). Note that we choose only functionals which are inde-
pendent of the absolute values of the LLDs in order to capture signal
variation instead of overall characteristics. Thus, for instance, the
arithmetic mean is only computed from the delta coefficients, not
from the LLDs themselves.

4. AUTOMATIC CLASSIFICATION EXPERIMENTS

4.1. Preprocessing

As an unsupervised preprocessing method for extraction of the
singer’s voice in the presence of background music, we use the lead-
ing voice separation approach described in [6]. This approach differs
from traditional pitch extraction by explicit modeling of accompani-
ment and the vocal tract of the singer. More precisely, the STFT of
the observed signal at each frame is expressed as the sum of STFTs
of vocal and background music signals. These are estimated by an
unsupervised approach building on non-negative matrix factoriza-
tion techniques: The voice STFT is modeled as product of source
(periodic glottal pulse) and filter STFTs while no specific constraints
are set for the background music signal because of its wide possible
variability. The estimation of the various model parameters is then
conducted by iterative approaches. In particular, the initial param-
eter estimate is refined by Viterbi smoothing in order to limit, e. g.,
octave jumps of the voice. To ensure best reproducibility of our find-
ings, we used an open-source implementation' of the algorithm with
default parameters.

!Software available at http://www.durrieu.ch/phd/software.html



To get an upper performance bound by simulating near-perfect
pitch extraction, we apply a band-pass filter for each segment whose
pass-band was manually set to capture single harmonic(s) of the
singing voice including pitch variations, so that robust automatic
pitch determination is straightforward. These filters were applied
to the Fourier transform of cach segment as a whole to achieve best
frequency resolution.

4.2. Classification

For classification we used the SimpleLogistic algorithm [11] imple-
mented in the Weka toolkit [12]. This classifier is particularly suit-
able for small to medium feature spaces as it is based on boosting
of one-dimensional regression functions. The number of boosting
iterations was cross-validated on the training set, using the default
parameters in the Weka toolkit. In order to optimize on a balanced
recall of both the vibrato and non-vibrato classes, we applied train-
ing instance up-sampling as follows: For testing on each fold, all
instances of the minority class (non-vibrato) in the two folds used
for training were copied so as to achieve uniform a-priori class prob-
abilities in the training set for the classifier.

4.3. Results and Discussion

In Table 3, we present the unweighted average recall (UAR) of the
vibrato and non-vibrato classes. This measure is arguably better
suited to take into account the class imbalance in the database than
is conventional accuracy. We observe that the joint feature space of
FO functionals provides highly robust classification, reaching 84.9 %
UAR without preprocessing. Still, this is significantly (p < .05
according to a one-tailed z-test) below the upper bound of 90.1 %
achieved by manual band-pass filtering, indicating that accompa-
niment makes vibrato classification considerably more challenging.
Surprisingly, vocal separation significantly degrades performance by
over 8 % absolute compared to using no signal enhancement; this
can be attributed to the fact that the algorithm was not designed to
capture slight pitch variations, as the source STFT is assumed to be
constant in the vocal model [6].

An analysis of different functional groups of FO reveals that
as expected, DFT coefficients allow highly robust classification on
their own if pitch extraction is facilitated by manual bandpass filter-
ing (91.7 % UAR): this performance, however, is vastly degraded to
61.1 % UAR without such preprocessing. Notably, vocal separation
can partly alleviate this downgrade (66.1 % UAR). An explanation
for the performance drop is shown in Fig. 1 for an example of jazz
music. It is clearly visible that while there is a prominent peak in
the 6th frequency bin (4.7 Hz) for ‘ideal’ FO extraction, in the real-
life setting without manual preprocessing the DFT coefficients are
significantly deteriorated due to the pitch estimation errors. In the
example, these are caused by chords played by a piano in the second
half of the segment.

As to other functionals, extremes and moments both are robust
(around 80 % UAR) for bandpass filtering, yet performing not sig-
nificantly (p > .05) above chance level (50 % UAR) without pre-
processing, probably due to sensitivity against outliers. Their per-
formance apparently cannot be restored by vocal separation. In con-
trast, DCT and MCR perform similarly above chance level regard-
less of the preprocessing, but generally deliver unsatisfactory accu-
racy on their own (up to 66.2 % UAR). Finally, and most impor-
tantly, percentile features, i.e., inter-quartile ranges enable highly
robust classification (86.9 % UAR) even without preprocessing; for
bandpass filtering, their UAR of 88.0 % is still remarkable, yet sig-
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Fig. 1: Logarithmic FO contour (normalized to zero mean) and its
DFT coefficients for a segment of jazz music, without or with man-
ual bandpass (BP) filtering to extract the singing voice.

Unweighted average recall [%] Preprocessing
LLD Functionals —  Voc.sep. | BP
(A) Log. FO All 84.9 733 90.1
DFT coeff. 61.1 66.1 91.7
DCT/MCR | 654 60.9 66.2
Extremes 55.5 51.8 81.1
Moments 56.4 53.5 79.1
Percentiles 86.9 78.0 88.0
(A) Aud.spec. All 67.0 59.7 61.9
(A) Energy All 59.5 67.0 73.8
All All 67.1 65.0 1.7
(A) FO + Energy | All 79.8 75.1 82.7

Table 3: Unweighted average recall of vibrato/non-vibrato in-
stances in singer-independent 3-fold stratified cross-validation using
SimpleLogistic classification by feature set and functional groups.
Preprocessing by vocal separation or manual band-pass (BP).

nificantly below the one of DFT coefficients. This behavior will be
further investigated below.

Before, we briefly summarize performance of other LLDs than
pitch. While both, auditory spectrum and RMS energy cannot com-
pete with FO in terms of UAR, it is notable that both are observed
highly above chance level (p < .005). Interestingly, the auditory
spectrum seems to carry valuable information especially when using
no preprocessing (67.0 % UAR); this is possibly due to the strong
interdependency with musical genre (cf. Table 1), which can be de-
tected by spectral features. Furthermore, energy is considerably in-
formative; this is not simply due to vibrato occurring in accented
notes of higher loudness since the functionals are independent of the
absolute energy (see above). Still, none of the ‘alternative’ LLDs
seem to complement the information gained from the pitch, as clas-
sification with the union of feature sets (all or FO + energy) cannot
significantly surpass the performance of FO functionals alone.

Overall, the effect of vocal separation is disappointing for our
task. One could possibly extend the algorithm to adapt the source
model to slight variations; still, given the stability of the pitch fea-
tures without signal preprocessing, a large performance increase
would be required to outweigh the high additional computational ef-
fort from a practitioner’s point of view.



5. FEATURE RELEVANCE

As a perspective on feature relevance independent of the classifi-
cation algorithm, we perform two-sided Welch two-sample t-tests
(assuming inequal variance) on the features derived from FO and its
delta regression coefficients in the whole data set. These tests indi-
cate whether their mean in the vibrato segments is significantly dif-
ferent from the mean in the non-vibrato segments. We do not correct
the p-values for repeated measurements since we are only interested
in a feature ranking. Furthermore, we restrict this evaluation to FO
functionals due to their vastly superior performance in general (cf.
the previous section).

For each of manual bandpass filtering as well as no signal en-
hancement, the ten most discriminative functionals of FO and their
delta regression coefficients by their absolute t-statistic are shown
in Tables 4a and 4b, respectively. Evidently, inter-quartile ranges of
A FO are particulary informative in both cases. Inter-quartile ranges
of FO itself, however, are only informative for manual BP filtering.
This indicates that deltas are robust against pitch estimation errors
while FO itself is not: Apparently, due to the Viterbi smoothing, the
musical accompaniment causes systematic errors in pitch estimation
rather than random fluctuations. Furthermore, it is well known that
generally, percentile-based features such as IQR are robust against
outliers caused by measurement errors. Concerning DFT coeffi-
cients, it is obvious that they have strong discriminative power after
applying manual BP filtering: The most relevant coefficients 610
exactly correspond to vibrato rates from 4.7 to 7.8 Hz. In accor-
dance with the automatic classification experiments, they are less
discriminative when using no preprocessing; furthermore, although
DFT coefficients 1 (of A F0), 4 and 5 occur in the 10 most relevant
features, their relation to vibrato is not immediately obvious: Coef-
ficient 1 corresponds to 0.77 Hz, and the t-statistic of coefficients 4
and 5 is negative. Thus, these functionals (as well as the first DCT
cocfficient and mean crossing rate) apparently provide an useful, yet
generic assessment of temporal evolution.

6. CONCLUSIONS

In singer-independent evaluation on a real-life database spanning
different musical genres from pop to opera, we investigated differ-
ent approaches to automatic recognition of vibrato in recorded poly-
phonic music from FO contours and other low-level descriptors, us-
ing segment-wise functionals. It turned out that while the conven-
tional approach of using the FO discrete spectrum dramatically suf-
fers from pitch estimation errors due to multiple present sources of
accompaniment, percentiles of the delta regression (discrete deriva-
tive) of the pitch contour are highly robust.

Future work should focus on dynamic spotting of vibrato singing
in recorded polyphonic music, integrating the proposed classification
framework into a fully automatic system; this could be achieved by
using note on-set detection, as a first stage, or dynamic modeling of
segment-wise functionals.
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