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Summary. Humans make often conscious and unconscious gestures, which reflect their
mind, thoughts and the way these are formulated. These inherently complex processes can
in general not be substituted by a corresponding verbal utterance that has the same seman-
tics (McNeill, 1992). Gesture, which is a kind of body language, contains important infor-
mation on the intention and the state of the gesture producer. Therefore, it is an important
communication channels in human computer interaction.

In the following we describe first the state of the art in gesture recognition. The next
section describes the gesture interpretation module. After that we present the experiments and
results for recognition of user states. We summarize our results in the last section.

1 State of the Art

1.1 Applications of Gesture

Gesture can be used in a wide range of applications: gesture in conventional human
computer interaction (HCI), interaction through linguistic gesture and manipulation
through physical contact. We cover each of these in the following.

Gesture in Conventional HCI

Under the window, icon, menu and pointing device (WIMP) paradigm, the use of
mouse and pen of a graphic tablet such as that of the Wacom 1 Company are typ-
ical example applications of gesture. This kind of gestures with the help of point-
ing devices is intensively employed in computer aided design (CAD) (Sachs, 1990)
and online handwriting recognition (Buxton et al., 1985). In the literature this cat-
egory of gestures is called pen-based gesture. Rubine introduced the GRANDMA
system (Rubine, 1991), in which the user is allowed to define arbitrary gestures in-
teractively. These user-defined gestures can be input either through a mouse or with
the help of a pen. The system is able to learn the static and dynamic properties of the
gestures on the basis of some training data and subsequently analyzes them in real
time.

1 http://www.wacom.com
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Interaction Through Linguistic Gesture

American Sign Language (ASL) and audio–video–speech recognition represent ap-
plications of linguistic gestures. In the ASL there exist, as a general rule, strict syntax,
semantics and their mapping in the gesture configuration similar to their “acoustic”
counterpart — speech. The understanding of ASL takes place in the space in which
gesture and its grammatical structure are expressed through the hand movement and
posture. Humans also use facial expression as well as head and body posture to sup-
port their expressions. In Attina et al. (2003) a system is described in which speech
recognition is supported by the conventionalized gestures, similar to ASL. This kind
of application often deals with hearing-impaired patients. Lip-reading is the only
reliable way for these patients to communicate with other people in daily life, as-
sumed that they have no hearing device and have not yet learned some strict sign
language like ASL. The speech accompanied by such gestures is referred to as Cued
Speech (Cornett, 1967). Moreover, linguistic gestures can be used in HCI as arti-
ficial commands, which a computer can interpret and execute. The Morpha system
in Lütticke (2000) can be controlled through dynamic gestures, which are learnde by
the system offline. This kind of gesture is more intuitive and flexible in comparison
with the gestures in ASL.

Manipulation Through Gesture

Through the commitment of data glove and touch screen, the user can physimechan-
ically interact with (virtually) presented objects in 2D/3D space. Virtual reality is by
all means the direct application of such gestures, in which the user gesticulates with
the virtual environment with relatively free gestures, as if he or she were also a part
of that world. The use of the data glove can even improve the impression of authen-
ticity by providing the user with feedback in response to the gesture input such as
through pressure and temperature.

1.2 Approaches in Gesture Recognition

There are different methods in the field of gesture analysis. These methods are shown
in the following with respect to sensor and recipient.

From the View of the Sensor

The very first attempts were data gloves, which were equipped with light sensors
made of fibreglass (Zimmerman and Lanier, 1987; Marcus and Churchill, 1988;
Eglowstein, 1990). The light sensors installed on the fingers convert each finger
movement, like bending, rotation and outstretching, into analog signals, which are
in turn used to calculate the angles of the joints of the fingers, their respective po-
sitions and the orientation of the hand. Different configurations and postures of the
hand can be interpreted as commands for the computer. However, the data glove has a
big disadvantage due to its unwieldiness: The user has to carry a lot of hardware with
him- or herself which consequently makes this kind of gesture interaction unnatural.
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Table 1. An overview of gesture analysis systems

Author (see references) Hardware Interaction System

Oviatt (1999) Pen Gesture, speech Service transaction
Rubine (1991) Mouse Mouse-based GRANDMA
Buxton et al. (1985) Mouse Mouse-based Editor for music note
Waibel and Yang Graphic tablet, pen OCR INTERACT
Raab et al. (1979) Magnetic field – Person tracking
Bolt (1980) ROPAMS gesture, speech “Put-that-there”
Azuma (1993) Ultrasonic – Person tracking
Fels and Hinton (1993) VPL DataGlove Speech synthesis Glove-Talk
Kurtenbach and Baudel (1992) VPL DataGlove Presentation HyperCard
Wu and Huang Camera Hand posture Paper–Rock–Scissors
Quek (1995) Camera Hand gesture Finger mouse
Kettebekov and Sharma Front camera Gesture, speech iMap
Akyol et al. (2001) Infrared camera Gesture Car infotainment

Electromagnetic fields (Raab et al., 1979) for gesture localization and recognition
are also popular. However, the high acquisition costs, the sensitivty to noise and
the short working range are the negative factors, which must be accounted for. In
contrast, the video-based gesture analysis with the help of a CCD camera and the
corresponding image processing technique seems more promising on account of its
uncumbersome hardware. By using a camera, a set of modalities in addition to hand
gestures can be integrated into the HCI, e.g., lip, gaze direction, head movement and
interpretation of facial expressions. Several typical systems of gesture analysis are
listed in Table 1, some of which operate simultaneously with speech. There are also
other methods, which use special hardware to achieve high throughput and efficiency,
e.g., the SiVit (Siemens Virtual Touchscreen) unit introduced in Maggioni (1995).
SiVit is also integrated in SMARTKOM.

From the View of the Recipient

Video-based gesture analysis is advantageous according to the comparison above,
thanks to the ever-improving efficiency and capacity of the computer hardware nowa-
days. The current major problem lies in the increasing demand for algorithms, which
should be fast, robust, traceable, efficient, reliable, modularized and fault tolerant.
There are mainly three different methods in the video-based gesture analysis: marker-
based, hand model-based and view-based. Due to the nonconvex volume of the hand,
many researchers attach markers to the hands, which are placed at certain positions
of the hand. Normally, they have a special color or geometric form, with which the
detection of hand and fingers becomes easier such as in case of occlusion of some
part of the hand without markers. This is an indirect method and thus makes the ges-
ture interaction unnatural. The hand model provides a full-fledged modeling of the
respective finger joints and postures. Therefore, this method is able, theoretically,
to analyze any gesture, given enough training data. In practice, however, the com-
puting complexity and the lack of efficiency hinder its spread, although it can shed
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a: prototype setup
SiVit from top

b: overall view

 display

c: microphone, d: microphone,
front view side view

camera

Fig. 1. SMARTKOM demonstration system. a prototype with integrated SiVit; b overall view,
with camera for facial expression analysis and microphones for speech analysis (c,d)

light on the solution of many practical problems. The view-based method utilizes the
pixel values as its starting point, which can be either directly used as features or be
converted to a suitable form through some transformations. It has a relatively small
computing intensity and is therefore preferred in practice.

2 Module description

2.1 Gesture in SmartKom

Figure 1 shows the set up of an intended SMARTKOM system with an integrated
SiVit unit at the top of the machine. A similar version of this system was used to
collect the gesture data in the Wizard-of-Oz experiments. The SiVit unit consists of
a video projector, an infrared camera and a virtual touch screen, which is not sensi-
tive to vandalism. The system works in the following manner: The video projector
projects all the graphical user interface (GUI) information onto the display, where the
user can use his hand to select or search for objects. The infrared camera captures the
trajectory of the users hand for the gesture analysis. Gestures are captured together
with the recording of the face via video camera, and speech through a microphone
array. The positions of these components are pointed out in Fig. 1.

In SMARTKOM the hand gesture is used in two categories: object manipulation
and contribution to user state recognition. An introduction to the latter subject is
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given separately in Streit et al. (2006), while experiments referring to user state
recognition as well as object manipulation are shown in the following section.

2.2 Work Course of the Gesture Module

Apart from selecting virtual objects by gesture, the user state, which is expressed
through gesture and describes the mood of the user, influences to some degree the
way of gesturing: If the user gets annoyed, his gesture tends to be quick and iterat-
ing, while it becomes short and determined if the user is satisfied with the service and
the information provided by the system. Both gesture and speech indicate the user
state and both complement each other. Thus, we will base our experiment on a joint
sample set of speech, gesture and facial expression. Since we deal with constantly
changing user states, it is clear that the central point of this issue is concentrated
on the dynamics of the gesture and its interpretation, instead of focusing on its seg-
mentation from background. In SMARTKOM, all exchanged information packets are
coded in an XML format.

2.3 Data flow in the gesture module

Figure 2 shows the data flow in the gesture module, which consists of two main in-
put streams and two output streams, all coded in the XML format. Based on the two
assignments of the gesture model, it reads from the data pool generated.presentation
the geometric coordinates of the virtual objects on the GUI surface, and from rec-
ognized.gesture the trajectory of the gesture. After aligning the time stamps of these
two packets and parsing these two XML packets, the module decides which object
the user has chosen or manipulated with regard to the pointing gesture position and
virtually depicted GUI objects. In this scenario, the hand gesture takes over the role
of a mouse. Afterwards an object hypothesis will be generated in XML format and
sent to the gesture.analysis pool, whose content can be evaluated further by other
modules to respond to the user gesture input by calling the corresponding service
such as cinema information or TV programs.

In the case of user state recognition a similar process happens, where the raw
gesture data go through XML parsing, feature extraction and classification by Hidden
Markov Models (HMMs). As a result, the recognized user state hypotheses will also
be sent to the user state pool.

2.4 Hidden Markov Models and Gesture Analysis

HMMs are a suitable model to incorporate temporal continuity. Temporal continuity
here means that a pixel of the gesture trajectory belongs to a certain category (state)
for a period of time. If a pixel moves at a high speed at a given time, it is likely that
this pixel will still keep moving fast at the next time step. HMMs are able to learn the
observation distributions for different categories (hidden states) from the trajectory
of the gesture. The training data are recorded in a system similar to the one depicted
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Fig. 2. Architecture of the gesture module

in Fig. 1. In this paper, each feature vector will be assigned to one of three or four
hidden states of the HMM (see Sect. 2.7).

We use the standard Baum–Welch reestimation algorithm for the training, which
is based on the expectation maximization (EM) algorithm (Rabiner and Juang, 1986),
and the standard Forward Algorithm to solve the classification problem. A detailed
description of these algorithms can be found in Rabiner and Juang (1986, 1993); an
example of how to apply these algorithms can be found in Rabiner (1989). Here we
use discrete HMMs because of their simplicity.

2.5 Feature Extraction

In order to incorporate the temporal continuity, we choose four features: trajectory
variance, instantaneous speed, instantaneous acceleration and kinetic energy as the
feature vector, which best represents the motion and the dynamics of the gesture. The
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Fig. 3. Typical trajectory of a pointing gesture with sampling points AI , I = 0...N points and
geometric variances DI , I = 0..N−1, which show the intensity of fluctuation of the gesture

continuous two-dimensional coordinates (trajectories) and the time stamp, which are
recorded by the SiVit unit, are the most important information on the dynamics of
the gesture. The reason for computing the instantaneous velocity v over time is for
the system to learn from the behavior of the user’s gesture. That is, with simple data
analysis, it would be possible to determine trends and anticipate future moves of the
user. The next set of data points is the acceleration a of the gestures, which is easily
computed by approximating the second derivative of the position coordinate. Kinetic
energy K, which is just the square of the velocity while the mass is neglected, is also
a significant factor.

In our feature set, the trajectory variance is also included. This is the geometric
variation or oscillation of the gestures with respect to their moving direction. A large
value of this variance can indicate that the user gesticulates hesitantly and moves
his or her hand around on the display, while a determined gesture leads to a small
variance. Figure 3 shows how the trajectory variance D is computed. So we have a
feature vector

f = (v,a,K,D). (1)

The vector D can be computed every N points along the gesture trajectory. Other
possible features are, e.g., the number of pauses of a gesture, the transient time before
and after a pause, the transient time of each pause relative to the beginning of the ges-
ture, the average speed, and the average acceleration or change of moving direction.
However, in this study we just consider the feature vector shown in Eq. (1).

2.6 Modification of User State Classes

As mentioned above, the goal of SMARTKOM is the combination of all three in-
put modalities. Gesture, as one of the input channels, must define its own output to
contribute to the fusion of the analysis of the three modalities. In contrast to facial
and prosodic analysis, where four user states are defined, neutral, angry, joyful and
hesitant, we define in gesture analysis only three user states: determined, angry and
hesitant. The reason for making this mapping is the intuition that normally people
cannot tell if the user is neutral or joyful by only observing his or her gesture. This
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Fig. 4. Ergodic HMMs with different numbers of hidden states for gesture analysis

was confirmed by the preliminary experiments, where neutral and joyful had a high
confusion. We decided thus in favor of the three states topology. The user state deter-
mined is given if the user knows what he wants from SMARTKOM, e.g., if he decides
to zoom in a part of a city map on the GUI by pointing to it. If the user gets confused
by SMARTKOM and does not know what to choose, his gesture will probably ponder
around or zigzag among different objects presented on the SMARTKOM GUI. Fi-
nally, if he feels badly served by SMARTKOM or if the information presented is not
correct, he can use gestures in such a way as to show a strong negative expression
like a windshield wiper, which in our context corresponds to the user state angry in
facial expression.

2.7 Choice of Different Topologies

For the HMMs, we evaluated different topologies; an HMM with three or four states
gave the best results. We suppose that a gesture consists of some basic states such
as ready, stroke, end and/or pause. This can be observed in the production of the
gesture: The user moves her hand to a start position, then makes a gesture consisting
of several strokes, probably with pauses in between, and finally ends her gesture. An
alternative is to merge pause and ready. We also tried different connection schemata;
the simplest one is an ergodic HMM, while a partially connected HMM better corre-
sponds to the correct physical order of each state (Fig. 4). The conventional left–right
HMM model is also an alternative that has been successfully used in speech recog-
nition.

3 Experiments

Tables 2, 3 and 4 show the results of the gesture analysis. We can see that the user
state hesitant is sometimes mismatched with angry. The reason is that some users,
whose gestures are used in the training set, made similar gestures like those in angry
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Table 2. Confusion matrix of user state recognition with gesture data using ergodic HMM (see
Fig. 4, CL: classwise averaged recognition rate)

Reference 3 HMM states (%) 4 HMM states (%)
user state Determined Hesitant Angry Determined Hesitant Angry

Determined 61 5 34 80 15 5
Hesitant 5 72 23 15 77 8
Angry 10 6 84 10 18 72
CL 72 76

Table 3. Confusion matrix of user state recognition with gesture data using ergodic
HMM (LOO, see Fig. 4, CL: classwise averaged recognition rate)

Reference 3 HMM states (%) 4 HMM states (%)
user state Determined Hesitant Angry Determined Hesitant Angry

Determined 62 5 33 75 7 18
Hesitant 5 74 21 13 74 13
Angry 8 8 84 30 8 62
CL 73 70

Table 4. Confusion matrix of user state recognition with gesture data using nonergodic HMM
(CL: classwise averaged recognition rate)

Reference 3 HMM states (%) 4 HMM states (%)
user state Determined Hesitant Angry Determined Hesitant Angry

Determined 72 16 12 40 49 11
Hesitant 32 45 23 2 70 28
Angry 60 12 28 2 24 74
CL 48 61

states, in that the windshield wiper movement has the same zigzag only with differ-
ent dynamics and speed. Probably, some persons gesticulate slowly while indicating
anger, thus their corresponding gestures may have similar properties like those of a
hesitant state.

Table 5. Confusion matrix of User state recognition using left–right HMM (CL: classwise
averaged recognition rate)

Reference 3 HMM states (%) 4 HMM states (%)
user state Determined Hesitant Angry Determined Hesitant Angry

Determined 63 4 33 66 6 28
Hesitant 6 47 47 13 51 36
Angry 20 4 76 30 4 66
CL 62 61
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Another reason for a wrong classification is that the training data for the user state
determined consists of those from joyful and neutral; the latter makes the HMM for
determined biased towards hesitant in Table 4 with four internal states. In general,
the classification has a classwise (CL) averaged recognition rate of 72% for three
internal states and 76.3% for four internal states, while the leave-one-out (LOO) test
achieves 73% for three internal states and 67% for four internal states. Table 5 shows
the recognition result when using a conventional left–right HMM model.

4 Conclusion

Gesture is an important communication channel in HCI, whose usage ranges from
direct manipulation of object to indication of user states as shown above. These two
models have been successfully integrated into the SMARTKOM demonstrator, which
runs as an autonomous service agent between the user and different information
sources through gesture, speech and facial expression. The user is, therefore, free to
communicate with the system, similar to talking with another human. Furthermore,
the gesture, speech and facial expression complement each other in a redundant way
so that the demand of precise expression in each modality can be relaxed and thus
extend the applicability with respect to prospective users.
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