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Abstract

In automatic speech understanding, the division of continuously running speech into syntac-
tic chunks is a great problem. Syntactic boundaries are often marked by prosodic means. We
use syntactic boundaries for disambiguation during parsing. For the training of statistic models
for prosodic boundaries large databases are necessary. For the German VERBMOBIL project (au-
tomatic speech—to—speech translation), we developed a labeling scheme for syntactic—prosodic
boundaries. Two main types of boundaries (major syntactic boundaries and syntactically am-
biguous boundaries) and some other special boundaries are labeled for a large VERBMOBIL
spontaneous speech corpus. We compare the results of classifiers (multi-layer perceptrons and
language models) trained on these syntactic—prosodic boundary labels with classifiers trained on
perceptual-prosodic and pure syntactic labels. Recognition rates of up to 96% were achieved.
We show that the boundary scores computed by these classifiers can successfully be integrated
into the syntactic parsing of word graphs and currently improve the parse time by 87% and
reduce the number of parse trees by 94%. This is achieved by introducing a special Prosodic
Clause Boundary Symbol PSCB into our grammar and guiding the search for the best word
chain by the prosodic boundary scores. The turns that we need to parse are up to 90 seconds
long and frequently contain sequences of partial sentence equivalents due to restarts, ellipsis,
etc.

1 INTRODUCTION

Prosody is used to mark boundaries while speaking. This structures the utterance and helps the
listener to understand and disambiguate the meaning. To our knowledge so far nobody has really
integrated information about prosodic phrase boundaries into a complete automatic speech under-
standing system. This paper presents the syntactic analysis of word hypotheses graphs using prosodic

!This work was partly funded by the German Federal Ministry of Education, Science, Research and Technology
(BMBF) in the framework of the VERBMOBIL Project under Grant 01 TV 101 AO and funded under Grants 01 TV 102
F/4 and 01 TV 102 H/0. The responsibility for the contents lies with the authors. We would like to thank Thomas
Kemp (University of Karlsruhe) for providing us with the word graphs used in the experiments described in this paper.



clause boundary information. The research is carried out in the speech-to-speech translation project
VERBMOBIL [16]. The influence of prosody can already be evaluated in an end-to-end system eval-
uation. Here we will restrict ourselves to show the influence of prosody on parsing. The domain of
VERBMOBIL is appointment scheduling, i.e. two persons try to fix a meeting date, time, and place.
We currently look at German utterances to be translated into English.

A corpus analysis of VERBMOBIL data, which were collected in simulated human—human dialogs,
showed that about 70 % of the utterances contain more than a single sentence [15]. About 25 % of
the utterances are longer than 10 seconds. The use of prosody in parsing is crucial for two reasons:

1. To ensure that most of the words that were spoken are recognized, a large word hypotheses
graph has to be generated. Currently, word hypotheses graphs of about 12 hypotheses per
spoken word are generated. Finding the correct (or approximately correct) path through a
word hypotheses graph is thus an enormous search problem that needs to use all knowledge
sources. We will show that prosody can help significantly for this problem.

2. Spontaneous speech contains many elliptical constructions. So even if the spoken word sequence
has been recovered by word recognition correctly, there still might be many different parses
possible, especially with longer utterances. Consider the following two of the at least 36 different
syntactic readings for a word sequence taken from the VERBMOBIL corpus

“Ja zur Not. Geht’s auch am Samstag?’ vs.

“Ja zur Not geht’s auch am Samstag.”
The appropriate English translations are

“O.K., if necessary. Is Saturday possible as well?” vs.

“Well, if necessary, Saturday is possible as well.”
In this example only the sentence boundary disambiguates between the two different semantic
meanings and pragmatic interpretations. We will show that by using prosody the number of
possible parses for the best interpretation is reduced.

We use prosody only to guide the search for the best syntactic parse through the word graph; no
hard decisions are made. Partial parses are ranked in an agenda according to a score which takes
into account the prosodic probability for a clause boundary. At each step of the search the best
partial parse is extended. So the main use of prosodic information will be to speed up the search for
the best complete parse. However in a system with limited resources (i.e. the syntax has to produce
a parse after nxutterance length or it will receive a time out signal), this speed up will also increase
the recognition rate of the syntax module.

In this paper we first present the prosodic boundary markers used for the training of the classifiers
(Section 2). Then the speech data (Section 3) and the prosodic classifiers (Section 4) are described.
Section 5 shows how the grammar and the search algorithm used during parsing were extended
in order to utilize the prosodic clause boundary information. Experimental results are given in
Section 6.

2 PROSODIC SYNTACTIC BOUNDARY MARKERS —
THE M-LABEL SYSTEM

It is well known that there is a high correlation but no one-to—one correspondence between syntactic
boundaries and prosodic phrase boundaries. We developed a prosodic syntactic labeling scheme for
German that

e provides a coarse labeling of syntactic boundaries



‘ class ‘ label ‘ context, example

M3

M3S

main/subordinate clause:
vielleicht stelle ich mich kurz vorher noch vor M3S <Atmung> mein Name ist

Lerch
perhaps I should first introduce myself M3S <breathing> my name is Lerch

M3P

non—sentential free element/phrase, elliptic sentence:
<Atmung> guten Tag M3P Herr Meier
<breathing> hello M3P Mr. Meier

M3E

extraposition:
da hab’ ich ein Seminar M3E den ganzen Tag M3S <Atmung>
there I have a seminar M3E the entire day M3S <breathing>

M3l

embedded sentence/phrase:
eventuell M3l wenn Sie noch mehr Zeit haben M3l <Atmung> 'n biBchen langer
possibly M3l if you’ve got even more time M3l a bit longer

M3T

pre—/post—sentential particle with pause:
gut M3T <Pause> okay
fine <pause> M3T okay

MU

M3D

pre—/post-sentential particle without pause:
<Atmung> also M3D dienstags paBt es lhnen M3D ja M3S <Atmung>
then M3D Tuesday will suit you M3D isn’t it / after all M3S

M3A

syntactically ambiguous:

wurde ich vorschlagen M3A vielleicht M3A im Dezember M3A noch mal M3A
dann

I would propose M3A possibly M3A in December M3A again M3A then

MO

M2l

constituent, prosodically marked:
wie sahe es denn M2l bei lhnen M2l Anfang November aus
will it be possible M2l for you M2| early in November

M1l

constituent, prosodically not marked:
M3S hatten Sie da M1l 'ne Idee M3S
M3S have you got M1l any idea M3S

Mol

every other word (default)

e can be done fast and fairly reliable (it is based solely on the transliteration of the utterance

Table 1: The M-labels, with a typical example taken from the VERBMOBIL corpus.

without taking the speech signal or the context utterances into account)

o takes prosodic knowledge into account, i.e. syntactic boundaries are marked differently depend-

ing on whether they are likely to be marked prosodically

e takes typical spontaneous speech phenomena into account

The labeling scheme is described in [2, 3]. Currently we distinduish 10 labels, which are grouped

into three major classes. Table 1 shows the labels and their corresponding class:

e M3: prosodic-syntactic clause boundary

e MO: no clause boundary

e MU: undefined, i.e.

knowledge and/or perceptual analysis.

M3 or MO cannot be assigned to this word boundary without context



In [2] we compared these labels with purely prosodic labels (B-labels)!' [11], and precise syntactic
labels (S—labels) [5]. This comparison showed that there is a high agreement between these labels
and, hence, justifies our rather coarse labeling scheme. The advantage of the M—labels is that a high
number of labeled data can be produced within a short time, because they are not very precise and
they do not rely on perceptual evaluations. Meanwhile, there are 7,286 turns (about 150,000 words)
labeled with the Ms, which took only a few months. In about the same amount of time only 648
turns were labeled with the precise S-labels, and providing B-labels for so far 861 turns took even
more time.

3 SPEECH DATABASE

For the VERBMOBIL project a large database is currently being collected. It contains German—
German, English-English, Japanese-Japanese, and German—English appointment scheduling dialogs.
Here we only report on the German—German data. The data are transcribed according to [8].
Currently about 637 German—German dialogs are available.

For the classification experiments in Section 4 we used 3 dialogs for testing (64 turns of 3 male and
3 female speakers, 1513 words, 12 minutes in total). For the training of the multi-layer perceptron
(MLP) all the available data labeled with the B-labels were used (797 turns) except for the test set;
for the language model (LM), trained using the M labels, 6297 turns were used.

For the parsing experiments in Section 5 we chose 16 dialogs with 315 turns. These dialogs had
been selected by the groups working on semantic processing within VERBMOBIL, since they contain
semantic phenomena that should be covered by the VERBMOBIL demonstrator. Part of these turns
were contained in training data of the MLP. 41 turns were not used for the experiments, because
they consisted only of short elliptic utterances like time—of—day expressions. Parsing of these turns is
trivial and does therefore not give much insight in the usefulness of prosody with respect to parsing.
For these turns, word graphs were provided by University of Karlsruhe?. The word graphs contained
12.2 hypotheses per spoken word. The word accuracy, i.e. the lowest accuracy of any of the paths
contained in the graph, was 91.3%. 128 word graphs were correct, i.e. they contained the spoken
word chain.

4 AUTOMATIC BOUNDARY CLASSIFICATION

We will now compare classification results obtained with a multi-layer perceptron (MLP), a stochastic
language model (LM), and a combination of both classifiers. The MLP serves as an acoustic—prosodic
classifier getting acoustic and few lexical features as its input. The LM estimates probabilities for
boundaries given a few words in the context of the word. With these classifiers for each of the words
in a word chain or in a word graph a probability for a clause boundary being after the word is
computed.

The computation of the acoustic—prosodic features is based on an automatic time alignment of the
phoneme sequence corresponding to the spoken or recognized words. For the boundary classification
experiments we only use the aligned spoken words thus simulating 100% word recognition. For each
word a vector of prosodic features is computed automatically from the speech signal. For the word-
final syllable, the entire word and currently £2 syllables and +2 words in the context the following
features are considered (a total of 276):

'In the following we use B3 for a word boundary, which is perceived as a major prosodic boundary.
2We would like to thank Thomas Kemp, who provided us with these word graphs using the word recognizer

described in [17].



B3 vs. =B3 M3 vs. MO
cases 165 vs. 1284 | 190 vs. 1259
MLP 87/87 87/83
LMy 92/85 95/86
MLP+LM;, 94/89 96/89

Table 2: Percentage of correct classified word boundaries for different combinations of classifiers:
total vs. class—wise average

e duration (+/— normalized),

e normalized FO minimum, maximum, onset, and offset values, and their resp. relative positions
on the time axis;

e energy, minimum and maximum values, and their resp. relative positions on the time axis;
o linear regression coefficients for FO and energy contours;
e length of the pause before and after the word;

o flags indicating whether the syllable carries a lexical word accent or whether it is in a word
final position.

The feature set is described in more detail in [7]. One MLP was trained to recognize the B-labels
based on the features and data as described above. In order to balance for the a priori probabilities
of the different classes, during training the MLP was presented with an equal number of feature
vectors from each class. For the experiments, MLPs with 40/20 nodes in the first/second hidden
layer showed best results.

Trigram language models (LM) were additionally used for the classification of boundaries. They
model word chains where the M3-boundaries have been inserted. This method as well as the com-
bination of LM and MLP scores is described in more detail in [9].

In Table 2, we compare the results of different classifiers for the two main classes boundary vs.
not—boundary deterimned using two different types of reference boundaries: B and M. In the latter,
the ‘undefined’ boundaries MU are not taken into account.
recognition rate, the second is the average of the class—wise recognition rates. The recognition rates
take all word boundaries except the end of turns into account; the latter can be classified in a trivial

The first number shows the overall

way.

It can be noticed that, roughly, the results get better from top left to bottom right. Best results
can be achieved with a combination of the MLP with the LM no matter whether the perceptual
B or the syntactic—prosodic M labels serve as reference. The LM alone is already very good; we
have, however, to consider that it cannot be applied to the ‘undefined’ classes MU, which are of
course very important for a correct syntactic/semantic processing and which account for about 4%
of all word boundaries and for 23% of all non-M0 boundaries. Especially for these cases, we need a
classifier trained with perceptual-prosodic labels. Note however, that even on the M3/M0-task the
combination of the two classifiers, MLLP+LM, shows slightly better results than the LM alone.

Due to the different a priori probabilities, the boundaries are recognized worse than the non—
boundaries with the LMs (e.g., 80.8% for M3 vs. 97.7% for MO for the MLP+LM classifier); this
causes the lower average of the class—wise recognition rates compared to the overall recognition
rates. It is of course possible to adapt the classification to various demands, e.g., in order to get
better recognition rates for the boundaries if more false alarms can be tolerated.



rulel

input — phrase input .
p p p
(rule2) phrase — s PSCB .
(rule3) phrase — s_ell PSCB .
rule4 hrase — n PSCB .
p p

(rule5) phrase — excl PSCB .
(rule6) phrase — excl .

Table 3: Grammar 1 for multiple phrase utterances

In the following section word graphs are prosodically scored using these classifiers. In this case, for
each of the word hypotheses contained in the graph the probability for a clause boundary following
this word is computed. The computation of the acoustic features as well as of the LM score is based
on £2 context words. In the case of the word graphs, the best scored word hypotheses being in the
context of a word hypothesis are used. This approach is sub—optimal, but we could show in [9], that
recognition rate does not decrease very much when classifying word graphs instead of the spoken
word chain.

5 GRAMMAR AND PARSER

In VERBMOBIL two alternative syntax—modules exist. Here we describe the interaction of prosody
with the syntax-module developed by Siemens (Munich). For the interaction with the module
developed by IBM (Heidelberg) cf. [1].

In the module described here, we use a Trace and Unification Grammar (TUG) [4] and a mod-
ification of the parsing algorithm of Tomita [14]. The basis of a TUG is a context free grammar
augmented with PATR-II-style feature equations. The Tomita parser uses a graph-structured stack
as central data structure [?, 13]. After processing word w; the top nodes of this stack keep track
of all partial derivations for wy...w;. In [12], a parsing-scheme for word graphs is presented using
this parser. It combines different knowledge sources when searching the word graph for the spoken
utterance: a TUG, a statistical trigram or bigram model and the score of the acoustic component.
In the work described here we added another knowledge source: the score for clause boundaries
computed as indicated in Section 4.

In order to make use of the prosodic information, the grammar had to be slightly modified. The
best results were achieved by a grammar that neatly designed the occurrence of PSCBs between the
multiple phrases of the utterance:

A CF-grammar for spontaneous speech has to allow for a variety of possible input phrases following
each other in a single utterance, cf. (rulel) in Table 3. Among those count normal sentences, (rule2),
sentences with topic ellipsis, (rule3), elliptical phrases like PPs or NPs, (rule4) or presentential
particle phrases, (ruleb) and (rule6). Those phrases were classified as to whether they require an
obligatory or optional PSCB behind them. The grammar fragment in Table 3 says that the phrases
s, s-ell and np require an obligatory PSCB behind them, whereas excl(amative) may also attach
immediately to the succeding phrase (rule 6).

The segmentation of utterances according to a grammar like in Table 3 is of relevance to the text
understanding components that follow the syntactic analysis, cf.:

(1) Result for lattice VM1/N011K/NHW3K002.A16:
[ja,also,bei,mir,geht,prinzipiell, jeder,Montag,und, jeder, Donnerstag,PSCB]
Well, as far as I'm concerned, in principle every Monday or Thursday ts possible.



(rule 7)  input — phrase , PSB , input .
(rule 8) phrase — s .

(rule 8) phrase — s_ell .

(rule9) phrase — np.

(rule 10) phrase — excl.

Table 4: Grammar 2 for multiple phrase utterances

(2) Result for lattice VM4/G275A/G275A002.B16:
[ja,PSCB,das,pa"st,mir,Dienstag,PSCB,ist,der,f"unfzehnte, PSCB]
Yes. This Tuesday, that suits me. That is the fifteenth.

Those two examples differ w.r.t. the attachment of the exclamative ja. In the first example it is
followed immediately by a sentence (rule6), whereas in the second it is separated by a PSCB from
the following sentence (rule5). Semantic analysis or dialog can make use of these different rules.
The exclamative in example(1) p.ex. might be identified as introduction, in example(2) it might be
interpreted as affirmation. The occurrence of the second PSCB in example(2) is not so fortunate.
Here the PSCB divides the intended subject Dienstag from its matrix clause ist der f"unfzehnte.
A hesitation in the input that did not get detected as false alarm might be responsible for this.
However (2) is a syntactically correct segmentation since a grammar for spoken language has to
allow for topic ellipsis and the phrase ist der f'unfzehnte constitutes a correct sentence according
to (rule 3). The grammar therefore retrieves the somewhat clumsy interpretation for this lattice as
indicated by the English translation. Hence, we also tested with a grammar that obligatorily required
a PSCB behind every input phrase, see Table 4.

When searching the word graph, partial sentence hypotheses are organized as a tree. A graph-
structured stack of the Tomita parser is associated with each node. In the search an agenda of
score-ranked orders to extend a partial sentence hypothesis (hypo, = hypo(wi,...,w;)) by a word
w;r1 or by the PSCB symbol, respectively, is processed: The best entry is taken; if the associated
graph—structured stack of the parser can be extended by w;;1 or by PSCB, respectively, new orders
are inserted in the agenda for combining the extended hypothesis hypo;y1 with the words, which
then follow in the graph, and, furthermore, the hypothesis hypo;;; is extended by the PSCB symbol.
Otherwise, no entries will be inserted. Thus, the parser makes hard decisions and rejects hypotheses
which are ungrammatical.

The acoustic, prosodic and trigram knowledge sources deliver scores which are combined to give
the score for an entry of the agenda. In the case the hypothesis hypo; is extended by a word w;4q
the score of the resulting hypothesis is

score(hypoir1) = score(hypo;)
+acoustic_score(w;41) + a - trigram_score(w;_1,w;, Wit1)
+5 - prosodic_score(—PSCB)

+¢score of optimal continuation’ .
If hypo; is extended by the PSCB symbol, the score of hypo;;1 is given by

score(hypoiy1) = score(hypo;)

7



analysis with PSCBs: | analysis without PSCBs:
# successful analyses 178 165
average # of syntactic readings | 8.2 128.2
average parse time (secs) 4.9 38.4

Table 5: Parsing statistics for 274 word graphs

+ - prosodic_score(PSCB)

+ score of optimal continuation’ .

The weights a and [ are determined heuristically. Prior to parsing a Viterbi—like backward pass
approximates the scores of optimal continuations of partial sentence hypotheses (A*—search). After
a certain time has elapsed, the search is abandoned. With these scoring functions, hard decisions
about the positions of clause boundaries are only made by the grammar but not by the prosody
module. If the grammar rules are ambiguous given a specific hypothesis hypo;, the prosodic score
guides the search by ranking the agenda.

6 EXPERIMENTAL RESULTS

In experiments using a preliminary version of the sub—grammars for the individual types of phrases,
we compared the two different grammars explained in Section ??. With the grammar shown in
Table 3 149 word graphs could successfully be analyzed; with the one given in Table 4 only 79 word
graphs were analyzed. This indicates that often the prosody module computes a high score for =PSCB
after exclamatives so that parsing fails if a PSCB is obligatorily required as in the grammar of Table 4.

With an improved version of the grammar for the individual phrases, we repeated the experiments
using the grammar of Table 3 and compared them with the parsing results using a grammar without
PSCBs. For the latter, we took the category PSCB out of the grammar and allowed all input phrases
to adjoin recursively to each other. The graphs were parsed without taking notice of the prosodic
PSCB information contained in the lattice. An immense increase of readings and decrease in efficiency
manifested itself, cf. Table 5.

The statistics show that on the average the number of readings decreases by 93% when prosodic
information is used, and the parse time drops by 87%. If the lattice parser does not pay attention
to the information on possible PSCBs, the grammar has to determine by itself where the phrase
boundaries in the utterance might be. It may rely only on the coherence and completeness restrictions
of the verbs that occur somewhere in the utterance. These restrictions are furthermore softened by
topic ellipsis, etc. Any simple utterance like Er kommt morgen. results therefore in a lot of possible
segmentations, see Table 6.

[er,kommt ,morgen] He comes tomorrow.
[er], [kommt ,morgen] He? Comes tomorrow!
[er kommt], [morgen] He comes. Tomorrow!
[er], [kommt], [morgen] | He? Comes! Tomorrow.

Table 6: Syntactically possible segmentations



An even more serious problem showed itself w.r.t. the treatment of empty categories. The gram-
mar uses empty categories in order to deal with verb movement and topicalisation in German. The
binding of those empty categories has to be checked inside a single input phrase, i.e. the main
sentence. No movement across phrase boundaries is allowed. Now, whenever a PSCB signals the
occurrence of a boundary, the parser checks whether all binding conditions are satisfied and accepts
or rejects the path that was found so far. This mechanism works efficiently in the case prosodic
information was used. For the grammar without PSCBs, no signal, where to check the binding re-
strictions, is available. Therefore, the uncertainty about segmentation of multiple phrase utterances
led to indefinite parsing time for some of the lattices in the corpus. Those lattices were analyzed
correctly with PSCBs.

7 CONCLUSION

In this paper we showed that prosodic clause boundary information can reduce the parse time of
word graphs computed for spontaneous speech by 87%. The number of parse trees of the resulting
analyses decreases by 94%. This is especially due to the high number of elliptic and interrupted
phrases contained in spontaneous speech, which cause that the position of clause boundaries is
highly ambiguous. Apart from differences in the particular technical solutions to sub—problems the
main difference of our approach with respect to the prosodic parse-rescoring described in [10] lies
in the fact that we first compute prosodic scores based on the word hypotheses generated by the
word recognizer. This allows the use of prosodic information within the parsing process and thus not
only reduces the number of readings but also the parse time. In a speech understanding system, the
speed—up is as important as the reduction of the number of parse trees.

In the future, we intend to use prosodic boundary information for resolving other types of ambigu-
ities such as the attachment of prepositional phrases, of appositions and of adverbials. Especially the
attachment of prepositional phrases is rather ambiguous without information about phrase bound-
aries; e.g. “I saw the man with a telescope”, or “I want to take the train to Munich”.
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