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Abstract—Nowadays, on-board sensor data is primarily used to
detect nascent threats during automated driving. Since the range
of this data is locally restricted, centralized server architectures
are taken into consideration to alleviate challenges caused by
highly automated driving at higher speeds. Therefore, a server
accumulates this sensor data and provides aggregated informa-
tion about the traffic situation utilizing mobile network-based
vehicle to server communication. To schedule communication
traffic on this fluctuating channel reliably, various approaches
on throughput prediction are conducted. On one hand there
are models based on aggregation depending on the position,
e.g. connectivity maps. On the other hand there are traditional
machine learning approaches, i.a. Support Vector Regression.
This work implements the latter including OSM-based feature
engineering and conducts a comprehensive comparison on the
performance of these models utilizing a uniform dataset.

Index Terms—throughput prediction, support vector regres-
sion, connectivity map, cellular network

I. INTRODUCTION

In the last couple of years, the development of safety and
convenience features in the automotive context is progressing
rapidly. The focus of development heads to reach higher
levels for on-road motor vehicle Automated Driving Systems
(ADSs), defined by the Society of Automotive Engineers
International in the J3016 Standard. Separating the progress of
automation into Levels 0-5, Conditional Driving Automation
(Level 3) describes systems, which provide a conditional
hands-off and eyes-off automated mode. Since current systems
solely rely on on-board sensor to fulfill automated driving
tasks, implementing features for higher speeds are challenging,
because they exceed the available sensor range. For example,
the range of a automotive radar covers at most 240 m of the
upcoming environment. Considering the advisory speed limit
on German motorways of 130km/s, this results in a time
interval of 6.6s for a driver to retake the driving task and ini-
tiate a suitable maneuver. Since the take-over transition takes
approximately 4 s according to recent studies [1], it does not
leave the driver with enough time to react properly. Therefore,
new concepts are investigated to increase the driver’s safety
by the means of vehicle-to-everything (V2X) communication.
One approach, introduced in [2], is a centralized server, shar-
ing static and dynamic traffic events within a high resolution
map. Using mobile network technologies, e.g. Long-Term
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Evolution (LTE) to exchange this data, a reliable connection
is required to maximize the passenger’s safety. As a side-
effect of the progressive development of the automation levels,
the passenger user experience steps forward, creating a higher
demand for mobile network depending services, such as video
streaming and working on-board (rolling office). Nevertheless,
since the safety aspects must always have the highest priority,
it must be ensured to have a minimum of downlink bandwidth
for driving related tasks. Based on the introduced prediction,
various applications can be developed subsequently, e.g. to
improve the reliability of the connection or resource efficiency.

Therefore, the paper is structured as follows. In Section II,
the related work is discussed, followed by an introduction
of the collected dataset in Section III. In Section IV a
detailed explaination of the data preprocessing, required by
the prediction models, is provided. Subsequently, Al-based
time series regression models are described in Section V,
before Section VI conducts a comprehensive evaluation of the
predictors and geo-based methods. Finally, we conclude our
paper and present an outlook to future work.

II. RELATED WORK

This section outlines the related work of the state-of-the-
art in geo-based throughput prediction including our previous
work as well as Al based approaches. Geo-based models
aggregate datapoints according to their geographical position
and can be visualized as a map overlay. Therefore, they either
use the historical data to calculate a model for a defined
area with respect to the aggregation function and segment
shape. For the latter, different approaches were examined in
previous work, e. g. predefined segments from a map provider
as leveraged in [3-5], manually calculated road segments with
a fixed size [6], [7] or grid based segmentation. In our previous
work [8] we evaluated these models and revealed their limi-
tations. Furthermore, advanced geostatistical approaches such
as Kriging are considered [9].

Apart from geo-based concepts, methods based on Machine
Learning (ML) are considered for forecastig Quality of Service
(QoS) parameters such as the downlink throughput as well.
Whereas geo-based models depend on exact vehicle’s position,
this prerequisite is obsolete for ML-based time series regres-
sion. Thus, these estimators can be harnessed at areas where no
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historical data is available and allows to comprise multivariate
inputs in contrast to autoregressive models. A commonly
used regression model in former work is the Support Vector
Regression (SVR) [10], [11], which will also be evaluated
in this work. Thereby, SVR takes multiple input variables to
generate a prediction and utilize a kernel function, allowing to
design predictors with high accuracy. Nevertheless, according
to Liu et al., the linear kernel outperforms the more complex
radial kernel function [12].

Another estimator is the Random Forest Regression [13],
[14] which is an ensemble of decision trees averaging the
results. Furthermore, there further exist more complex ML-
based algorithms such as HOAH, implemented by Wei et al.
in [15]. They leverage Support Vector Classification (SVC)
to determine which time series regression model should be
applied.

Besides these Supervised Learning models, additional meth-
ods from the area of Reinforcement Learning are presented, e.g
for DASH adaptation algorithms [16], and genetic-algorithm-
based prediction model [17]. Nevertheless, these ML models
are not in the scope of the evaluation for this paper.

III. DATA ACQUISITION

For this work, the measurement setup and dataset introduced
in [8] is leveraged, composing QoS parameters from a tool
called TCPAnalyzer. This tool monitors and aggregates param-
eters from three different sources, the LTE modem, network
interface and Global Positioning System (GPS) device, and
calculates the metrics based on a passive network sniffing
procedure during repeated download of a 4 MDB file from a
local server. Whereas QoS parameters are calculate with a
frequency of 3 Hz, the GPS position updates are limited to
1Hz. The Germany network provider Vodafone is chosen for
this setup.

The dataset comprises the measurement of a campaign in
the vicinity of Amberg, Germany, and covers 46 rounds overall
of a predefined test round as shown in Table I. This test round
is about 28 km long and is equidistantly separated to cover
urban, interurban and motorway scenarios. The majority of
the rounds are driven in a counterclockwise manner starting
in the west of Amberg, a minor part is recorded in a reverse
direction.

Table I: Test rounds of the dataset at measurement campaign
in Amberg

Date Rounds  Distance [km] Datapoints
13.11.2017 (Mon.) 11 298 54 836
14.11.2017 (Tue.) 11 301 58117
15.11.2017 (Wed.) 14 385 69146
16.11.2017 (Thu.) 10 270 49453
Overall 46 1254 231552

IV. DATA PREPROCESSING

This chapter deals with the general data preprocessing
workflow for setting up a throughput download, denoted as
T Ppr, prediction. Each block is implemented in Python as a

Table II: OSM properties retrieved by the Overpass API and
corresponding priority groups for feature engineering

Property rq . .-
(in OSM) ] p | Values (descending priority)

‘ ‘ ‘ ! ‘ motorway, trunk, primary,
highway H)(()) secondary, tertiary, residential
(highway) 250j motorway_link, trunk_link,

2 | primary_link, secondary_link,
tertiary_link
farmland, farmyard, forest,

1 | grass, greenfield, meadow,

Janduse_natural 250 orchard, village_green
(landuse) 5 recreation_ground, basin,
conversation, plant_nursery

| | | 3 | salt_pond, quarry

_ 1 retail, residential, industrial,
8 commercial
b
gn landuse_ military, religious, allotments,
i anthropological | 250 2 brownfield, cementry,
(landuse) construction, landfill, port,
vineyard

| | | 3| depot, garages, railway

university, school, college,

1 library, clinic, hospital,
arts_centre, market_place
place_of_worship, kindergarden,

amenit language_school, driving_school,
(ameniil ) 250 2 music_school, research_institude,
y parking, nursing_home.
social_centre, social_facility,
cinema, townhall, biergarden

3 bar, cafe, food_court,
archive, pub, restaurant

_ building e
é ‘ (building) ‘ 100 ‘ - ‘ Number of buildings
Q

=) building_level o

E ‘ (building:level) 500 | - | Avg. building level

self-containing process for improving re-usability and allowing
to transfer the pipeline in a distributed manner. Thereby,
several steps are shared between geo-based and ML-based time
series regression models.

A. Geo-based feature engineering

To compensate for the disadvantage of ML regression mod-
els of the missing vehicle’s GPS position, this work features
the concept of adding derived geographical information to the
model input. Thereby, the actual position is utilized to query
the Overpass API which is a web-based service interface for
requesting OSM map data efficiently [18]. It provides the
vast knowledge of the community-maintained OSM database
containing geographical items and their properties such as
position, type and shape. The objective is to retrieve further
geographical features, which correlate with the T'Ppj to
compensate missing operator side features as the amount of
users in a cell.
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Therefore, OSM item key tags such as amenity, land use and
buildings are requested for a given region of interest. Aside
from these features which may affect the utilization of the
mobile network, another aim is to gather information about
the natural environment. This can be collected by querying
key tags such as highway and building. Table II summarizes all
queried OSM item properties and their values. The granularity
is increased by clustering and prioritizing these properties
according to the following algorithm. The Overpass API is
called with increasing query radius 7, as long as no valid item
is returned. If no item is available for the maximum range,
the feature is undefined for the queried position. For each
categorical property the OSM value is selected which has the
highest group priority p and most occurrences in the response.
If two values have the same p and number of occurrences,
the first value is utilized according to the table. For numerical
features this is procedure is simplified by returning the number
of building items and their average level.

The derived result for the highway key tag for the test round
in Amberg, as shown in Figure 1, proves that this approach
provides reliable environmental information such as the road
scenario and can be determined in an automated way.

Figure 1: Derived feature from OSM highway key for test
round

B. Filter

Several filter steps have the purpose to refine the raw data
before the following preprocessing stages. The implementation
uses a flexible, layer based, architecture. Each filter step cor-
responds to a distinctive transitioning method, which receives
one frame and decides whether the input vector passes.

e Invalid cellular network technologies: Since the T'Ppy,
prediction focuses solely on LTE based connection, sam-
ples using other technologies are removed.

o TCP slow-start: Because the aim is to predict the max-
imal throughput, it is necessary to remove all samples
recorded within the TCP slow-start phase of the con-
nection. Therefore, a conservative interval up to the first
1000 kB of each download is removed. The filter utilizes
the RTT_SYN value provided by the TCPAnalyzer to
detect a new download and calulates the downloaded size
of the connection by the means of the DL._SUM property.
After exceeding 1000 kB, the samples pass. Additionally,

a side-effect of this implementation is that samples during
download pauses are automatically eliminated.

o Invalid GPS: Because the GPS module takes some time
for initialization, the first positions after each TCPAna-
lyzer start are set to 0°N, 0°E. Because this creates
inconsistencies, e.g. for the geo-based feature derivation,
all samples nearby the geographic origin are removed.

o Sampling period: Despite using an outgoing sampling fre-
quency of 3 Hz, the TCPAnalyzer uses an internal clock
to calculate the current 7'Ppr. This clock is provided
by the TCPAnalyzer in the PERIOD field. Especially at
the start or end of the download, these values differ from
the intended 300 ms, which also results in contradictory
T Ppr, in comparison with the remaining measurements
for this download. Consequently, if the PERIOD is lower
than 100 ms or higher than 350 ms, the sample is dropped.

This introduced filter layer reduces the overall number of

training samples to approx. 100000. Thereby, the slow-start
filter is responsible for the removal of the majority of the
samples (approx. 50 %).

C. Downsampling

In contrast to the previously described processing compo-
nents, the next four stages are exclusively applied for the
ML models. When dealing with the problem of forecasting
a time series, the best result is archived by predicting one
step ahead. The requirement is to predict the 7'Ppy, in the
horizon T}, of 15s. Because there is a discrepancy between
T}, and the sampling time 7 of the TCPAnalyzer (300 ms),
a sliding window downsampling mechanism has to aggregate
up to np = 1p,/Ts = 50 samples using the median. Besides
rearranging the data to match the required interval of 155,
downsampling offers the possibility to automatically engineer
additional numerical features within the downsampling inter-
val, such as drifts, minima and maxima, as well as standard
deviations.

D. Encoding

Since regression models cannot handle the usage of categor-
ical features such as higway or amenity natively, it is necessary
to encode these values. Therefore, one-hot encoding is applied
to all categorical features, which creates a binary column for
each category. The resulting sparse matrix replaces the original
feature within the existing table.

E. Shifting

Additional preparation is conducted by labeling the training
samples by shifting the subsequent value as the prediction
value. Since the T'Ppy, trend is not a stationary time series,
instead of predicting the upcoming value directly the differ-
ence between these measurements is selected as the value for
forecasting. Furthermore, by applying autocorrelation function
it is shown that previous T'Ppy, values are significant. To add
them as additional input features, a foreshift operation within
this shifting component recycles these values. This procedure
results in dropping the samples at the beginning and ending
of the series due to missing values as depicted in Figure 2.
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Figure 2: T'Ppy, during different preprocessing steps

F. Feature selection

Since the introduced preprocessing steps increase the num-
ber of features, an iterative approach for the feature selection
is conducted.

e Manual elimination: Because the prediction should be
independent of the actual GPS location, all identifying
positional features are removed from the set. This affects
features such as LAT and LON as well as Mobile Country
Code (MCC) and Tracking Area Code (TAC). CELL_ID
field is removed accordingly, so that the model works for
an unknown cell.

o Variance threshold: A variance threshold filters features
with overall measurements having a variance lower than
1%. Tt primarily eliminates one-hot encoded categorical
features, which never occurred in the dataset.

o Feature correlation: Delecling and eliminating redundant
numerical features, which e.g. can be transformed by a
linear function, is conducted by using the Pearson corre-
lation coefficient between all feature series. If correlating
features are determined, such as the pair ASU and RSRP,
one of them is removed.

e Principal Components Analysis (PCA): To reduce the
number of significant dimensions, the PCA is calculated.
By summarizing the features’ variances, the number of
relevant features can be determined. For this model the
number of features is selected which cover at least 80 %
of the explained variance.

o Recursive Feature Elimination (RFE): This greedy algo-
rithm, implemented in the scikit-learn framework, dis-
covers appropriate features by iteratively training new
models, while removing either the best or the worst
feature for the next run. This step is repeated, until a
limit of variables is reached. RFE is calculated for all
ML-based models that will be introduced in Section V. A
voting mechanism selects the features shared by all model

eliminations. Thereby, the number of relevant feature is
set by the preceding PCA calculation.

Overall, 29 features are utilized for the ML-based models.
Table III depicts an overview of the selected base-features with
their corresponding derived values. Interestingly, neither the
Absolute Radio Frequency Channel Number (ARFCN), having
a significant impact on the T'Ppy,, nor the higway type are
used for the model according to this selection approach.

V. AI-BASED PREDICTION

For the Al-based time series regression three different mod-
els are harnessed, implemented by the scikit-learn framework:
e Linear Regression (LR): LR uses the linear least squares
method for regression. To further optimize the result,
it leverages a regularization term. In this paper we use
Ridge regression, which uses the Euclidean distance (L
norm) for shrinking. Thereby, the regularization strength

a is set to 0.5.

e Random Forest Regressor (RFR): As an ensemble of
multiple decision trees, REFR calculates its outcome based
on the averaged results of the trees. This work parameters
the RFR with a maximal depth of 4 and ensembles 96
estimators.

o Support Vector Regression (SVR): SVR uses the concept
of optimising the flatness of hyperplane, specified by
support vectors, while deviating at most by e from the
training data samples. Thereby, different kernels can be
harnessed. As recommended in previous work [12], a
linear kernel is utilized.

All models are training using the same feature selection and
dataset for predicting the upcoming AT Ppy, excluding the
test rounds depicted in Table IV. The actual T'Ppy, prediction
is reconstructed by adding AT Ppy, with corresponding mea-
surement. Furthermore, the Persistence Algorithm (PA), which
sets the current value as the prediction result, is utilized as a
baseline to validate the ML-based models.
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Table III: Selected features with description and their derived function

Feature name Description Unit | Min | Max | Drift | max. Drift | Std. dev. | Mean | Median | Lags
ASU Arbitrary strength unit dB v
INTRAF No. of intrafrequency cells - v v v
E’ LTE_N_UMTS No of. neighboring UMTS cells - v v
> RSRQ Reference signal received quality — dB v v v
g RSSI Received signal strength indicator ~ dB v v
& RTT_SYN Round trip time for SYN-ACK ms v v
E SINR Signal to interference noise ratio - v v v
SPEED Vehicle speed m/s v
TP_DL Throughput downlink kB/s | | v | v | v | | v | v | 14
s  BUILDING No. of buildings - | | | | | [ v |
8 BUILDING_LEVELS  Average building levels - v | | | | | |
LANDUSE Land use enumeration - | [retail]

VI. COMPARISON OF Al AND GEO BASED PREDICTION

This section conducts the comparison of the performance of
the trained GEO-based and the ML-based models. Therefore,
four dedicated test rounds, one for each test day, as shown in
Table IV, are utilized.

Table IV: Overview of test rounds

Datetime Round  Option  Datapoints
1 13.11.17, 13:32 (Mon.) 7 - 4832
)i 14.11.17, 9:45 (Tue.) 1 - 5643
or  15.11.17, 11:40 (Wed.) 4 - 4820
IV 16.11.17, 11:21 (Thu.) 5 reverse 6056

For comparing ML-based models, a grid-based Connectivity
Map (CM) is calculated based on the same dataset. It is
configured to aggregate the samples within tiles which have an
edge size of dror = 400 m and uses a median for averaging
the measurements. Figure 3 depicts the generated CM.

> 600 kB/s

400-600 kB/s

200-400 kB/s
—— < 200 kB/s

HHL%—‘HHH‘H\‘IIHH\‘\*

Figure 3: Grid-based Connectivity Map, dror = 400 m

For each test round upcoming 7'Ppy, values are forecasted
according to the respective model and its preprocessing steps.
The accuracy is determined by calculating several performance
metrics. Since the inserted sample series are discontinuous,
caused by the data acquisition, filter mechanism and prediction
shift, it is not ensured for ML-based models, that both, the
actual value and the predicted value, are defined at a time.
Thus, the performance metric function is applied for samples
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Figure 4: Comparison of relative histogram of relative errors
for ML-based model in Round I

that include both values. In case of the geo-models, it is as-
sumed, that the upcoming position is available. Consequently,
the predicted value has not to be shifted by 7},. Besides of Root
Mean Squared Relative Error (RMSRE) used by our previous
work [8], a metric is defined, which corresponds to the ratio of
samples with a Relative Error (RE) smaller than 50 %, denoted
as po.5. Thereby, the RE is defined as in Equation 1, with the
measured value R and the predicted value R.

R —

RE = |———
min(R, R)

, subject to R, R > 0 (1

This metric is depicted in Figure 4, showing histograms of
the relative error distribution of the ML model forecasts. It
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reveals that all models, including the PA, are quite accurate.
A similar result is deduced for the other validation rounds
as shown in Table V. The metrics show that all ML-based
models have nearly the same accuracy and outperform the geo-
based models and the PA baseline slightly. Thus, the Al-based
models are a promising alternative for the 7'Ppy, prediction,
because of their independence of the availability of historical
data at a certain area. This is indicated by the validation of
the round recorded reversely, but must be evaluated further by
validating the trained models against other locations.

Table V: Validation results including Mean Absolute Error
(MAE), Mean Relative Error (MRE), RMSRE and pg ;5

MAE [kB/s] MRE RMSRE pg.5 [%]
CM-Grid 92.83 0.30 1.09 84.95
1 82.40 0.22 0.59 91.91
I 116.48 0.33 0.79 79.38
111 78.02 0.18 0.34 89.10
v 94.43 0.47 2.65 79.41
PA 110.62 0.37 1.95 84.11
1 110.27 0.27 0.49 87.28
11 120.22 0.35 0.80 78.64
11 98.04 0.22 0.58 87.75
v 113.94 0.64 5.92 82.75
RFR 106.61 0.29 0.75 84.91
1 98.21 0.25 0.46 88.95
11 127.67 0.33 0.73 78.31
111 85.33 0.18 0.53 93.36
A 115.26 0.40 1.29 79.04
LR 102.72 0.29 0.95 86.55
1 89.98 0.23 0.47 91.07
I 129.22 0.34 0.78 80.81
111 79.12 0.17 0.59 94.10
v 112.56 0.43 1.95 80.22
SVR 103.79 0.29 0.80 86.11
1 92.98 0.23 0.46 90.44
11 128.33 0.33 0.74 80.24
11 82.76 0.18 0.57 93.73
v 111.11 0.40 1.44 80.05

VII. CONCLUSION

In this paper, we continued our work on the prediction of
QoS parameters such as the throughput for downloads using
LTE cellular networks for vehicle-to-server communication
by implementing Artificial Intelligence (AI)-based models
and compared them with a geo-based model implementation.
Based on the same data acquisition setup, we elaborated a
comprehensive preprocessing pipeline for preparing the data
for time series prediction including a novel OSM-based feature
engineering step. Comparing the performance of ML-based
and geo-based models, it is shown that they are a promising
alternative to the CMs, based on the results in our work,
especially SVRs and RFRs are worth considering. For future
work, two aspects should be further investigated. First, the
performance estimators using deep neural network topologies

should be examined. Based on these results, a second approach
is to develop and evaluate hybrid geo- and Al-based method-
ologies to further improve the prediction of QoS parameters.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the following H2020 -
ECSEL Joint Undertaking projects and agencies for financial
support including funding by the German Federal Ministry for
Education and Research (BMBF): AutoDrive (Grant Agree-
ment No. 737469, funding code 16ESE0255) and PRYSTINE
(Grant agreement No. 783190, funding code 16ESE0330).

REFERENCES

[1] J. Radlmayr et al., “How traffic situations and non-driving related tasks
affect the take-over quality in highly automated driving,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting. Vol. 58.
1., Los Angeles, CA, 2014, pp. 2063-2067.

[2] F. Jomrich et al., “Analysing communication requirements for crowd
sourced backend generation of HD Maps used in automated driving,”
in 2018 IEEE Vehicular Networking Conference (VNC), 2018.

[3] T. Pogel and L. Wolf, “Prediction of 3G network characteristics for
adaptive vehicular connectivity maps (poster),” in 2012 IEEE Vehicular
Networking Conference (VNC), 2012, pp. 121-128.

[4] L. Kelch et al., “Cqi maps for optimized data distribution,” in 2013 IEEE
78th Vehicular Technology Conference (VTC Fall), 2013, pp. 1-5.

[5] T. Pogel and L. Wolf, “Optimization of Vehicular Applications and
Communication Properties with Connectivity Maps,” in 2015 IEEE 40th
Local Computer Networks Conference Workshops (LCN Workshops),
Clearwater Beach, FL, 2015, pp. 870-877.

[6] J. Yao et al., “Using bandwidth-road maps for improving vehicular inter-
net access,” in 2010 Second International Conference on Communication
Systems and NETworks (COMSNETS2010), 2010, pp. 460—461.

[71 G. Murtaza et al., “Creating personal bandwidth maps using opportunistic
throughput measurements,” in 2014 IEEE International Conference on
Communications (ICC), 2014, pp. 2454-2459.

[8] J. Schmid et al., “Passive monitoring and geo-based prediction of mobile
network vehicle-to-server communication,” in 2018 14ih International
Wireless Communications & Mobile Computing Conference (IWCMC),
2018, pp. 1483-1488.

[9] B. Taani and R. Zimmermann, “Spatio-temporal analysis of bandwidth
maps for geo-predictive video streaming in mobile environments,” in
Proceedings of the 2016 ACM on Multimedia Conference, 2016, pp.
888-897.

[10] C. Lee et al., “Analytical modeling of network throughput prediction
on the internet,” in IEICE TRANSACTIONS on Information and Systems.
Vol. E95-D. No. 12, 2012, pp. 2870-2878.

[11] B. Wei et al., “A History-Based TCP Throughput Prediction Incorporat-
ing Communication Quality Features by Support Vector Regression for
Mobile Network,” in 2017 IEEE International Symposium on Multimedia
(ISM), 2017, pp. 374-375.

[12] Y.Liu and J. Lee, “An empirical study of throughput prediction in mobile
data networks,” in Global Communications Conference (GLOBECOM),
2015, pp. 1-6.

[13] A. Samba et al., “Instantancous throughput prediction in cellular net-
works: Which information is needed?,” in2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), 2017, pp.624—627

[14] E. A. Walelgne et al., “Analyzing throughput and stability in cellular
networks,” in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, 2018, pp. 1-9

[15] B. Wei et al., “HOAH: A Hybrid TCP Throughput Prediction with
Autoregressive Model and Hidden Markov Model for Mobile Networks,”
in IEICE Transactions on Communications (2018), 2017.

[16] M. Gadaleta et al., “D-DASH: A deep Q-learning framework for DASH
video streaming,” in IEEE Transactions on Cognitive Communications
and Networking 3.4 (2017), 2017, pp. 703-718.

[17] C. Hernandez Benet et al., “Predicting expected TCP throughput using
genetic algorithm,” in Computer Networks. Vol. 108, 2016, pp. 307-322

[18] OpenStreetMap  contributors,  “Planet dump retrieved from
https://planet.osm.org,” in  https://www.openstreetmap.org, — Online;
accessed on 19th October 2018

476



