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ABSTRACT
In this paper, we address the issue of augmenting text data in super-
vised Natural Language Processing problems, exemplified by deep
online hate speech classification. A great challenge in this domain
is that although the presence of hate speech can be deleterious to
the quality of service provided by social platforms, it still comprises
only a tiny fraction of the content that can be found online, which
can lead to performance deterioration due to majority class overfit-
ting. To this end, we perform a thorough study on the application of
deep learning to the hate speech detection problem: a) we propose
three text-based data augmentation techniques aimed at reducing
the degree of class imbalance and to maximise the amount of in-
formation we can extract from our limited resources and b) we
apply them on a selection of top-performing deep architectures
and hate speech databases in order to showcase their generalisa-
tion properties. The data augmentation techniques are based on
a) synonym replacement based on word embedding vector close-
ness, b) warping of the word tokens along the padded sequence
or c) class-conditional, recurrent neural language generation. Our
proposed framework yields a significant increase in multi-class hate
speech detection, outperforming the baseline in the largest online
hate speech database by an absolute 5.7 % increase in Macro-F1
score and 30 % in hate speech class recall.
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1 INTRODUCTION
Due to the stark increase of hateful content on the internet [3, 24,
34], hate speech classification has become a subject of growing
interest for industry and academia [6, 42, 44]. Since abusive textual
content is only a small fraction of the total online user generated
content, any collected representative sample is expected to exhibit
high class imbalance (especially if we want to model multiple types
of hate speech), which is a well-known factor for the underperfor-
mance of machine learning methods. Currently, the best performing
methods in terms of accuracy for hate speech detection utilise neu-
ral word embeddings (e. g., the Word2Vec method [23]) and deep
learning, first introduced to this domain in [2]. However, recent
studies [6, 47] fail to achieve an equally impressive increase in the
detection performance of the hate speech class, which is a serious
limitation since this is the class of interest. To this end, we must
design a solution that takes the class imbalance into account, yet
manages to reap all the benefits from using deep neural networks in
what is in its core, a natural language processing (NLP) task.

To this end, the idea of enriching a dataset with perturbed repli-
cas of its samples has been very successful in other domains (e. g.,
standard practice in image classification [19, 38], audio-visual affect
recognition [40], environmental sound classification [33], speaker
language identification [18] and 3D pose estimation [29]), however
such data augmentation has been underexplored in NLP. The reason
for that is that whereas techniques such as flipping and rotation
on images will result in new, valid images with similar semantic
information, they are not transferrable to text, as they would break
correctness of syntax and grammar and even alter the meaning of
the original sentence. Similarly, whereas noise injection is popular
in audio signal data augmentation [13, 17, 40], it is not directly
applicable to text as word and character tokens are categorical.

In this paper, we show that if adapted to the domain of short-text
hate speech detection, data augmentation can yield significant im-
provements as well.We propose three data augmentation techniques,
tailored specifically for text: a) synonym replacement of any word in
a sentence according to cosine similarity above a threshold between
pre-trained word embedding vectors on a large corpus, b) warping
the sentence along the padded sequence by repeating word tokens
and c) recurrent neural language generation of new sentences. All
these methods are class-conditional, meaning that we are certain of
the label of the newly generated samples. Moreover, the two former
methods can be viewed as generating perturbed versions of the
original sentence that preserve the meaning thereof. This way data
sparsity is reduced and the model is able to learn a more robust
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Figure 1:Motivation for leveraging neural word embeddings
for generating new samples: the sentence is an example of
hate speech, regardless of the victimised target group or the
particular name or slur used for the denotation thereof.

association between the meaning of the original sentence and the
label instead of trying to memorise specific keywords. This concept
is illustrated in Figure 1, exemplified by hate speech detection.

The achievements of this paper are the following:
• We introduce three data augmentation techniques for text
and we demonstrate their capability for generalisation by ap-
plying them on three hate speech databases and four top per-
forming deep models from an extensive comparative study us-
ing fully connected, convolutional and recurrent layers (hence-
forth FCNN, RNN and CNN). Compared to the non augmented
baselines, we observe an overall Macro-F1 improvement up
to ∼ 5.7 % across all network topologies and recall improve-
ment of the minority class of up to ∼ 30 %.

• We achieve significant improvement over previous deep ar-
chitectures applied on the task: We show that an optimised
for the task deep model consisting of Global Vector (GloVe)
embeddings followed by stacked CNN and gated recurrent
unit (GRU) RNN layers outperforms other deep learning ar-
chitectures [47] by and absolute of 0.5 % Macro-F1 score and
1.3 % hate recall.

• The recall measure of the minority class (hate speech) is
improved by an absolute of∼ 30 %, compared with a previous
pure deep learning baseline which is the largest contribution
to the prediction of the class of interest.

Our experiments are performed on three online hate-speech
databases (see Section 3) that we refer to as: a)HON [6] (hate speech
- offensive language - neutral), b) RSN-1 [44] (racism - sexism -
neutral) and c) RSN-2 [42] (classes as previous). We provide an
implementation of the data augmentation methods we propose
and all the methods included in the architecture comparison in the
project’s GitHub page1.

2 RELATEDWORK
Finding a common definition of hate speech is difficult due to its
subjective nature and country-dependent legislative differences:
while in the United States of America most types of hate speech
are protected under free speech provisions, in most other Western
countries hate speech is illegal and defined in legal terms as expres-
sions that “target minority groups that could promote violence or

1https://github.com/glam-imperial/TextAug

social disorder” [6]. In many previous studies, hate speech detection
has been formulated as a binary classification problem [2, 21, 41]
which unfortunately disregards subtleties in the definition of hate
speech, e. g., implicit versus explicit or directed versus generalised
hate speech [43] or different types of hate speech (e. g., racism and
sexism) [42, 44]. The study performed in [6] was the first one in
which a distinction was made between hate speech and otherwise
offensive language. An example of the latter could be a direct quota-
tion of a another person’s racist/misogynistic/homo-/trans-phobic
comment followed by a condemnation of said comment. Another
example would be chatter among friends of the same racial/social
background including terms that coming from an outsider and used
in a different context or with malicious intent would be inappropri-
ate. The label structure can even be hierarchical, as in a study in
which the authors have applied a Hierarchical Conditional Varia-
tional Autoencoder [28] on a database collected by pulling tweets
from 40 hate groups belonging to 13 hate speech types. The three
databases we utilise in our experiments follow a multi-class paradigm.

Using lexical resources such as WordNet2, as well as extracting
and enhancing surface features of comments is the most straight-
forward approach to hate speech detection [11, 35]. Such methods
utilise a dictionary of loaded terms that are assigned an ‘offen-
siveness’ weight and used in order to infer the total score of the
entire sentence. Such a word-level approach, however, fails to take
into account the context of a sentence into account. Utilising a fixed
vocabulary also does not allow for considering common alternative
spellings or misspellings of hate terms. The authors of the study per-
formed in [6] performed a comparison among a range of traditional
machine learning techniques such as support vector machines, lo-
gistic regression, and Naïve Bayes classifiers on a three-class hate
speech database. They manage to achieve a seemingly high overall
accuracy of 90 %, but do not address the issue of class imbalance,
which we propose is the reason for the comparatively lower recall of
61 % on the hate speech class. Deep learning approaches have been
found to be more effective both on binary classification [2, 8], as
well as multi-class classification [10, 25, 47] in this context, possibly
due to the inclusion of word semantic information by the utilisation
of distributional word embedding techniques [4, 7, 23, 26, 27] pre-
trained on large text corpora. However, there is no discussion of either
the class imbalance problem in a limited database or the recall in the
hate speech class. Here, we replicate the state-of-the-art deep method
proposed in [47] and show that there is much room for improvement,
both by means of tailored neural architectures and embeddings and
by the utilisation of much needed data augmentation.

Whereas in image and sound processing the flipping, cropping
and noise injection data augmentation techniques are commonly
applied [9, 18, 29, 33, 38, 40], such techniques are either not di-
rectly applicable to text due to the categorical nature of word and
character tokens or because they change the meaning of the origi-
nal sentence. There are certain languages with which this is not a
significant problem and a variation of such techniques have been
successful [30], but English (which is the language we focus on
this study) is not one of them. In a study performed in [16], the
authors performed word dropout, an idea that was shown in a later
study [45] to be very incosistent with respect to the improvement

2https://wordnet.princeton.edu/documentation
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it yields. In [45], the same holds with many choices for additive
noise (similar to dropout) on neural embedding vectors where, in
fact, the performance occasionally deteriorates. Looking into data
augmentation methods that generate new samples before inputting
them into a learning model, the closest text-based data augmen-
tation method to the ones we designed for this study is the one
proposed in [46] in which existing words in a sentence are selected
based on a geometric distribution and replaced with a suggested
external thesaurus synonym. Although this technique is shown to
be effective, there is a major problem in using it in a hate speech
context. As lexical approaches are likely to miss common collo-
quial alternative spellings and misspellings and are expected to
have many out-of-vocabulary words, this makes this method hard
to replicate in a meaningful manner. Our proposed substitution
method replaces words based on very specific criteria based on
neural word embedding similarity (such as Word2Vec [23]) and are
aware of POS-tags [5] in order to preserve, as much as possible, the
semantics of the original sentence.

3 HATE SPEECH DATA
In our experiments we utilise three Twitter databases, all of which
treat the problem of online hate-speech detection as being multi-
class and furthermore exhibit high class imbalance. Throughout the
paper we refer to these as: a)HON [6], b)RSN-1 [44] and c)RSN-2
[42]. The HON database makes the separation between hate speech,
offensive language and a neutral class. The latter two (RSN-1 and
RSN-2) include a different axis of hate-speech differentiation by
making a distinction between racist and sexist comments, and a
neutral class. In the case of RSN-2, there were also comments that
were annotated as both racist and sexist, but in this study, we
simplify this multi-label problem into a multi-class problem in
order to homogenise our experimental setup across databases and
as such, work onlywith samples from the racism, sexism and neutral
classes. A summary of the database sizes and class proportions is
included in Table 1. In the cases of RSN-1 and RSN-2 the number of
samples reported corresponds to the number of tweets that were
still available at the time we attempted to fetch them using the
Twitter API3, as the authors of the papers in which they were
introduced provide a list of tweet ids.

The HON database comprises around 25,000 labeled tweets,
which were obtained using the hatebase4 lexicon to filter tweets for
common abusive terms, and then pulling all the tweets from all the
users selected (approximately 85 million). The 25,000 tweets were
a random sample taken from the overall pool of tweets and were
labeled using CrowdFlower5. The database is available online6.

In order to validate the generalisability of our framework, we
opted to also perform experiments on the RSN-1 and RSN-2 databases
as well. We used the Twitter API in order to fetch the tweets corre-
sponding to the tweet ids provided by the authors of [42, 44]. The
annotation was performed using CrowdFlower for the RSN-1 and
manually by a mix of professional and amateur annotarors for the

3https://developer.twitter.com/en/docs.html
4https://www.hatebase.org/connect_api
5https://www.figure-eight.com
6https://github.com/t-davidson/hate-speech-and-offensive-language

Table 1: Overview of datasets. Class names are Hate,
Offensive and Neither for the first database and Racism,
Sexism and Neither for the other two.

Dataset Class (in %) No. Samples
H O N

HON [6] 5.7 77.4 16.7 24,783
Class (in %) No. Samples
R S N

RSN-1 [44] 0.3 26.1 73.4 11,299
RSN-2 [42] 1.3 11.8 86.3 6,310

RSN-2 database. The tweet ids and corresponding labels of these
databases are both available online7.

4 SHORT TEXT DATA AUGMENTATION
Since we cannot use the data augmentation techniques that are used
in non-NLP domains, we want to develop new ones that ideally
satisfy three desiderata - they must:

• change the input to the neural network (new sample).
• be class-conditional, such that no manual labeling is required
(same class).

• produce perturbed versions of the original sentence samples
(same meaning - see Figure 1).

The methods we propose in Sub-Section 4.1 satisfy all three,
whereas the method described in Sub-Section 4.3 only the first two.

4.1 Substitution Based Augmentation
In order to make relevant substitutions of words with synonyms
without using tools external to neural networks (e. g., a thesaurus
as in [46]) we make use of pre-trained neural word embeddings
because they allow us to determine the relative similarity between
each word in the vocabulary space of a text corpus. We assume we
are given a training sequence of words {wt } with corresponding
embedding vectors {vt},∀t ∈ {1 : T }. For each center wordwt , we
predict the surrounding context wordswo within a radiusm. For
example, for Word2Vec [23] we want to maximise the probability
of any context word given the current center wordwô , while min-
imising the probability of a random word from the vocabulary (i. e.,
negative sampling):

Jt (θ ) = logσ (vt⊺vo) +
∑

ô∼P (w )

logσ (−vt⊺vô), (1)

where P(w) is a distribution that places higher sampling probabil-
ities on less frequent words, θ is the entire array of embedding
vectors and σ a nonlinear scoring function. This representation
tends to become more precise the larger the training corpus, as
different words would have been seen in a broader range of con-
texts. The utilisation of neural embeddings is not only useful in
substitution based data augmentation, as it is a central part of the
main deep prediction model.

7https://github.com/zeerakw/hatespeech
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let us take a break

letting
[0.72]

me
[0.72]

taking
[0.73]

n/a
stopword

breaks
[0.68]

Let
[0.65]

them
[0.71]

took
[0.67]

breaking
[0.67]

do
[0.60]

ourselves
[0.66]

takes
[0.66]

broke
[0.67]

let me a break
let them take a break

t = 0.7

take

Figure 2: Perturbed copies of an original short text are gener-
ated based on high cosine similarity and POS-tag match. We
can see that ‘letting’ exceeds the similarity threshold, but is
a gerund, while ‘let’ is a regular verb.

The first data augmentation technique, which we refer to as
ThreshAug, builds on the definition of a similarity measure be-
tween the equal-size vector representations denoted by vi in Equa-
tion 1). We denote by c ∈ [0, 1] the cosine similarity between two
vectors vi and vj:

c =
viT · vjT

∥vi∥ · ∥vj∥
, (2)

where ∥v∥ is the norm of the vector v. For each word wi of the
input word sequence, this method describes a substitution that is
determined by two factors. Firstly, any potential replacement word
must exceed the cosine distance threshold t , where t ∈ [0, 1] and it
must match the POS-tag assigned to the word. The intuition behind
the inclusion of both the above requirements is that two words must
have been seen in sufficiently equal contexts such that one can be
replaced with the other without changing the sentence semantics.
A usage example of this method is illustrated in Figure 2.

The strength of the above method is that it encourages the down-
stream task to place lower emphasis on associating single words with a
label and instead place higher emphasis on capturing similar sequen-
tial patterns, i. e., the context of hate speech (see Figure 1). Finally,
we note that it makes sense to align the embedding model used for
substitution based augmentation with the one used in the deep text
classifier - we show proof of that in Sub-Section 5.5.

4.2 Word Position Augmentation
The second technique, which we refer to as PosAug, is based on
the observation that sample sentence lengths vary significantly and
as such, due to zero-based left padding, most elements in training
batches consist of zeroes. This has an impact in the means by which
neural networks perceive data and we hypothesise that by shifting
and warping the sentence (i. e., the word tokens) within the confines
of the padded sequence, we can receive meaningfully perturbed
versions of the original samples with the same semantics and class.

4.3 Neural Generative Augmentation
After sequential machine learning models such as recurrent neural
networks gained popularity within the NLP community, RNNs were
also applied to natural language generation (NLG) [37]. The main
idea behind using RNNs for NLG is to first train a text model on
the class-conditional corpus subset that we want to augment, a
method that we refer, henceforth, as GenAug. In order to generate,
we prime our model with a random start word from the vocabulary
and attempt to predict the next word in the sequence based on the
previous sequence and the model weights. More formally, given a
sequence of embedding vectors {vt}, the network uses the returned
sequence of its output probability vectors {v̂t} to obtain a sequence
of predictive distributions [37]. In other words, the RNN predicts the
next element in the sequence based on the entire previous sequence
(P(vt+1 |{vt}):

P(vt+1 |{vt}) = softmax(v̂t+1), (3)

softmax(v̂t+1)(j) =
exp(v̂(j)t+1)∑
k exp(v̂

(k)
t+1)
, (4)

where the superscript (j) denotes the j-th element of the vector.
For longer texts, it may make sense to restrict the length of the
previous sequence considered for generation, however for short
text sequences, such as tweets as in our study, we hypothesise that
the entire sequence may be relevant.

We design a network which takes an input of N words and con-
verts each into a 100-dimensional word embedding vector. The
N × 100 embedding matrix is used as an input for long short-term
memory (LSTM) recurrent layers set in parallel, with 128 hidden
units each. The separate outputs of each RNN layer are concate-
nated, outputting a N × 356 feature matrix, which is fed into a final
FCNN layer. The final output represents a probability distribution
over each word in the vocabulary. Once this model is trained and
the weights are stored, this technique is significantly faster than
the ones based on substitution.

5 EXPERIMENTS
Across all databases that we use in our study, we consider a tweet
to be a sample with a corresponding label and our goal is to predict
one class label per tweet. All the reported results in the following
Sub-Sections are averaged across 20 trials. We used a 50-25-25 train-
valid-test split scheme everywhere (a 10 % validation split was used
in [6]). We opt to report Macro-F1, which places equal emphasis
on each class, regardless of its size.

We have found that it is very important to use regular down-
sampling for all cases in order to prevent the model from almost
exclusively predicting only the majority class. At every epoch we
use a different downsampled version of the training set as follows:
we include all the samples of the minority class, but for the other
classes we sample without replacement a number of data samples
that is equal to the number of samples of the minority class. This
way we ensure that the model receives training samples from each
class at the same average frequency and also has the entire training
set available to it over the entire training course.
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5.1 Deep Model Implementation
In order to maximise the predictive power of our base model before
applying data augmentation and to showcase the generalisability of
our proposed data augmentation methods, we perform an extensive
comparative study among deep architecture variants. We compare
among the following word embedding methods: a)Word2Vec [23]
trained on the hate speech database training set, b) Google refers
to a Word2Vec model trained8 on the three billion word Google
News corpus, c) GloVe [26] trained9 on the CommonCrawl corpus
and d) FastText [4] trained10 on the Wikipedia corpus. All distribu-
tional embedding techniques were implemented using the Gensim
library11. The POS-tags were created using the NLTK implementa-
tion of the Brill Tagger12.

As for the rest of the deep model, we compare among three
different sub-models using fully connected, convolutional and re-
current layer (henceforth FCNN, RNN and CNN) combinations to
optimise sentence context learning. The EMB+CNN+Densemodel
takes in the word embedding matrix of 100×300 dimensions to a
1-dimensional CNN layer. We utilised a CNN layer with 32 filters
and filter width of 24 which output a 100×32 convolved feature
representation. The features are then passed into a max pooling
layer that undersamples at a rate of 4. The 25×32 feature space
is then flattened to a 600-dimensional vector and passed into an
FCNN layer with a rectified linear unit (ReLU) activation function
that outputs 25 hidden units. The output FCNN layer is the only
layer using softmax activation. As for the EMB+CNN+LSTM and
EMB+CNN+GRU architectures, we add an LSTM RNN or a GRU
RNN with 100 hidden units, respectively, before two FCNN layers,
as shown in Figure 3. EMB is a placeholder for each embedding
choice.

5.2 Baseline Reproduction
We identified two past studies that report results on the HON data-
base, one being the paper where it was introduced [6] and the other
is the first paper in which a deep model was applied on this specific
database [47]. The latter approached the dataset as a binary task
and has achieved a Micro-F1 score of 94%. The former is an applica-
tion of logistic regression with L2 regularisation on a set of features
that includes extraction of n-grams using a POS-tagger which are
treated to term frequency - inverse document frequency (TF-IDF)
post-processing, as well as reading ease and sentiment [15] features.
The latter is a CNN+GRU submodel on top of pre-trained Word2Vec
vector embeddings. Our Google+CNN+GRU topology is a deeper
variant of this method. The baselines are summarised in Table 2.

5.3 Surpassing Competition on HON Database
The results of the neural embedding and architecture comparative
study are summarised in Table 3 for the largest (HON ) database. For
the best architecture per neural embedding choice, we re-execute
the experiment with data augmentation from our best proposed
technique, PosAug. For the best methodology after augmentation,

8https://github.com/mmihaltz/word2vec-GoogleNews-vectors
9https://nlp.stanford.edu/projects/glove
10https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
11https://radimrehurek.com/gensim
12https://www.nltk.org

Table 2: Baseline classifiers previously applied on the HON
database. Reported results are from the original correspond-
ing studies. Micro-F1 and hate recall scores in ( %)

Topology Micro-F1 Hate Recall
LogRegBase [6] 91.0 61.0
DeepBase [47] 94.0* n/a*

* Binary classification task - hate recall was not reported.

Table 3: Comparison of network topologies on theHON data-
base in ( %). Each block pertains to a different neural embed-
ding matrix and the reported results correspond to three
deep topologies and the best topology per block, with the
PosAug method applied as well. The final block also con-
tains the best result achieved in the paper, using a combi-
nation of PosAug and ThreshAug.

Topology Macro-F1 Hate Recall
Word2Vec+CNN+Dense 66.5 15.9
Word2Vec+CNN+LSTM 68.6 20.3
Word2Vec+CNN+GRU 68.7 21.0
Word2Vec+CNN+GRU+PosAug 73.3 48.2
FastText+CNN+Dense 67.6 18.8
FastText+CNN+LSTM 68.4 19.8
FastText+CNN+GRU 68.6 20.4
FastText+CNN+GRU+PosAug 73.4 46.3
Google+CNN+Dense 67.3 17.6
Google+CNN+LSTM 68.4 19.8
Google+CNN+GRU 68.4 19.6
Google+CNN+LSTM+PosAug 73.8 46.9
GloVe+CNN+Dense 67.7 18.8
GloVe+CNN+LSTM 68.8 21.1
GloVe+CNN+GRU 68.8 21.0
GloVe+CNN+LSTM+PosAug 73.6 46.3
GloVe+CNN+LSTM+BestAug 74.1 49.6

we additionally apply ThreshAug after threshold parameter optimi-
sation (see Sub-Section 5.6) and report results with the best param-
eter (i. e., 0.70) (see the GloVe+CNN+LSTM+BestAug method). We
see that the application of PosAug brings a consistent improvement
over the performance of any base deep model without augmentation
in both Macro-F1 and hate class recall in the respective ranges of
4.6 − 5.4% and 25.2 − 27.2%. Our best method (after parameter
optimisation) outperforms our variant implementation of DeepBase
(Google+CNN+GRU ) for an absolute of 5.7 % in Macro-F1 score and
30 %.

We now focus on the results without data augmentation and we
can see in Table 3 that the EMB+CNN+LSTM and EMB+CNN+GRU
topologies seem to be more suitable for capturing sequential word
patterns as they outperform EMB+CNN+Dense by approximately
1 − 2 % in Macro-F1 for all embedding choices, with the exception
of Word2Vec trained on the database, where Word2Vec+CNN+GRU
is the best performer in that block. We see a slight positive trend in
the results when the FastText and GloVe embeddings are used.

A noteworthy observation is that our reproduction of DeepBase
can be improved even further by the choice of a more appropriate
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Figure 3: Overview of entire computational process for a single tweet. The deep topology depicted is the best performing
family of a neural Embedding + CNN + GRU/LSTM RNN.

neural embedding model. Specifically, we see in Table 3 that the
GloVe method is consistently the best choice with respect to F1
score both reported scores across topologies.

5.4 Data Augmentation Experiments
We now take the best performing neural architecture with respect
to each embedding from Table 3 and we perform a comparison
among the different data augmentation techniques. The results of
this comparison can be found in Table 4. We used aligned embed-
dings and the ThreshAug threshold-based examples used a cosine
similarity threshold of 0.7.

We notice that the PosAug method is very effective, bringing a
consistent improvement to the baseline models. All the models had
approximately 5 % and 26 − 28% absolute improvement in Macro-
F1 and hate recall scores. The GenAug method exhibited overall
slightly worse results. Finally, the application of ThreshAug yielded
an improvement of around 0.3 − 1 % and 2% increase in Macro-F1
and hate recall, respectively for the GloVe and FastText embeddings.
Interestingly, the twoWord2Vec methods (pretrained and trained
on the dataset) yielded worse results with ThreshAug.

5.5 Aligning Embeddings
We will now show in Table 5 that the embedding used by the model
and that by the augmentation technique should be the same to achieve
the best possible outcome from the augmentation. If the embeddings
are not the same, the model may be ill-adapted to make predictions
on the replacement words whichmay be close in one representation,
but not in the other. We compare the performance of the top four
deep topologies between using the Google Word2Vec embeddings
and aligned embeddings for augmentation using ThreshAug with
threshold parameter equal to 0.7.

The results confirm the initial hypothesis, by showing that the
alignment of neural word embeddings in the topology and the
augmentation technique yields the highest performance, for the
two embeddings that were shown to be a good base for ThreshAug,
i. e., FastText and GloVe.

5.6 Threshold Value Robustness
A central question in using ThreshAug for data augmentation is
how sensitive the method is with respect to the threshold value
that the cosine similarity of a similar word must exceed in order
to be replaced when generating a new short-text sample. We per-
form another set of experiments on the HON database using the
GloVe+CNN+LSTM model in which we first apply PosAug and then
vary the threshold value of ThreshAug and we summarise the re-
sults in Table 6.We see that the best value is 0.70, which yields the
best F1 score and hate class recall in the paper.

5.7 Validation Across Databases
In order to show that this technique is not only effective for this
particular learning task, but is useful for other learning tasks as well,
we ran the same augmentation technique on the RSN-1 and RSN-2
databases, as well, which are smaller and also exhibit higher class
imbalance (0.3% and 1.3% minority class samples, respectively).
The ‘Baseline’ in the results shown in Table 7 refers to the high-
est classification in the papers the databases were introduced. In
Table 7, we applied the GloVe+CNN+GRU method with no augmen-
tation, PosAug, GenAug and ThreshAug augmentation and report
the results. As the database was created some time ago, a lot of the
tweets could not be queried anymore, as they are likely to have
been removed. Note that the baseline model for the RSN-1 database
[44] only used n-grams and no deep learning architecture, thus
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Table 4: Performance comparison of data augmentation methods in %. We compare the best deep topology per neural embed-
ding type. ThreshAug was performed using the same embedding as the model and a threshold parameter of 0.7.

Model No augment GenAug PosAug ThreshAug

Macro-F1
Hate

Macro-F1
Hate

Macro-F1
Hate

Macro-F1
Hate

Recall Recall Recall Recall
Word2Vec+CNN+GRU 68.7 21.0 67.7 19.1 73.3 48.2 46.0 10.0
FastText+CNN+GRU 68.6 20.4 68.2 20.7 73.4 46.3 69.6 22.3
Google+CNN+LSTM 68.4 19.8 67.7 18.7 73.8 46.9 65.1 16.0
GloVe+CNN+LSTM 68.8 21.1 67.0 17.0 73.6 46.3 69.1 23.0

Table 5: Performance comparison of the ThreshAug data
augmentation technique using aligned embeddings versus
using the Google embedding on the HON database (in %).
The threshold parameter used was 0.7.

Model Google W2V Aligned

Macro-F1
Hate

Macro-F1
Hate

Recall Recall
Word2Vec+CNN+GRU 65.4 17.2 46.0 10.0
Fasttext+CNN+GRU 65.3 16.4 69.6 22.3
Google+CNN+LSTM 65.1 16.0 65.1 16.0
GloVe+CNN+LSTM 64.9 16.0 69.1 23.0

Table 6: Threshold value variation comparison for the Thre-
shAug method using the GloVe+CNN+LSTM topology on the
HON database in ( %).

Threshhold Macro-F1 Hate Recall
0.50 71.6 42.7
0.60 71.6 42.3
0.70 74.1 49.6
0.80 73.7 46.8
0.90 73.6 47.2

Table 7: Effectiveness of augmentation techniques across
databases using the GloVe+CNN+LSTM topology (in %).

Model RSN-1 RSN-2
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Baseline 73.9 n/a 91.2 n/a
No Augmentation 82.3 50.7 86.2 31.7
PosAug 80.8 48.3 84.8 31.2
ThreshAug 82.3 50.5 86.4 31.7
GenAug 82.1 51.0 83.8 31.4

achieving a much lower classification performance.We also achieve
competitive results as two recent methods on the RSN-1 database: an
ensemble method [48] and one [20] that uses the Simple Word Embed-
ding Model [36] that have achieved a maximum of 77.8 % and 86.0 %,
respectively. We can surmise that improved data augmentation is
vital in order to improve results on such limited datasets.

6 DISCUSSION
6.1 Neural Networks for Hate Speech Detection
We have proposed a methodology that surpasses the current state-
of-the-art in short text hate speech detection. We have conducted
a comparative study among various neural embeddings and deep
architectures. Hereby, we found that embedding techniques that
are pre-trained on a larger text corpus are more effective than those
just trained on the training data of the training exercise. These em-
beddings tend to be better at learning common alternative spellings
of words that users may use in order to circumvent blacklisted
abusive terms (e. g., ‘b$tch’, ‘assh*le’, etc.). After the embedding,
we have found that a deep model that comprises a CNN, an RNN
(LSTM or GRU) and two FCNN layers is the best choice. This kind
of architecture has been shown to be very powerful in past stud-
ies on speech recognition [31, 32] and multi-modal speech affect
recognition [39]. The best model with augmentation outperformed
our re-implementation of a previous deep model by 5.7 % Macro-F1.
This improvement mainly stems from a much better hate speech
recall, which has increased by 30.0 %.

Within our comparisons, we found that the GloVe embeddings
were the best performers when used as the base of a deep model.
We surmise that the hypothesis made in [26] that GloVe manages to
combine the best of counting approaches (e. g., n-gram) and distri-
butional approaches, is a possible explanation for their effectiveness
in a deep classification task. After successful augmentation with
PosAug and ThreshAug, we found that the augmentation method
dominates in the results and the choice of embedding is a lesser
contribution. That being said, our substitution based method was
successful only when based on pretrained FastText and GloVe, pos-
sibly indicating that baseline distributional approaches are not
suitable for identifying informative word replacements.

Finally, in Table 3, we report the hate speech class recall score,
something that has not been given the attention it requires in past
deep learning approaches to hate speech detection [47]. We note
that even for our two best performing methods without augmenta-
tion, the measure is significantly less impressive than the F1 score.
We would like to perform one more step and report the confusion
matrix in Table 8, in which the performance in each class is clearer.
We hypothesise that this phenomenon is caused by the class imbal-
ance problem in this database and was the main motivator for the
application of short-text data augmentation.
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Table 8: Confusion Matrix for the GloVe+CNN+LSTM model
on the HON database (without data augmentation).

Predicted
H O N

A
ct
ua

l H 0.20 0.68 0.12
O 0.02 0.95 0.03
N 0.01 0.12 0.87

6.2 Data Augmentation Tailored to Short Text
The three of the short text data augmentation methods we proposed
perform in a varying way across different deep architectures and
databases in both Macro-F1 and minority class recall. PosAug was
by far the best performing method in the HON dataset and Thre-
shAug yielded slight improvement that was orthogonal to PosAug,
as the combination of the two methods has given the best results.
Moreover, the alignment of pre-trained neural embeddings in both
the deep model and the replacement method is vital for letting
ThreshAug perform as best as it can. It is important, then, that the
entire system has the same internal model of language.

Data augmentation did not only improve the accuracy, but also
made the training of the model less prone to being dominated by
the majority class samples. By augmenting the minority class with
more samples, hate speech patterns can be extracted more easily.
We applied our methods on two other Twitter, multi-class (‘racism’,
‘sexism’ and ‘neutral’), hate speech datasets. Both datasets also had
much stronger class imbalance (see Table 1 making them a good fit
for validating the techniques. The results show that the framework
is not yet able to generalise in cases of such degree of imbalance in
two out of three classes or perhaps in higher resolution hate speech
sub-modelling (i. e., racism and sexism) and further work needs to
be performed to identify the reason.

We also performed a parameter sensitivity comparison for the
combination of PosAug and ThreshAug and we saw that for small
degrees of augmentation (i. e., high threshold parameter) there is
noticeable improvement over the baseline. We also note that there
is a slightly decreasing trend in performance for values both lower
and higher than the optimal. It is important to understand the
implications of this phenomenon: When the threshold is very low,
we may be able to create a large number of new samples (many
replacement words will exceed the threshold), but the samples may
be semantically different (high quantity, low quality). On the other
hand, if the threshold is too high, the new samples created will
most likely be semantically similar (high quality), but too few to
achieve the highest possible improvement (not enough quantity).

6.3 Data Augmentation Samples
In Table 9 we show some samples generated using the ThreshAug
based synonym-replacement for data augmentation. The exam-
ples show that the grammatical structure of the sentence does not
change because we check for POS-tag equality and as such it is
mostly a word-for-word replacement of true synonyms (e. g., ‘con-
fused’ to ‘bewildered’, interchangeable due to being adjectives of
the same POS tag). Most importantly, a multitude of similar hate
speech words or phrases (e. g., ‘white trash’, ‘out of my country’, etc.)
are present in the generated tweets, which is very important in order

for the rest of the neural architecture to learn hate speech patterns.
Turning to generative augmentation, we show in Table 10 some
sample tweets for each class generated with GenAug.

The lightly worse performance of GenAug compared to Thre-
shAug may be caused by the fact that many of the created samples
do not actually make sense from a semantic (or even syntactic)
point of view. This is because the samples are completely artifi-
cially generated, utilising only a minimal priming for the RNN (as
opposed to the substitution methods which provide variations of
the original sentences, with similar contexts). For example, one
sample that was created for the neutral class was ‘just trash away
from season man’. Although this sentence could be considered as
grammatically and syntactically acceptable in an online short-text
publication platform such as Twitter, it does not make sense, which
may lead to the subsequent modelling of unnecessary patterns by
our network if a lot of similar quality samples are created. That
being said, we do not expect all actual instances of (hate speech)
content found in online short-text platforms to be prime examples
of high syntactic (or even semantic) quality standards, which is the
reason we believe GenAug was a sensible hypothesis to test.

Regarding the augmentation performed by PosAug, even though
the new samples do not resemble actual sentences found in the
wild, we consider them to be the same as the original, albeit shifted
and warped in a uniform way within the available sequence length.
Early experiments on varying the length of the sequence did not
indicate a difference in the results.

6.4 Limitations
The generative augmentation technique is limited by the quality
of the data, because the generation of new samples can only be as
good as the initial dataset. For example, if there are only a hundred
samples in the initial training set that trains the GenAug weights,
this technique is likely to perform relatively poorly. Therefore, we
pose that the generative technique should only be attempted when
there are relatively large sample sizes available. In any case, as the
generative approach generates completely new sequence samples
instead of variations of the original samples with slightly altered
contexts it does not exploit what we propose is the main strength
of the embedding-based replacement augmentation methods: the
fact that by training on slight variations of original samples, we let
the model learn the pattern of hate speech utterances, instead of
focusing on single words that may be associated with an offensive
context (but may not be part of hate speech). Another limitation
of our conception of GenAug is that it requires training one gener-
ative model per class and as such the class imbalance problem is
inherited here as well. One possible idea for improvement would
be to train one model on all available data with vector-based input
conditioning.

The current implementation of the synonym replacement data
augmentation technique is relatively slow. For each word, the pro-
gram has to search through the entire vocabulary to find its most
similar words, which is an expensive operation. This is not a lim-
itation to the results, but limits the ability to perform extensive
parameter optimisation with any confidence for the threshold re-
placement method, because one would need to fully re-augment the
full dataset for each threshold level and then re-train the models.
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Table 9: Generated tweets by the ThreshAug model. The method is able to find synonyms and also alternative spellings.

Method Initial Sentence Augmented version
ThreshAug these people should get out of my country these people ought to get out of My nation
ThreshAug you be confused as shit you be bewildered as sh_*_t

Table 10: Generated tweets by the GenAug model. We note
that the generated samples may lack in syntactical and
grammatical correctness.

Tweet Class
I hate rooms full of white people they are trash Hate
The south is full faggot Hate
bitch what the hell lmfaooo Offensive
retweet: I swear I love my friends with these hoes Offensive
np me else wins trust in the bbc Neutral
I just accidentally ate the pot brownie Neutral

Another limitation to the findings of this work is imposed by the
subjectivity of the topic, as different people have different beliefs
about what is offensive and what is hate speech. This subjectivity is
reflected by the high annotator disagreement in the HON database.
As each sample was labelled by at least three people, different coders
have differing opinions on what the true label of a sample should
be. The fact that even amongst humans there is a relatively high
annotator disagreement (81 % of samples of the hate speech class
did not exhibit consensus with respect to the annotations) indicates
that by attempting to model samples assuming they are properly
labelled might introduce errors due to label noise due to the lack of
an objective definition.

7 CONCLUSIONS & FUTUREWORK
In summation, in this paper we set out to work on the problem of
online hate speech detection in short text format, motivated by the
scarcity of previous studies that address the class imbalance problem
in online platforms and as such, relevant databases used in research,
as well as the scarcity of data augmentation techniques for text.
We first attempted to maximise, as far as possible, the performance
of a deep network topology, making sure to examine the recall
on the minority classes. We have shown that the utilisation of
pre-trained neural embeddings on large corpora (especially the
Word2Vec and GloVe models pre-trained on the Google News and
Common Crawl corpora, respectively, were the best fit for the
embedding layer) introduces word context that is outside a limited
task-specific database. Most importantly, we found that we can
utilise these pre-trained embeddings in a vector similarity based
word replacement technique in order to augment the database
within the deep text classification framework such that the class
imbalance proportions are decreased and also the deep model is
encouraged to capture the patterns/context of hate speech instead
of learning to associate ‘loaded’ words with the hate speech label.
We have achieved an absolute total of 5.7% increase in macro-F1
score and up to 30 % in hate speech class recall in the largest online
hate speech database. In order to encourage reproducibility we have
described the means by which one can get access to all databases

and pre-trained neural embeddings and uploaded all code in the
GitHub page of the project13.

As for future work on data augmentation for text, we believe that
there are several avenues worth exploring. For example, we believe
that the replacement methods could be automated further, e. g.,
by training a model that predicts which words should be replaced
and to also learn word specific similarity thresholds instead of a
global one. Even though the generative method we proposed in this
paper was not the best performing data augmentation method, we
believe that the exploration of generative adversarial networks for
data augmentation (e. .g, see [1]) for text can be very promising, as
is research in defence against adversarial attacks [12]. For future
research, it would be interesting to see how the data augmentation
techniques we have proposed perform on longer text inputs or to
Natural Language Processing tasks other outside the domain of
online hate speech detection. On another matter, we have seen
that pre-trained neural embeddings on large corpora for data aug-
mentation can be very helpful in providing synonyms, alternative
spellings and misspellings to the words present in a sample short
text. Even though FastText was not the best performing word em-
bedding in our comparative study, we believe that sub-word level
neural embeddings as in [22] are worth exploring in the short-text
hate speech detection task. Finally, we also consider addressing the
fact that there is also high annotator disagreement present in the
annotation of the samples by utilising Bayesian neural networks
(e. g., see [14]) to model this label variance.

ACKNOWLEDGMENTS
This work was supported by the UK Economic & Social Research
Council through the research Grant No. HJ-253479 (ACLEW). Geor-
gios Rizos was funded by the Imperial College President’s PhD
Scholarship scheme. The authors would also like to thank Siyuan
Shen for his help on testing and debugging.

REFERENCES
[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmenta-

tion generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017).
[2] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017.

Deep learning for hate speech detection in tweets. In Proceedings of the 26th
International Conference on World Wide Web Companion. International World
Wide Web Conferences Steering Committee, 759–760.

[3] Berit Brogaard. 2016. The number of hate crimes rose in 2016.
https://www.psychologytoday.com/us/blog/the-superhuman-mind/201612/
hate-crimes-spurned-group-based-hatred. [Accessed: 2018-06-05].

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[5] Eric Brill. 1992. A simple rule-based part of speech tagger. In Proceedings of the 3rd
conference on Applied natural language processing. Association for Computational
Linguistics, 152–155.

[6] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. [n. d.].
Automated Hate Speech Detection and the Problem of Offensive Language. In
Proceedings of the 11th International AAAI Conference on Web and Social Media.

13https://github.com/glam-imperial/TextAug

Session: Long - Mining in Emerging Applications II CIKM ’19, November 3–7, 2019, Beijing, China

999

https://www.psychologytoday.com/us/blog/the-superhuman-mind/201612/hate-crimes-spurned-group-based-hatred
https://www.psychologytoday.com/us/blog/the-superhuman-mind/201612/hate-crimes-spurned-group-based-hatred
https://github.com/glam-imperial/TextAug


[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Grbovic, Vladan Radosavl-
jevic, and Narayan Bhamidipati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th international conference on world wide web.
ACM, 29–30.

[9] Bin Dong, Zixing Zhang, Björn W. Schuller, et al. 2016. Empirical Mode De-
composition: A Data-Enrichment Perspective on Speech Emotion Recognition.
Emotion and Sentiment Analysis (2016), 71.

[10] Björn Gambäck and Utpal Kumar Sikdar. 2017. Using Convolutional Neural
Networks to Classify Hate-Speech. Proceedings of the 1st workshop on abusive
language online (2017).

[11] Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura Damien, and Jun Long. 2015.
A lexicon-based approach for hate speech detection. International Journal of
Multimedia and Ubiquitous Engineering 10, 4 (2015), 215–230.

[12] Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N Asokan. 2018.
All You Need is" Love": Evading Hate-speech Detection. arXiv preprint
arXiv:1808.09115 (2018).

[13] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567 (2014).

[14] José Miguel Hernández-Lobato and Ryan Adams. 2015. Probabilistic backpropa-
gation for scalable learning of bayesian neural networks. In Proceedings of the
International Conference on Machine Learning. 1861–1869.

[15] CJ Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model for
sentiment analysis of social media text. In Proceedings of the 8th International
Conference on Weblogs and Social Media.

[16] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015.
Deep unordered composition rivals syntactic methods for text classification. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Vol. 1. 1681–1691.

[17] Navdeep Jaitly and Geoffrey E Hinton. 2013. Vocal tract length perturbation
(VTLP) improves speech recognition. In Proceedings of ICML Workshop on Deep
Learning for Audio, Speech and Language, Vol. 117.

[18] Gil Keren, Jun Deng, Jouni Pohjalainen, and Björn W Schuller. 2016. Convo-
lutional Neural Networks with Data Augmentation for Classifying Speakers’
Native Language.. In Proceedings of the 17th International Speech Communication
Association INTERSPEECH. 2393–2397.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[20] Rohan Kshirsagar, Tyus Cukuvac, Kathleen McKeown, and Susan McGregor. 2018.
Predictive Embeddings for Hate Speech Detection on Twitter. arXiv preprint
arXiv:1809.10644 (2018).

[21] Irene Kwok and Yuzhou Wang. 2013. Locate the Hate: Detecting Tweets against
Blacks. In Proceedings of the 27th AAAI Conference on Artificial Intelligence. 1621–
1622.

[22] Yashar Mehdad and Joel Tetreault. 2016. Do Characters Abuse More ThanWords?.
In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse
and Dialogue. 299–303.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[24] Nadia Naffi. 2017. Online Hate Speech in Canada
is up 600 percent. https://theconversation.com/
the-trump-effect-in-canada-a-600-per-cent-increase-in-online-hate-speech-86026/.
[Accessed: 2018-06-10].

[25] Ji Ho Park and Pascale Fung. 2017. One-step and two-step classification for
abusive language detection on twitter. arXiv preprint arXiv:1706.01206 (2017).

[26] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.

[27] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word

representations. arXiv preprint arXiv:1802.05365 (2018).
[28] Jing Qian, Mai ElSherief, Elizabeth Belding, and William Yang Wang. 2018.

Hierarchical cvae for fine-grained hate speech classification. arXiv preprint
arXiv:1809.00088 (2018).

[29] Grégory Rogez and Cordelia Schmid. 2016. Mocap-guided data augmentation
for 3d pose estimation in the wild. In Advances in Neural Information Processing
Systems. 3108–3116.

[30] Gözde Gül Şahin and Mark Steedman. 2019. Data Augmentation via Dependency
Tree Morphing for Low-Resource Languages. arXiv preprint arXiv:1903.09460
(2019).

[31] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. 2015. Convo-
lutional, long short-term memory, fully connected deep neural networks. In
Proceedings of the International Conference on Acoustics, Speech and Signal Pro-
cessing. IEEE, 4580–4584.

[32] Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin WWilson, and Oriol Vinyals.
2015. Learning the speech front-end with raw waveform CLDNNs. In Proceed-
ings of the 16th Annual Conference of the International Speech Communication
Association.

[33] Justin Salamon and Juan Pablo Bello. 2017. Deep convolutional neural networks
and data augmentation for environmental sound classification. IEEE Signal
Processing Letters 24, 3 (2017), 279–283.

[34] Sam Petulla and Tammy Kupperman and Jessica Schneider. 2017. Hate Crimes
Spurned By Group-Based Hatred. https://edition.cnn.com/2017/11/13/politics/
hate-crimes-fbi-2016-rise/index.html. [Accessed: 2018-06-25].

[35] Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detec-
tion using Natural Language Processing. In Proceedings of the 5th International
Workshop on Natural Language Processing for Social Media. 1–10.

[36] Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su,
Yizhe Zhang, Ricardo Henao, and Lawrence Carin. 2018. On the use of word
embeddings alone to represent natural language sequences. (2018).

[37] Ilya Sutskever, James Martens, and Geoffrey E Hinton. 2011. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference on
Machine Learning. 1017–1024.

[38] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. 2017. A
bayesian data augmentation approach for learning deep models. In Advances in
Neural Information Processing Systems. 2797–2806.

[39] George Trigeorgis, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis A
Nicolaou, Björn Schuller, and Stefanos Zafeiriou. 2016. Adieu features? end-to-
end speech emotion recognition using a deep convolutional recurrent network.
In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing. IEEE, 5200–5204.

[40] Panagiotis Tzirakis, George Trigeorgis, Mihalis Nicolaou, Björn W. Schuller, and
Stefanos Zafeiriou. 2017. End-to-end multimodal emotion recognition using deep
neural networks. IEEE Journal of Selected Topics in Signal Processing 11, 8 (2017),
1301–1309.

[41] William Warner and Julia Hirschberg. 2012. Detecting hate speech on the world
wide web. In Proceedings of the 2nd Workshop on Language in Social Media.

[42] ZeerakWaseem. 2016. Are you a racist or am i seeing things? annotator influence
on hate speech detection on twitter. In Proceedings of the 1st workshop on NLP
and computational social science. 138–142.

[43] Zeerak Waseem, Thomas Davidson, Dana Warmsley, and Ingmar Weber. 2017.
Understanding abuse: a typology of abusive language detection subtasks. arXiv
preprint arXiv:1705.09899 (2017).

[44] Zeerak Waseem and Dirk Hovy. 2016. Hateful Symbols or Hateful People?
Predictive Features for Hate Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop. Association for Computational Linguistics,
San Diego, California, 88–93.

[45] Dongxu Zhang and Zhichao Yang. 2018. Word embedding perturbation for
sentence classification. arXiv preprint arXiv:1804.08166 (2018).

[46] Xiang Zhang and Yann LeCun. 2015. Text understanding from scratch. arXiv
preprint arXiv:1502.01710 (2015).

[47] Ziqi Zhang, David Robinson, and Jonathan Tepper. 2018. Detecting Hate Speech
on Twitter Using a Convolution-GRU Based Deep Neural Network. In European
Semantic Web Conference. Springer, 745–760.

[48] Steven Zimmerman, Udo Kruschwitz, and Chris Fox. 2018. Improving Hate
Speech Detection with Deep Learning Ensembles. In Proceedings of the 11th
International Conference on Language Resources and Evaluation.

Session: Long - Mining in Emerging Applications II CIKM ’19, November 3–7, 2019, Beijing, China

1000

https://theconversation.com/the-trump-effect-in-canada-a-600-per-cent-increase-in-online-hate-speech-86026/
https://theconversation.com/the-trump-effect-in-canada-a-600-per-cent-increase-in-online-hate-speech-86026/
https://edition.cnn.com/2017/11/13/politics/hate-crimes-fbi-2016-rise/index.html
https://edition.cnn.com/2017/11/13/politics/hate-crimes-fbi-2016-rise/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 Hate Speech Data
	4 Short Text Data Augmentation
	4.1 Substitution Based Augmentation
	4.2 Word Position Augmentation
	4.3 Neural Generative Augmentation

	5 Experiments
	5.1 Deep Model Implementation
	5.2 Baseline Reproduction
	5.3 Surpassing Competition on HON Database
	5.4 Data Augmentation Experiments
	5.5 Aligning Embeddings
	5.6 Threshold Value Robustness
	5.7 Validation Across Databases

	6 Discussion
	6.1 Neural Networks for Hate Speech Detection
	6.2 Data Augmentation Tailored to Short Text
	6.3 Data Augmentation Samples
	6.4 Limitations

	7 Conclusions & Future Work
	Acknowledgments
	References



