Automated Classification of Airborne Pollen using Neural Networks

Julian Schiele!, Fabian Rabe?, Maximilian Schmitt®, Manuel Glaser', Franziska H'aring4,
Jens O. Brunner', Bernhard Bauer?, Bjorn Schuller®®, Claudia Traidl-Hoffmann?, and Athanasios Damialis®

Abstract—Pollen allergies are considered as a global epi-
demic nowadays, as they influence more than a quarter of the
worldwide population, with this percentage expected to rapidly
increase because of ongoing climate change. To date, alerts on
high-risk allergenic pollen exposure have been provided only
via forecasting models and conventional monitoring methods
that are laborious. The aim of this study is to develop
and evaluate our own pollen classification model based on
deep neural networks. Airborne allergenic pollen have been
monitored in Augsburg, Bavaria, Germany, since 2015, using
a novel automatic Bio-Aerosol Analyzer (BAA 500, Hund
GmbH). The automatic classification system is compared and
evaluated against our own, newly developed algorithm. Our
model achieves an unweighted average precision of 83.0 % and
an unweighted average recall of 77.1 % across 15 classes of
pollen taxa. Automatic, real-time information on concentrations
of airborne allergenic pollen will significantly contribute to the
implementation of timely, personalized management of allergies
in the future. It is already clear that new methods and sophis-
ticated models have to be developed so as to successfully switch
to novel operational pollen monitoring techniques serving the
above need.

I. INTRODUCTION

A progressive global increase in the burden of allergic
discases across the industrialized world has been reported
over the last half century: clinical evidence reveals a general
increase in both the incidence and the prevalence of respi-
ratory diseases, including allergic rhinitis and asthma [1].
This may be related to a parallel increase in the amount of
airborne allergenic pollen [2]. In developed countries, respi-
ratory allergies can affect more than 20 % of the population;
this percentage varies among cities, countries, and continents
because of environmental and other factors, sometimes ex-
ceeding 40 % [3]. Moreover, from a socio-economic perspec-
tive, an average of 13.2 million emergency visits to health
practitioners are recorded cvery year and approximately
4,000 death incidents related to asthma [4]. It is already
known that the annual cost for visits to allergy specialists
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and for drug therapy reaches up to 3.5 billion dollars in the
USA [5] for allergic rhinitis alone, not including the most
severe form of asthma. If the latter is included, together with
indirect effects, e.g., lost working hours, reduced working
efficiency etc., the potentially additional cost rises to 16.1
billion dollars per year [4].

Up to date, the first line of allergy management is prophy-
laxis. Nonetheless, it has been recently revealed that pollen
exposure cannot be completely avoided and pollen allergic
symptoms be completely ‘switched off’, as pollen can be
found everywhere, even on high elevation sites, i.e., the Alps
[6], or near the atmospheric boundary layer, at approximately
2,000 m above ground level [7]. Hence, to diminish exposure
to airborne pollen, reliable, accurate, real-time information
on the occurrence and abundance of airborne pollen is needed
[8]. Towards this aim, airborne pollen has been routinely
monitored worldwide, with the biomonitoring gold-standard
device being the volumetric Hirst-type sampler [9]. The
device involves a fully manual operation, from collection
to chemical analysis and microscopic classification of all
different types of pollen [10]. Consequently, relevant risk
alerts are announced to the public usually with a delay
of at least 7 to 10 days. The management of allergies
can, however, be effective only if allergen avoidance and
prophylaxis are performed in a timely and accurate manner.

As the above need has been evident mainly within the last
decade, a new generation of automated, near-real-time pollen
measurements is currently being developed and has been able
in some cases to work on an operational basis. At the mo-
ment, only few countries stand out with most well-developed,
promising, or already operating automated pollen measuring
devices: first, Japan [11], which, however, has been able to
provide information only on one pollen type (Cryptomeria
Jjaponica, Cupressaceae family); second, the USA, which is
still under calibration and not in fully operational mode;
third, Switzerland [12], which is currently under calibration;
fourth, Germany, which is in fully operational mode for the
last half decade [13]. Elsewhere, e. g., in Ireland, the process
is in more preliminary stages.

The purpose of this paper is to provide a method to
automatically classify a given pollen image into the correct
pollen taxon. Our contribution to this research is fourfold.
First, we describe an automated, near-real-time pollen moni-
toring system. Second, we manually classify and enhance the
existing pollen database. Third, we develop a classification
model based on deep neural networks. Fourth, we evaluate
the performance of our models and compare it to that from
the existing pollen monitoring system.
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II. MATERIALS AND METHODOLOGY

In an automated pollen monitoring process, as depicted in
Figure 1, air samples of the ambient environment are col-
lected automatically on a probe (step 1), objects within each
probe are detected (step 2), objects are classified as either
‘no pollen’ or as a specific pollen type and counted (step 3),
and up-to-date information about the pollen concentration is
published online' (step 4).

Step 1: Step 2: Step 3: Step 4:
Collection Detection Classification Dissemination
Fig. 1. Automated pollen monitoring process.

A. Materials

Automatic airborne pollen monitoring has been conducted
every 3 hours since spring 2015, at the Bavarian Environ-
mental Administration (LfU) in Augsburg, Bavaria, South-
ern Germany (WGS84 coordinates 48°19°37”N 10°54°7”E,
494 m above sea level), at ground level.

The automated pollen measuring device BAA500? con-
tinuously samples ambient air at a rate of 60 m3/h, by
use of a 3-stage virtual impactor. Pollen is deposited on a
sticky surface and automatically analyzed under a micro-
scope equipped with a camera. Images of the pollen are
constructed and compared with a library of known samples.
Using an image recognition algorithm, the BAAS500 is able
to recognize more than 30 pollen taxa [13]. For this study,
we consider 15 pollen taxa, the commonest and also most
abundant in the atmosphere worldwide [2]. All samples were
collected between November 2015 and October 2016 and
manually labeled, based on typical morphological features
[10]. Table I shows the scientific names (in Latin) and
common names (in English) of each pollen taxon, as well as
the number of samples used in this study.

TABLE I
POLLEN TAXA CONSIDERED IN THIS STUDY.

Latin English Number of total samples
Alnus Alder 10,063
Betula Birch 2,370
Carpinus Hornbeam 8,010
Corylus Hazel 11,667
Fagus Beech 728
Fraxinus Ash 460
Plantago Plantain 1,721
Poaceae Grass 3,600
Populus Poplar 2,065
Quercus Oak 611
Salix Willow 526
Taxus Yew 6,077
Tilia Linden 180
Ulmus Elm 339
Urticaceae  Nettle 2,828

https://www.unika-t.de/pollenflug/
2https://www.hund.de/en/instruments/
pollen-monitor/

The BAASO00 is equipped with software that identifies
objects in the image and crops them accordingly. Figure 2
shows the cropped image for a Betula pollen sample. We
are well aware that the provided algorithm is not optimal
since we encountered many cases where the cropping was not
satisfactory, e.g., objects were not identified or an object was
cropped into several images (also see Figure 4 in Discussion).

Fig. 2. Betula pollen sample.

Those cases are not considered for this study, as we focus
only on the classification (step 3 of the automated process in
Figure 1). We rely on the cropped images provided by the
BAASO00 and use them as basis for our classification model.

B. Methodology

The classification of each pollen sample into one of the 15
considered pollen classes is done by a deep neural network
model learned using 60 % of the described data set as training
data. The field of deep learning has made significant progress
in the past decade and — combined with today’s computing
capacity — offers entirely new possibilities. A comprehensive
overview on deep learning is provided in [14] and [15].
Convolutional neural networks (CNNs) are a state-of-the-art
method in image classification tasks, such as visual object
recognition, optical character recognition, or image based
medical diagnostics [16]. They usually consist of a cascade
of so-called convolutional layers and one or several fully-
connected neural layers. Convolutional layers are specialized
for the task of feature extraction (such as edges or dots in
images) by sharing the weights of their two-dimensional
filter kernel across the whole input image. This makes
the outputs of the single kernels shift invariant. To further
reduce information and scale of the input, a maximum-
pooling step is sometimes done after each convolutional
layer, propagating only the largest output value of a certain
neighbourhood to the next layer. Daood et al. propose a sys-
tem using a cascade of pre-trained CNNs and recurrent neural
networks to classify pollen [17]. They achieve a quite good
performance (F-measure of 89 %) since they consider only
10 different classes and work in almost perfect conditions
with 392 well-segmented, high-resolution, multi-focal image
sequences obtained by a microscope. In a more complicated
study design than the above, we consider 15 classes and use
data from a series-production pollen monitoring system with
an automated segmentation algorithm containing only one
focus per pollen instance.

Before training our model, we apply some preprocessing
to the cropped images provided by the BAAS00. Each pollen
image is embedded in the center of a black background
frame, sized 256x256 pixels. The data set is converted to
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tfrecords and split into three sets: the training set containing
60 % of all samples of each class, the development set with
20 %, and the test set containing the remaining 20 %.

Inspired by classic architectures, such as the MNIST
standard Tensorflow model ?, we experimented with different
network architectures and tuned the hyperparameters on the
development set until we ended with a powerful model. A
deep neural network, consisting of three convolutional layers,
each followed by a maximum-pooling step, a fully-connected
layer with dropout, and an output layer, is trained on the
raw pixel values of the embedded images. Dropout is a
technique to regularize the model and improve the ability
to generalize, especially on limited data sets, by randomly
setting the output of certain neurons to zero. The output layer
contains one neuron for each class. As activation functions,
rectified linear units (ReLU) are used for all convolutional
layers and the fully-connected layer, and a softmax function
is used for the output layer.

We use the Adam optimizer with cross-entropy loss to
train the network [18]. Since the classes in the data set are
imbalanced, the gradients are multiplied with a class-specific
weight, according to the inverse of the ratio of the instances
in each class with the instances of the majority class (see
Eq. (1)). By doing so, we also consider the underrepresented
classes with an equal impact on the loss function during
training.

Max. number of samples in all classes
Number of samples in class ¢

)]

We use the unweighted average of the class-specific F-
measures (F1) to decide when to stop the training process and
which model configuration to choose. The F-measure is the
harmonic mean between recall and precision for each class.
The class-specific precision is defined as the share of true
positives, i.e., all samples of the respective class that were
correctly labeled, and all predicted positives, i. e., including
samples that were wrongly assigned to the respective class
in Eq. (2).

Weight of class ¢ =

True positives
True positives + False positives

Precision = 2
The class-specific recall is defined as the share of true
positives and all positives, i.e., including samples that were
wrongly not assigned to the respective class in Eq. (3).

True positives

Recall =
True positives + False negatives

3

All hyperparameters and architectural parameters are
shown in Table II. They were optimized on the development
set. Training was stopped after 500,000 training steps and
the weights were restored from the iteration where the
maximum unweighted average F-measure was reached on
the development set (after 438,000 iterations).

3https://github.com/tensorflow/models/blob/
master/official/mnist/mnist.py

TABLE II
HYPERPARAMETERS.

Value

(4x4), 32 filters
(4x4), 64 filters
(4x4), 64 filters
1,024 neurons

Parameter

Convolutional layer 1
Convolutional layer 2
Convolutional layer 3
Fully-connected layer

Dropout 0.25
Activation function ReLU
Optimizer Adam
Learning rate 1075
Batch size 200

Training steps max. 500,000

The described neural network model to classify pollen
images has been implemented with the Tensorflow library
(version 1.7.0) in Python. For data processing, we use
Pandas, NumPy, SciPy, and Scikit-learn. The training of
the neural network was performed on a dedicated GPU
cluster equipped with 16 Nvidia Titan X (Pascal) cards. Each
network architecture and configuration during optimization
was trained and evaluated on a single GPU card.

III. RESULTS

We use unweighted average precision (UAP), unweighted
average recall (UAR), and unweighted average F-measure
(UAF1) to evaluate the performance of our classification
model. Since most of the pollen taxa included in the current
study are considered allergologically important, we choose
the unweighted scores as performance metrics. We achieve a
UAP of 83.0 %, a UAR of 77.1 %, and a UAF1 of 79.1 % on
the test set. Table III shows the performance of our model
for the development set and the test set.

TABLE III
PERFORMANCE OF OUR MODEL.

Performance measure [%] Development set  Test set
Unweighted average precision — 83.2 83.0
Unweighted average recall 75.5 77.1
Unweighted average F1 78.4 79.1

The normalized confusion matrix depicted in Figure 3
shows the performance of our model for the individual
classes. Each row represents the share of instances in an
true class and each column represents the instances in a
predicted class. The values are normalized per true label
(row) and the diagonal shows the recall. Taxus and Fagus
are predicted particularly well showing a recall of 96 %
and 92 %, respectively. This seems reasonable as both are
relatively simple to identify due to their unique pollen mor-
phology and bigger size, respectively. However, Quercus and
Fraxinus show a rather bad performance (35 % and 43 %).
This is mostly due to the lower abundance of pollen samples
for the respective taxa. For example, Tilia pollen is easier
to recognize thanks to the morphologically unique colpopori
whereas the finely reticulate outer surface of Fraxinus pollen
is still a challenge for automated classification algorithms as
well as for human experts. A look at Figure 3 reveals that
Fraxinus is often confused with Alnus, Betula, and Taxus;
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Fig. 3. Normalized confusion matrix for our model. The percentage of
possible instances is shown as color scale and noted in each square.

taxa that are represented with sample sizes of a magnitude
higher. Similarly, Quercus is confused with well-represented
Carpinus and Poaceae.

We compared our results with the BAAS00 internal clas-
sification algorithm as installed in the default configura-
tion and without location-specific modifications. The built-
in algorithm is based on a mathematical model calculating
features such as area, perimeter, eccentricity, and roundness
for each pollen sample. This presumably limits the model to
round objects only. Moreover, features like probable season
start and end seem to be included as well, despite being
highly variable per year and location of sampling, which
explains some of the classification errors, e. g., Alnus, Betula,
and Corylus are not identified in October to December and
are mainly classified as ‘Varia’ pollen. Since the BAA500
algorithm is able to predict at least 34 pollen taxa and
we currently only predict 15 taxa, we present different
comparisons.

First, we compare the predictions of the BAA5S00 to the
manual annotations. We ignore samples where the annotator
assigned a class which the BAA500 algorithm is not able to
predict to avoid introducing a new class to the unweighted
measurements, where the algorithm would receive the low-
est possible score. This approach rather overestimates the
performance of the BAASOO for two reasons. By dropping
samples where the annotator disagreed, we are ignoring
some false positive samples. Additionally, we are currently
not able to provide a statement about the samples where
the BAASO0 predicted ‘no pollen’, since these are not yet
manually labeled. As there are roughly five times more
samples with ‘no pollen’ in our data set than all other classes
combined, it is not unlikely that during manual annotation

many false negatives would be identified in this share of the
data set.

Second, we calculated the BAASOO performance on the
test set containing the 15 pollen taxa which have also been
used for the training and evaluation of our model. How-
ever, we are aware that this comparison rather discriminates
BAAS500’s performance, since it has been designed for a
greater variety of options (34 classes) than the one included
in the data set (15 classes).

TABLE IV
COMPARISON BETWEEN BAAS500 AND OUR MODEL.

BAAS500
(34 classes)

BAAS500
(15 classes)

Our model
(5 classes)

Our model
(15 classes)

Performance
measure [%]

UAP 66.6 59.4 83.0 88.2
UAR 62.3 54.5 77.1 87.0
UAFI 60.1 56.4 79.1 87.5

The results are summarized in Table IV. Overall, our
model is able to predict less classes, but shows superior
performance than the BAA5S00 model. Even for 34 classes,
we expect our model to still outperform the BAA500 since
the current performance difference is quite large and we do
not expect significant performance decrease by expanding to
additional classes (which was not possible at the moment due
to insufficient number of training samples). The performance
of our model for 5 classes (see Table IV), i.e., Alnus, Betula,
Carpinus, Corylus, and Poaceae, underlines this hypothesis.

IV. DISCUSSION AND OUTLOOK

We have developed a deep neural network based model
to classify different types of airborne pollen and presented
numerical results. We have shown that our model yields
promising predictions for the 15 most abundant and aller-
genic pollen types worldwide [2], even outperforming the ex-
isting built-in algorithm of the automatic monitoring system
(within the boundaries of this comparison). Moreover, our
developed model consistently exhibits a high classification
performance for the 5 most allergenic pollen types worldwide
(Table 1V), i.e., UAP and UAR of more than 85 %.

The model developed here certainly still presents specific
drawbacks and some issues have to be resolved, such as
expanding to an even larger number of pollen classes as
the original built-in algorithm. Nonetheless, if we take into
account that the huge class of ‘no pollen’ has been excluded
from the manual classification and the comparison between
the two models, it is expected that further training with
correctly manually labeled samples will even further enhance
our model.

Overall, automated classification of allergenic pollen is
a very demanding and ambitious task. First, pollen grains
exhibit a large size variability, from 10 ym to 150 pm, and
infinite variations in morphological characteristics due to the
3-dimensionality in real-life. At the same time, they co-occur
in the atmosphere (and therefore in pollen samples) together
with other airborne particles, like fungal spores, bacteria,
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viruses, insects, plant fragments, dust, and so on, which
makes classification more complicated.

We are confident that our model performs better than
the one currently used in BAAS5OQ0, as it originally tries to
eliminate flaws or shortcomings from the very beginning of
the modeling concept. For instance, the BAA5S00 algorithm
struggles to identify non-round objects as illustrated in
Figure 4. Our future work will also include the development

Fig. 4. Badly cropped object. Each colored region shows where the
BAASOQO identifies a potential sample, which is later individually classified.

and implementation of an own object detection algorithm
(step 2 in Figure 1), which is expected to leverage additional
performance gains by detecting more pollen samples and
cropping them correctly. We also expect to be able to detect
non-round objects, which would allow us to expand to
automated monitoring of all other air particles as well, e. g.,
fungal spores.

Also, the performance of the classification itself will be
further improved, in particularly by generation of additional
training data, e. g., by rotation of the pollen images, and la-
beling of new samples. We are currently manually classifying
the ‘no pollen’ class, which is approximately five times the
size of the existing database and contains all different types
of air particles, to further improve the training of the deep
neural network.

By integrating all of the aforementioned features in a
single classification model, it is expected that its performance
will be boosted and given its already reasonably high perfor-
mance, it will most probably contribute to the development
of a truly operational automatic pollen classification system.
Practically, this will provide the basis for accurate, real-time,
automatic dissemination of allergenic pollen information. In
combination with novel and fully operational pollen apps, an
infrastructure for the benefit of allergic individuals will be
created, providing the necessary environmental health service
required as the first line of allergy management.
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