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ABSTRACT

Using data with high quality annotation is crucial in emotion
recognition applications, especially because the task is sub-
jective and the raters may exhibit disagreement with respect
to each sample. In this paper, we propose a meta-learning
methodology that can reason about the training data and de-
tect potentially less informative instances in order to reduce
their impact in the training process. The way we inform the
meta-learner on the importance of each sample is by utilising
recent advances in uncertainty modelling with Bayesian neu-
ral networks that can decompose predictive uncertainty into:
a) model uncertainty that is due to a lack of observations and
b) label uncertainty that is due to inherent randomness in the
data labelling, which we adapt for affective computing. Our
proposed method for soft data selection exhibits a 6% ab-
solute improvement in Concordance Correlation Coefficient
with respect to the baseline in a two-dimensional continuous
affect recognition task.

Index Terms— soft data selection, annotation quality,
meta-learning, Bayesian neural networks, affect recognition

1. INTRODUCTION

Variance in the quality of annotation is currently one of the
most fundamental challenges in affective computing and au-
tomatic speech analysis (ASA) in general. Even in the opti-
mistic scenario where there is an abundance of speech sam-
ples, their acoustic quality may be corrupted by environmen-
tal or recording noise, a fact that combined with the high
workload of raters can lead to lower than ideal quality in
annotation. This can be especially problematic in emotion
recognition applications, where the subjectiveness of the an-
notation task is usually addressed by aggregating the opinion
of multiple raters whose inputs may not always agree. How,
then, can we teach a model to reason about whether a sample
is labelled accurately? Furthermore, how can we utilise this
knowledge to improve the model’s results on a later iteration?

To this end, there has been a re-surge of developments
in applying Bayesian principles on neural networks [1, 2, 3]
such that they are able to learn a predictive distribution for
a test sample given the training data. More specifically, there

Fig. 1. Overview of the meta-learning framework.

has been interest [4, 5] in learning how to decompose the vari-
ance of the predictive distribution into two factors: a) model
or epistemic uncertainty, i.e., the kind due to model parameter
stochasticity which can be reduced by observing more data in
that region in data space and b) label or aleatory uncertainty,
i.e., the kind inherent in the data given our sensing capabili-
ties which can be improved by the utilisation of better sensors
of the observed variable. We hypothesize that in the emotion
recognition application, this can be realised either by adding
additional raters for a sample or by removing potentially un-
reliable samples.

Here, we provide a soft sample selection scheme inte-
grated in the network’s training process (see Fig. 1), aimed
at improving performance in a test set. We achieve this by
adopting a meta-learning framework, in which we first train
an uncertainty decomposing Bayesian neural network that is
able to model both the model and label variances associated
with a prediction. We use these values along with the pre-
diction error and the true annotator disagreement as inputs to
a function that outputs informativeness scores that appropri-
ately weigh each sample in the loss value calculation. This
is the first application of Bayesian deep networks for data se-
lection and also of uncertainty decomposing Bayesian deep
models in affective computing. Our proposed meta-learning
framework can be used to extend many “base” approaches,
e.g., end-to-end deep learning on audio, and learning on do-
main knowledge features. Our experiments are performed on
the RECOLA [6] database subset that was used in the AVEC
2016-2018 [7] emotion recognition sub-challenges.
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2. RELATED WORK

An approach that has traditionally been used for improving
the quality of speech datasets in the presence of unreliable an-
notations [8, 9], data redundancy [10, 11] or class imbalance
[9] is data selection such that anomalous, mislabelled or su-
perfluous data are removed. The problem with the aforemen-
tioned approaches, however, is that they were not designed to
be used with computationally heavy, deep models for com-
puter audition and especially end-to-end solutions [12, 13]
that have proven to be an attractive alternative to the more
traditional approaches that utilise specialised domain knowl-
edge and feature engineering [14, 15]. In contrast, we lever-
age deep networks that can reason on whether a sample is
informative in the training process.

A measure of rater disagreement has been used as an ad-
ditional feature in [16] and in [17] to penalise the impact of
a data sample in a support vector machine model, with posi-
tive outcomes. The authors of [9] propose to discard samples
that exhibit high values of a rater disagreement measure in
a categorical speech affect recognition study. Although they
achieved significantly improved performance by discarding
70% of the initial dataset, this approach characterises the sam-
ples as mislabelled based only on the rater disagreement. The
authors of a recent study on emotion recognition from video
[14] avoid making ‘hard’ predictions by using a deep multi-
task network to jointly model both the aggregated emotion
consensus and the rater label variance. Learning to predict the
disagreement level of a sample has also been attempted in an
active learning setting [18, 19] in order to query for more in-
formative samples. We argue that the rater disagreement of a
single sample may be explained away by the presence of prop-
erly annotated samples in the neighbourhood and as such, we
opt to work with informativeness estimates, based on predic-
tive model and label noise, as well as rater disagreement.

3. IDENTIFYING INFORMATIVE SAMPLES

In our approach, we adopt the Monte Carlo (MC) Dropout
Bayesian deep learning approach as per [3] mainly due to
the fact that it can straightforwardly be extended to convo-
lutional [20] and recurrent neural networks [21] (henceforth
CNNs and RNNs). Furthermore, an extension to this work
performed in [4] yielded a methodology for decomposing
variance into model and label uncertainty factors. We are
going to give a succinct background review of this methodol-
ogy in subsection 3.1 and then we are going to proceed with
our contributions for identification of informative samples in
affective computing in the following subsections 3.2-3.3.

3.1. Bayesian deep uncertainty decomposition

A Bayesian neural network (BNN) is defined by assuming a
probabilistic prior over the weights, e.g., p(ω) = N (0,1)

and using Bayes’ rule to calculate the Bayesian weight poste-
rior p(ω |X,Y ) given the data X,Y . This is an intractable
operation and as such is approached via variational approxi-
mation: we sample stochastic parameters ω̂ from a variational
distribution (ω̂ ∼ qθ) that approximates the Bayesian weight
posterior. This approximation is achieved by minimising
the Kullback-Leibler divergence of the former from the lat-
ter, i.e., the negative Evidence Lower Bound (ELBO). In
the case of MC Dropout BNNs this minimisation objective
is further approximated using MC integration, which along
with the choice of an appropriate variational distribution
as explained in [3] implies that training with dropout [22]
gives us an approximate Bayesian inference method and al-
lows for sampling outputs from the predictive distribution
p(fω̂(x∗) | x∗,X,Y ) for a test sample x∗.

Imagine now that our data labels are corrupted by het-
eroscedastic, data-dependent output noise. We split our BNN
in two “heads” such that it predicts the parameters of a single
dimensional Gaussian distribution, [µ̂∗, σ̂∗] = fω̂(x∗) for a
test input x∗. By extending the approximate Bayesian infer-
ence framework from the previous paragraph using a Gaus-
sian heteroscedastic likelihood function as described in [4],
we can train our uncertainty decomposing BNN by minimis-
ing a heteroscedastic noise mean square error (MSE) loss:

min L̂V I =
1

N

N∑
i=1

(
‖yi − µ̂i‖2

σ̂2
i

+ logσ̂2
i ) + reg. (1)

In Eq. 1, the reg. factor corresponds to weight regularisa-
tion that is due to the ELBO term that encourages the varia-
tional distribution to be close to the weight prior. We also see
that if the network learns to output high uncertainty σ̂ in cases
it expects to get a high prediction error, this error is attenu-
ated and as such will be backpropagated at a reduced degree.
Finally, the term logσ̂2

i makes sure to penalise the network if
it outputs high variance, since the increase of variance every-
where is a trivial means of minimising this loss function.

Finally, we can calculate the expected prediction output
and the total variance of the predictive distribution as fol-
lows via Monte Carlo integration, by having the test sample
perform T passes from the network, using different dropout
masks for the weights every time:

E{µ∗} =
1

T

T∑
t=1

µ̂∗t, (2a)

Var{µ∗} =
1

T

T∑
t=1

σ̂2
∗t +

1

T

T∑
t=1

(µ̂∗t − E{µ∗})2. (2b)

In Eq. 2b, the first term is a proxy of learnt heteroscedas-
tic aleatory/label uncertainty, whereas the latter of epis-
temic/model uncertainty, which will decrease as more data
are observed near x∗.
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3.2. Uncertainty separation in affective computing

The authors of [4] used an extension of MSE for learning het-
eroscedastic data-dependent aleatory variance, but due to the
recent success in using the Concordance Correlation Coeffi-
cient (CCC) ρc in emotion recognition as a loss function in
deep learning [12, 23, 14], we need to also derive something
suitable for this domain. The following Eqs. 3a-3c are the def-
initions of weighted mean, covariance and CCC respectively:

Ew{u} =
∑
uiwi∑
wi

, (3a)

Covw{u, v} =
∑
wi(ui − Ew{u})(vi − Ew{v})∑

wi
, (3b)

ρc,w(u, v) =
2Covw{u, v}∑

a∈{u,v}
Covw{a, a}+ (Ew{u} − Ew{v})2

.

(3c)

The above means that the more confident the network is
about a prediction, the more this prediction should be taken
into account when calculating ρc,w. In this study, we propose
two possible candidates as reasonable choices for the weights:
a) a learnt heteroscedastic precision score from the second
head of the neural network as described in Sub-sec. 3.1 (i.e.,
based on the first part of Eq. 2b) and b) a learnt signal out-
put from a meta-learning model, which we describe in Sub-
sec. 3.3. Finally, as the reader can see, we do not use the rater
disagreement in our loss function.

3.3. Meta-learning for soft label selection

We now propose a meta-learning framework that identifies in-
formative training samples using at its core an uncertainty de-
composing BNN. Our framework utilises the following mod-
els: a) the source meta-model, b) the teacher meta-model and
finally c) the base model. A general overview of their in-
teraction is depicted in Fig.1. The source meta-model is a
BNN trained with weighted ρc,w, where the w precision vec-
tor is produced by the second “head” of the neural network
as described in subsections 3.1-3.2 and is capable of provid-
ing us with model and label uncertainty estimates for any
given test sample. We then jointly train the base model and
the teacher meta-model: the former has the same architecture
as the source meta-model and the only difference is that this
time the w vector is the informativeness output of the teacher
model. The latter is a simpler model that takes as an input
the two predictive uncertainties for each sample, the rater dis-
agreement, as well as the prediction error of the source model.
The training signal used to optimise the teacher model is the
difference between the loss of the student model as calculated
by using a uniform weighting for all samples and the custom
weighting provided by the teacher model. The predictions of
the base model are the ones used for the actual evaluation.

4. EXPERIMENTAL SETUP

Let there be a sequence of input data X = [xi] with corre-
sponding labels Y = [yi]. Any of the models we use will
provide a sequence of predictions Ŷ = [ŷi]. Our goal is to
increase the Concordance Correlation Coefficient measure in
the validation split for hyperparameter/architecture optimisa-
tion and in the test split for final measure reporting.

4.1. RECOLA database

We applied our framework to a two-dimensional, continuous
affect recognition problem. We use the REmote COLlabo-
rative and Affective (RECOLA) [6] database subset used in
the Audio-Visual Emotion Challenge and Workshop (AVEC)
2016 [7]. This subset consists of a five-minute utterance per
subject from a total of 27 subjects in a 9-9-9 train-validation-
test split. The annotation period is 0.04 seconds with six an-
notators for each sample. We work with the speech modality
and we will be using the raw audio signal as the model input,
which we standardise with respect to each subject. We then
augment the input by adding normally distributed noise with
variance equal to 10−1.

4.2. Model architectures & training

We now describe the architectures we used in our meta-
learning framework used in our experiments.

Source & Base models: We utilise the model [12], which
we will refer to as the End2End model. A sequence of raw
audio signal is fed into a three-layer, single dimensional deep
CNN and the latter’s output into a two layer long short-term
memory (LSTM) RNN. The number of filters of the convo-
lutional layers are 64-128-256 and the widths are 8-6-6, and
each one is followed by a max pooling layer that undersam-
ple at a rate of 10-8-8, respectively. The hidden units of the
RNN layers are 256-256. These are trained by optimising the
weighted CCC (see Eq. 3c).

Teacher model: We utilise a single layer CNN without
padding (i.e., we get a single output value after convolving the
input sample with each filter) and we feed that into a single
layer bidirectional LSTM network with 2 output units for the
two emotion targets. For the CNN we used 24 filters.

We run all competing methods for 100 epochs and keep
the best model based on performance on the validation set.
We also run only the source model in the case of the meta
framework for the fixed amount of 50 epochs. We use 5-500
batch and sequence sizes in training mode and 1-7500 in val-
idation and testing. We used the Adam optimiser [24] with
an initial learning rate of 10−4. Finally, all model predictions
undergo a post-processing step that includes median filtering,
centring, scaling and shifting as described in [13].
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Method Arousal Valence Avg
End2End (n/a) .607 .322 .465
End2End (epi) .691 .324 .508
End2End (both) .680 .319 .499
End2End (meta) .693 .352 .523

Table 1. Results on the AVEC-2016 RECOLA database sub-
set test set. We report CCC.

5. RESULTS & DISCUSSION

We perform a comparative study by extending the base
End2End model such that it either captures only model un-
certainty, both model and label uncertainty or none, which
we denote by {epi, both, n/a}, respectively. Finally, our im-
plementation of a meta framework that additionally includes
source and teacher models for learning sample informative-
ness is denoted by meta.

Our results are summarised in Tab. 1. The first thing we
notice is that by simply extending the network such that it
is Bayesian, we get a performance improvement. (End2End
(epi) shows a .43 absolute improvement in terms of ρc
over End2End (n/a)). This is probably explained by the fact
that the Bayesian extension of a neural network performs
much needed regularisation on the CNN and the RNN. We
furthermore find that modelling model noise is better than
modelling both model and label noise, possibly due to the
additional complexity brought by modelling label noise in the
same model. The reason the values for End2End (n/a) are dif-
ferent from the ones reported in the original paper [12] is that
the authors of that paper utilise the full RECOLA database,
not the AVEC-2016 subset. This is noteworthy because it
indicates that the so far best performing End2End model
for speech-based affective computing requires either a large
training database in order to learn the temporal patterns of
the audio signal, or careful regularisation of the parameters.

Most importantly, we see that using a meta-model to learn
an informativeness measure as a means of performing soft la-
bel selection is the best performing approach. The End2End
(meta) method exhibits a .015 absolute improvement over
End2End (epi) for a total of .058 improvement over the base-
line. We note that this improvement of the meta approach
over the competing methods holds for both emotion targets.
Given that valence is the more difficult to predict emotion for
the speech modality, we may assume that the direct modelling
of informativeness in such cases where there is noisy map-
ping between input and output can lead to a consistent perfor-
mance improvement. As a final note, the fact that End2End
(meta) performs better than End2End (both) indicates that a
custom informativeness measure is significantly more useful
for weighing samples in training (see Eq. 3c) than simply a
measure of label uncertainty [4].

Finally, we show in Fig. 2 a superposition of the arousal
emotion ground truth (green) and the log-informativeness

measure (magenta) that is output by the teacher model for
two 20s segments. The teacher discourages the base model
from focusing on temporal signal patterns that signify further
from neutral affect, possibly because it is easier to capture.

Fig. 2. Study of informativeness in speech affect. Green de-
notes arousal and magenta denotes informativeness.

6. CONCLUSIONS & FUTURE WORK

In this paper, we propose a meta-learning framework for soft
data selection such that greater focus is placed on more infor-
mative training samples. By fusing information on annotator
disagreement with model and label uncertainty estimates we
can get meaningful informativeness estimates that can lead
to impressive performance improvements in continuous affect
recognition. We have shown that our framework is very effec-
tive in end-to-end affective computing, which has so far been
dependent on large amounts of data. In the future we would
like to generalise our results to multi-modal inputs and extend
our method to categorical affective computing tasks. Given
that our framework can be used to extend any deep affective
computing model, we would also like to reproduce more com-
peting methods and examine its generalisation properties.

We provide implementations of the proposed informative-
ness learning method and the competing methods included
in the experimental comparison in the project’s GitHub page
(https://github.com/glam-imperial/informativeness).
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