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Abstract

Speech augmentation is a common and effective strategy to
avoid overfitting and improve on the robustness of an emo-
tion recognition model. In this paper, we investigate for the
first time the intrinsic attributes in a speech signal using the
multi-resolution analysis theory and the Hilbert-Huang Spec-
trum, with the goal of developing a robust speech augmenta-
tion approach from raw speech data. Specifically, speech de-
composition in a double tree complex wavelet transform do-
main is realized, to obtain sub-speech signals; then, the Hilbert
Spectrum using Hilbert-Huang Transform is calculated for each
sub-band to capture the noise content in unseen environments
with the voice restriction to 100—4000 Hz; finally, the speech-
specific noise that varies with the speaker individual, scenar-
ios, environment, and voice recording equipment, can be recon-
structed from the top two high-frequency sub-bands to enhance
the raw signal. Our proposed speech augmentation is demon-
strated using five robust machine learning architectures based
on the RAVDESS database, achieving up to 9.3 % higher accu-
racy compared to the performance on raw data for an emotion
recognition task.

Index Terms: Emotion Recognition, Speech Augmentation,
Speech decomposition, Bidirectional LSTM — Attention

1. Introduction

Data augmentation [1] is a common and widely accepted strat-
egy to enrich the diversity of training data by artificially con-
structed additional training samples using various signal/data
processing techniques. Increasing the quantity and enriching
content of training data has been consistently demonstrated to
be beneficial to prevent the overfitting of models and improve
the overall robustness of automatic speech recognition mod-
els [2]. However, as audio data is more sensitive than images,
an affine-transformation motivated data augmentation strategy
is not suitable for audio data. Especially for emotional data such
as speech, emotional expressions are particularly delicate [3], so
speech data is easy to be polluted. The immoderate speech en-
hancement might lead to the concealment of the vital emotional
information, so the fidelity and integrity is a concern for speech
augmentation techniques. To date, few audio augmentation
methods have been proposed, the mainstream approaches in-
clude feature-level technique using vocal tract length perturba-
tion (VTLP) [4] and stochastic features, speed perturbation [5],
voice transformation [6], noise addition [7], artificial copies [8]
and some combined models [9, 10]. However, the performance
of all of these algorithms always varies dramatically with the

* Corresponding author: zhaoziping@tjnu.edu.cn

Copyright © 2019 ISCA

1781

task and database, therefore, there is still large room for im-
provement in this field.

To counter unnecessary interference from speech augmen-
tation via noise addition, we start to design the audio augmen-
tation model artificially from original data. After a deep ex-
ploration of sub-speech signals’ energy-time-frequency Hilbert
spectrum via Hilbert-Huang Transform (HHT) [11], we find
that each sample has very different interference that is affected
by the speaker individual, scenarios, environment and further
factors. We name this kind of interference as speaker-specific
noise in unseen environment. To be specific, we first ac-
complish the speech decomposition using the Dual-Tree Com-
plex Wavelet Transform (DT-CWT) [12], locate the inferences
in each sub-speech signal, and aggregate them to reconstruct
the noise-like interference with the constraint of typical hu-
man voice frequency range approximately in 100-4000 Hz [13].
The final augmented speech can be expressed as the super-
position of the raw one and the noise-like interference. Ulti-
mately, the proposed speech augmentation algorithm is respec-
tively tested on five speech emotion recognition models using
context-based Mel Frequency Cepstral Coefficients (MFCCs),
SliCQ-nonstationary Gabor transformation (SIiCQ-NSGT) and
ComParE features representations, yielding 9.3 % accuracy im-
provement at most comparing with the result on original data.

This paper is organized as follows. Section 2 introduces the
proposed method, Section 3 describes the experimental results
and discuss, conclusions are presented in Section 4.

2. Methodology

In this section, we first introduce the speech decomposition
method, analyse what kind of interference exists in speech, then
propose the speech argumentation method; finally, the acoustic
representations and adopted models are introduced.

2.1. Speech decomposition

To dig into the intrinsic attributes in speech, we decompose
the original speech into several sub-speech signals using DT-
CWT, which is demonstrated to be efficient because of its shift-
variance, low-directional selectivity in high dimensions as well
as perfect-reconstruction characteristics [12]. In fact, DT-CWT
is a specific case of CWT proposed by Kingsbury in 1998,
which can be realised by different low-pass and high-pass fil-
ters based on two parallel Discrete Wavelet Transformations
(DWT) [14]. The audio decomposition process of DT-CWT
is exhibited in Figure 1. Seen from decomposed results, it can
lead to twice the number of DWT wavelet coefficients and these
wavelet coefficients are almost shift invariant, so a small change
on the input signal cannot change the distribution of the energy
of DT-CWT coefficients at different scales [15], hence, it holds
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Figure 1: DT-CWT of an audio signal. ho(n) and hi(n) indi-
cate the low-pass and high-pass filter pair for the upper filter
bank, respectively; go(n) and gi(n) denote the low-pass and
high-pass filter pair for the lower filter bank, respectively.
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promises for audio signal analysis. The wavelet function of DT-
CWT can be expressed as:

P(t) = n(t) +itpgz(t) (D
where 1y, (t) and 142(t) denote two real wavelets, ¢ denotes
the complex unit, and v, () and 42(t) are a pair of Hilbert
transforms. This complex function guarantees the better per-
formance of DT-CWT for non-stationary signals, especially for
speech.

In this work, 2-level DT-CWT decomposition is first car-
ried out to obtain three sub-speech signals with the frequencies
ranging from low to high, letting the speech information uni-
formly distribute at different sub-bands, and then, human voice
and other disturbances can be distinguished from them accord-
ing to human voice range. The subsequent speech enhancement
is proposed based on the in-depth analysis of content in each
sub-speech signal.

2.2. Speech Augmentation

The exploration of intrinsic properties in speech is based on
the human voice frequency and energy-time-frequency Hilbert
spectrum via HHT. It is generally accepted that 100-4000 Hz is
usually referred to as the “voice frequency” (VF). So here, we
think of VF as a reference to position the real voice and infer-
ences in each sub-speech signal. The Hilbert spectrum based
on HHT has strong signal analysis capability realised by em-
pirical mode decomposition [16] and Hilbert spectral analysis,
especially for non-stationary and non-linear data. Moreover,
HHT is able to resolve frequency accurately and time it pre-
cisely without Heisenberg uncertainty [11], so here, HHT-based
Hilbert spectrum is calculated to track the instantaneous varia-
tion in frequency distribution for all the sub-bands and the orig-
inal data.

Figure 2 illustrates the waveform of the original and de-
composed sub-speech signals, and their Hilbert spectrum for
2-level DT-CWT speech decomposition results. Here, ‘Sub-
speechl’, ‘Sub-speech2’ and ‘Sub-speech3’ separately denote
the decomposed sub-bands speech with frequency from high
to low. Red line represents the upper boundary of VF, namely
0.4 % 10*HZ, and the green line marks the lower one, namely
0.01 * 10*HZ. Visualising from Hilbert spectrum, we can find
that almost all the voice-related information can be located
in the low-frequency sub-band, namely, ‘Sub-speech3’; ‘Sub-
speech2’ and ‘Sub-speech3’ with the high frequency mainly
store the interference information that is related to the unseen
environment, so it is a good implication to separate the noise-
like interference from the raw one. However, simply remov-

1782

ing these high-frequency information might lead to information
loss or incomplete emotional expression. After all, not all the
noises are unrelated to emotion recognition. In contrast, noisy
data can enhance the robustness of the model. Motivated by the
speech augmentation of noise addition, we start employing the
high-frequency sub-bands in the DT-CWT domain to reestab-
lish the noise that is affected by the unseen environment. In
reality, considering that each speech is recorded from different
speakers with variou atmosphere, the reconstructed noise is a
speaker-specific noise, which varies with the individual, scenar-
ios, circumstance, and external equipment, etc. To be specific,
so called speaker-specific noise can be achieved by fusing the
top two high-frequency sub-speeches based on the perfect re-
construction capability of the DT-CWT, as is shown in figure 3.
The final augmented speech can be defined as the superimposi-
tion of the original data and reconstructed noise.

To track the effectiveness of the proposed speech enhance-
ment, we show the waveform and Hilbert spectrum of the
speaker-specific noise, raw and augmented speech in figure 4.
HHTSs’ better local analysing ability in both the time and fre-
quency domain provides an excellent visualisation of emotion
content and noise-inference. Analysed from their waveforms,
we can realise that there is no greater difference in waveform
shape for the original and enhanced speech except for some dif-
ferences in the middle of the speech signal. So the proposed
method can be regarded as a local enhancement algorithm,
which is wise enough to use the self-noise to enhance itself,
avoiding vital features to be polluted. At the same time, voice-
related content is retained very well. Seen from Hilbert spec-
trum representation, noise can just be found in high-frequency
region, and the speaker voice content is globally intact com-
pared to the spectrum of the original data.

2.3. Representations

In our work, three robust acoustic representations are intro-
duced to give a better description of speech emotions, namely
context-based MFCCs [17], SICQ-NSGT [12], and ComParE
features [18].

Context-based MFCCs are the most stable acoustic fea-
tures, which take human perception sensitivity with respect to
frequencies and loudness into consideration. Existing stud-
ies have already validated its excellent representation descrip-
tion [17]. Another acoustic representation is calculated in the
SLCQ-NSGT! domain. SLCQ-NSGT is the enhanced ver-
sion of the constant-Q non-stationary Gabor transform, so it
usually outperforms the ‘classical’ spectrogram for audio sig-
nals [19, 20, 21]. Here, we choose SHICQ-NSGT coefficients as
acoustic representations for the emotion recognition task. Fig-
ure 5 exhibits the context-based MFCCs and SliCQ-NSGT rep-
resentations. Their visual saliency guarantees the features dis-
tinctiveness of emotion expression. Finally, we use our toolkit
openSMILE [22] to extract the large scale temporal and spectral
INTERSPEECH ComParE feature set, which has been proven
to be efficient on the task in [23]. Here, we set the configuration
file as “ComParE2016.conf” for our purposes, and a total 6373
features are extracted from each input speech.

2.4. Model architectures

The aim of this work is to study the speech augmentation
method, so we pay lower attention to the construction of neu-
ral networks. Here, a stable bidirectional-LSTM-attention(Bi-
LSTM/A) model is designed to continue the following audio
augmentation validation experiments. The structure of this
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Figure 2: Waveforms of speech decomposition and their Hilbert spectrum based on HHT: Sub-speech 1, Sub-speech 2 and Sub-speech
3 separately denote the sub-bands with frequency from high to low.
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model is illustrated in Figure 6. A dropout is used to accel-
erate the fitting of the model. More details about this model can
be found in [24, 25]. The bidirectional LSTM without an atten-
tion model is also designed as a comparison model to demon-
strate the effectiveness of attention. Context-based MFCCs
and SliCQ-NSGT representations of the raw and enhanced data
are separately fed into the bidirectional-LSTM-attention and
bidirectional-LSTM model with diverse units to explore the ac-
curacy improvement for the emotion recognition task. Another
robust combination of the ComParE feature set and SVMs is
also employed to test the proposed method.

3. Experiments and Results

3.1. Database

The RAVDESS [26] speech dataset consists of 24 professional
actors (12 female, 12 male), vocalising two lexically-matched
statements in a neutral North American accent sentences.The
speech recordings consist of 8 emotions, including neutral,
calm, happy, sad, angry, fearful, disgust and surprise, Each ex-
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Figure 4: Waveform and HHT Hilbert spectrum of speaker-
specific noise, original and enhanced speech.

pression is produced at two levels of emotional intensity (nor-
mal, strong), with an additional neutral expression. All con-
ditions are available in three modality formats: Audio-only,
Audio-Video, and Video-only. In this work, we just focus on
the emotion recognition task based on Audio-only, and 1440
speech files are included.

3.2. Experimental set-up

In this work, we regard the speaker with different emo-
tion/intensity as an another new speaker, divide the RAVDESS
speech corpus as train, develop and test set according to the
ratio of 4:1:1, and ensure classes balance for each set. Robust
context-based MFCCs, SIICQ-NSGT and ComParE features are
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Figure 6: Illustration of bidirectional-LSTM-attention model

calculated on raw and enhanced data respectively. All these de-
scriptions are fed into the Bi-LSTM-attention, Bi-LSTM and
SVMs models for emotion recognition. All acoustic features
are respectively standardised to zero mean and unit variance be-
fore the training phase. For all experiments, we employ batches
of 60 samples with the Adadelta optimiser for batch gradient
descent. Instead of standardising the number of epochs during
training, we use an early stopping strategy to end training once
accuracy does not improve within 10 epochs. Thus, every model
is potentially trained for a different number of epochs but yields
the best performance. 50 % dropout and batch-normalisation
modules are used to avoid the over-fitting, Hyperbolic tangent
and Sigmoid activation are used for classification results in our
deep learning models. In addition, moderate ComParE fea-
tures are fed into linear kernel SVMs with the complexity of
[le—4,1e—3,...,1e—0] to evaluate the model performance.

3.3. Results and discussion

Table 1 displays the accuracy of different models for emo-
tion recognition based on raw and augmented data. Once
augmented, the emotion recognition performance is evi-
dently improved, the maximum accuracy improvements are
respectively 9.5%, 11.1%, 29%, 5.0% and 4.6% for
MFCC/Bi-LSTM, MFCC/Bi-LSTM/A, SlLICONSGT/Bi-LSTM,
SLICONSGT/Bi-LSTM/A and ComParE/SVM models, hence the
proposed algorithm is effective enough to enhance data, at the
same time avoiding data pollution.

Besides, experimental results indicate that MFCCs-
motivated models can reach greater improvement than
SHCQNSGT-motivated models after data augmentation, but it
seems that SICQNSGT coefficients have stronger ability to
capture the distinguished emotion features because of powerful
signal analysis capability of SIiCQ-NSGT, so they reach rela-
tively higher accuracy. The introduction of an attention mod-
ule brings a further accuracy gain, effectively perfecting our
model for emotion recognition. Luckily, even the robust Com-
ParE/SVM model also achieves 4.6 % increase in accuracy.
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Table 1: Accuracy for different models. Complexity: Units/
Complexity; ‘+’: combination; /A’: with attention module

Accs [%] Accuracy =

Model Complexity ~ Original ~ Augmented

MFCC + Bi-LSTM 100 38.6 39.5

200 32.1 42.6

400 33.6 37.1

800 30.8 36.4

MFCC + Bi-LSTM/A 100 46.0 50.8

200 46.9 56.1

400 41.9 53.0

800 43.4 50.3

SICQNSGT + Bi-LSTM 100 59.5 61.1

200 60.2 61.7

400 44.6 475

800 35.5 38.0

SIICQNSGT + Bi-LSTM/A 100 55.1 58.3

200 56.6 59.4

400 57.6 58.0

800 59.0 64.0

ComParE2016 + SVM e-0 68.8 7.7

e-1 69.2 73.8

e-2 69.6 729

e-3 63.8 64.2

e-4 50.8 52.5

Figure 7 exhibits the maximum accuracy values as well
as their improvement with/without data augmentation for all
architectures. A remarkable accuracy increase occurs on the
MFCC/Bi-LSTM/A model, achieving 9.3 % gain. The best per-
formance is 73.8 %, obtained from the ComParE/SVM model
with 4.2 % increase. In total, all these experiments demonstrate
the effectiveness of our method, and it should be a promising
way to ameliorate speech for the emotion recognition task.

Although we achieve greater performance improvement on
several models for emotion recognition, it is just based on a
single database, so more emotion databases should be tested in
future work. Also, the local features in sub-bands should be
payed more attention to in future acoustic analysis tasks.
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Figure 7: Accuracy improvement for different models.

4. Conclusions

In summary, we have performed an experimental study of
speech augmentation for emotion recognition. Context-based
MFCCs, SliCQ-NSGT, as well as ComParE representations
were calculated to feed the different machine learning emotion-
recognition architectures on original and augmented speech
data. The experimental results have shown the effectiveness of
the proposed method, and it should be recommended to enhance
and enrich speech databases for emotion recognition tasks in the
future.
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