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1 INTRODUCTION

Recently, following years of research, Automatic Speech Recognition (ASR) has achieved major
breakthroughs and greatly improved performance (Amodei et al. 2016; Saon et al. 2016; Xiong
et al. 2016). Plenty of speech-specific intelligent human–machine communication systems, such
as smartphone assistants (e.g., Siri, Cortana, Google Now), Amazon Echo, and Kinect Xbox One,
have started to become part of our daily life. However, one of the central issues that limits their
performance in everyday situations is still their performance degradation due to ambient noise
and reverberation that corrupt the speech as captured by microphones.
According to the spectral distribution, the noises (including reverberation) can be generally

grouped into stationary noise (constant with respect to time) or non-stationary noise (i.e., vary-
ing with time, such as transient sound events, interfering speakers, and music). Provided that it is
possible to reliably detect instants of the absence of the target signal (i.e., the speech signal of inter-
est), short-term stationary additive noise can be adequately tackled with standard, unsupervised
noise reduction signal processing techniques mainly developed in the 1970s and 1980s (Loizou
2013). However, detecting and reducing the effects of non-stationary ambient noise, competing
non-stationary sound sources, or highly reverberant environments, is still very challenging in
practice (Barker et al. 2013, 2015; Kinoshita et al. 2016; Vincent et al. 2016; Yang and Chen 2012;
Yoshioka et al. 2012). To address these issues, a new wave of research efforts has emerged over
the past five years, as showcased in the robust speech recognition challenges such as REVERB and
CHiME (Barker et al. 2013, 2015; Kinoshita et al. 2016; Vincent et al. 2013).

In this research, data-driven approaches based on a supervised machine-learning paradigm have
received increasing attention, and have emerged as viable methods for enhancing robustness of
ASR systems (Maas et al. 2012). The primary objective of these approaches is, by means of learning
from large amounts of training data, to either obtain cleaner signals and features from noisy speech
audio, or directly perform recognition of noisy speech. To this end, deep learning, which is mainly
based on deep neural networks, has had a central role in the recent developments (Geiger et al.
2014c; Qian et al. 2016; Wöllmer et al. 2010a, 2010b). Deep learning has been consistently found
to be a powerful learning approach in exploiting large-scale training data to build complex and
dedicated analysis systems (Zhang et al. 2017), and has achieved considerable success in a variety
of fields, such as gaming (Mnih et al. 2015), visual recognition (Liu et al. 2017; Russakovsky et al.
2015), language translation (Wu et al. 2016), music information retrieval (Schedl et al. 2016), and
ASR (Dahl et al. 2012; Hinton et al. 2012). These achievements have encouraged increasing research
efforts on deep learning with the goal of improving the robustness of ASR in noisy environments.
In this survey, we provide a systematic overview of relevant deep learning approaches that are

designed to address the noise robustness problem for speech recognition. Rather than enumer-
ating all related approaches, we aim to establish a taxonomy of the most promising approaches,
which are categorised by two principles: (i) according to the addressed number of channels, these
approaches can be grouped into single-channel or multi-channel techniques, and (ii) according to
the processing stages of an ASR system, in which deep learning methods are applied, these ap-
proaches can be generally classified into front-end, back-end, or joint front- and back-end techniques
(as shown in Figure 1). We highlight the advantages and disadvantages of the different approaches
and paradigms and establish interrelations and differences among the prominent techniques. This
overview assumes that the readers have background knowledge in noise-robust ASR and deep
learning. However, we provide some key concepts of the raised noise-robust speech recognition
problem and neural networks, e.g., fully connected layers, convolutional layers, and recurrent lay-
ers, for a better overview. For more detailed knowledge of noise-robust ASR systems or deep learn-
ing, the readers can refer to Li et al. (2014) and Goodfellow et al. (2016), respectively. Note that, in
this overview, the term deep neural networks refers to networks including multiple hidden layers.
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Fig. 1. General framework of a speech recognition system divided into front-end and back-end.

Whilst several related surveys on environmentally robust speech recognition are available in the
literature (e.g., Acero (2012), Deng (2011), Gong (1995), Li et al. (2014), Virtanen et al. (2012), and
Yoshioka et al. (2012)), none of these works focuses on the usage of deep learning. The emergence
of deep learning is, however, deemed as one of the most significant advances in the field of speech
recognition in the past decade and thus merits a dedicated survey.
The remainder of this article is organised as follows. In Section 2, we briefly introduce the back-

ground of this overview. In Sections 3 to 5, we comprehensively summarise the representative
single-channel algorithms at the front-end, the back-end, and the joint front- and back-end of
speech recognition systems, respectively. In Section 6, we then review promising multi-channel
algorithms, before drawing our conclusions in Section 7.

2 BACKGROUND

In this section, we briefly describe the environmental noise problem for speech recognition. We
then analyse the drawbacks and limitations of traditional approaches and introduce the opportuni-
ties for deep learning. Finally, we introduce some standard noisy speech databases and evaluation
metrics for performance comparison of the following reviewed deep learning approaches.

2.1 Problem Description

In real-life scenario, the raw speech signal s (t ) is easily corrupted by convolutional noise r (t ) (or
Room Impulse Response [RIR]) and additive noise a(t ) when transmitting through spatial channel.
Thus, the observed distant-talk signal y (t ) at the microphone can be written as

y (t ) = s (t ) ∗ r (t ) + n(t ). (1)

When applying Short-Time Discrete Fourier Transform (STDFT) on the mixed/noisy speech,
the length of RIR T60 should be considered. If it is much shorter than the analysis window size
T , then r (t ) only effects the speech signals within a frame (analysis window). For many applica-
tions (e.g., occurring in typical office and home environment), however, the reverberation timeT60
ranges from 200 to 1,000ms that is much longer than the analysis window size, resulting in an
undesirable influence on the following speech frames. For example, if the duration of a RIR is 1s
(T60) and a feature frame is extracted at every 10ms, one RIR would smear across the following 100
frames. Therefore, this distorted speech in the amplitude spectral domain, can be formulated by
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(see Avargel and Cohen (2007) for more details):

Y (n, f ) ≈
D−1∑
d=0

S (n − d, f )R (d, f ) +A(n, f ), (2)

with an assumption that r (t ) is a constant function. Particularly, R (d, f ) denotes the part of R ( f )
(i.e., STDFT of RIR r (t )) corresponding to a frame delay d . In this case, the channel distortion is no
longer of multiplicative nature in a linear spectral domain—rather, it is non-linear.
Assuming that the phases of different frames, and the speech and noise signals, are non-

correlated for simplification (not the case in practise), the power spectrum of Equation (2) can be
approximated as

|Y (n, f ) |2 ≈
D−1∑
d=0

|S (n − d, f ) |2 |R (d, f ) |2 +A2 (n, f ). (3)

Then, the following relation is obtained in the Mel spectral domain for the kth Mel-filter-bank
output

Ymel (n,k ) ≈
D−1∑
d=0

Smel (n − d,k )Rmel (d,k ) +Amel (n,k ), (4)

where Smel (n,k ) = B[k] · S2 (n, f ) with B = (bk,f ) ∈ RK×F , K is the number of Mel bins, and bk,f
is the weight of the DFT bin f in the kth Mel bin. Rmel (n,k ) and Amel (n,k ) are defined similar to
Smel (n,k ).

To extract the Mel Frequency Cepstral Coefficients (MFCCs) in cepstral domain for ASR, log-
arithms and Discrete Cosine Transform (DCT) are further executed over the above mel spectral
signals, so that

Ydct (n, i ) ≈ Sdct (n, i ) + Rdct (0, i ) +Mdct (n, i ), (5)

where Sdct (n, i ) = C[i]log(Smel (n,k )) with C denoting a discrete cosine transformation matrix
(same definition is for Rdct (0, i ) andMdct (n, i )), and

M (n, i ) = 1 +

∑D−1
d=1 S

mel (n − d,k )Rmel (d,k ) +Amel (n,k )

Smel (n,k )Rmel (0,k )
. (6)

From Equations (1) to (5), it can be found that the clean speech and the mixed/noisy speech have
a highly non-linear correlation in temporal, spectral, power spectral, mel spectral, log mel spectral,
or cepstral domains, which results in a difficulty for noise cancellation.
Furthermore, the time-variant characters of RIR and additive noise (time-invariant additive noise

is beyond the scope of this article) make the task even more challenging. For RIR, many factors
can lead to a change, for instance, the position of the speaker (i.e., the distance and angle between
the speaker and microphone), the size, shape, and material of acoustic enclosure (such as a living
room). For additive noise, it could be an abrupt sound like thunder and barks, side talking, and also
music and driving noise. All these noises are almost unpredictable.

2.2 Deep Learning vs. Traditional Approaches

The ultimate goal of robust ASR systems is to learn well the relationship between noisy speech
and the word predictions, i.e.,

w = f (y), (7)

where y denotes the representation of noisy speech y (t ) andw is the target word. To simplify this
process, we often divide it into two steps conducted at the system front-end and back-end, respec-
tively. At the front-end, speech enhancement (aka speech separation) or feature enhancement is
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applied to improve the quality and intelligibility of the estimated target speech on either signal
level or feature level, so as to obtain the signals as clean as possible. That is,

s (t ) ← ŝ (t ) = fs (y (t )). (8)

At the back-end, model updating is applied to make acoustic models adapt to the new data, i.e.,

w = fm (x̂), (9)

where x̂ indicates the representation from enhance speech or the enhanced representation.
Traditional solutions on the front-end are mainly dominated by unsupervised signal process-

ing approaches over the past several decades. Spectral subtraction (Boll 1979) subtracts an averaged
noise spectrum (magnitude or power spectrum) from the noisy signal spectrum, while keeping the
resultant spectral magnitudes positive. It only affects the spectrum magnitudes, while the spec-
trum phases are obtained from the noisy signal. Wiener filtering (Loizou 2013) adopts stochastic
models and is often implemented in practice using iterative approaches that base new estimates
of the filter on the enhanced signal obtained by the previous iteration’s estimate (Hansen and
Clements 1991). Another popular family of techniques comprises the Minimum Mean Square Er-

ror (MMSE) (Ephraim and Malah 1984) and log-spectral amplitude MMSE (Log-MMSE) Short-Time
Spectral Amplitude (STSA) estimators (Ephraim and Malah 1985). Despite that they are able to
yield lower musical noise, a tradeoff in reducing speech distortion and residual noise needs to be
made due to the sophisticated statistical properties of the interactions between speech and noise
signals (Xu et al. 2015).

Most of these unsupervised methods are based on either the additive nature of the background
noise or the statistical properties of the speech and noise signals. However, they often fail to track
non-stationary noise in real-world scenarios in unexpected acoustic conditions (Xu et al. 2015). Al-
through some supervised machine-learning approaches have been proposed, such as Non-negative
Matrix Factorisation (NMF) (Geiger et al. 2014a; Lee and Seung 1999; Schuller et al. 2010; Weninger
et al. 2012), they struggle to obtain effective representations (aka dictionaries) of noise and speech
in complex and noisy acoustic environments.
Deep learning that is mainly based on Deep Neural Networks (DNNs), however, is well suited to

address such a complex non-linear problem (Goodfellow et al. 2016). The neural node, a basic unit
constituting a network, is analogous to a biological neuron. The value of a node is usually com-
puted as a weighted sum of the inputs followed by a non-linear activation function. Theoretically,
a single node can represent a huge amount of information as long as the numerical resolution
allows. Practically, deep neural networks implement multiple neural network layers (each layer
consists of multiple nodes). As a result, when combining many non-linear activation functions, it
enables the network to learn complicated relationships between the inputs and outputs.
More specifically, typical neural layers frequently employed in deep learning include fully con-

nected layer, convolutional layer, and recurrent layer. Fully conected layer is also know as dense layer
and Multi-Layer Perception (MLP). In speech processing, stacking fully connected layers on the
top of extracted features (e.g., spectrogram) has already shown a great potential to extract high-
level representation for speech recognition (Dahl et al. 2012) via a greedy layerwise unsupervised
pre-training strategy (Hinton and Salakhutdinov 2006).

Convolutional layer is a biologically inspired variant of fully connected layer originally devel-
oped for visual perception tasks (LeCun et al. 1989) and is the elementary layer to construct Con-
volutional Neural Networks (CNN). It employs a small size of two-dimensional (2D) convolutional
kernel “sweep” over a 2D input and delivers a representation of local activations of patterns. In im-
age processing, convolutional layer has been frequently and clearly visualised to effectively extract
the hierarchical features (see Zeiler and Fergus (2014) for more details). This strongly encourages
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its applications to the speech domain, since the time-frequency representation of acoustic signals
can be considered as an image. Besides, the 2D kernel can be modified into a 1D kernel and directly
applied to raw signals. Recent work has shown that the convolutional layer can automatically learn
fundamental frequencies from raw signals (Trigeorgis et al. 2016).
In contrast to the aforementioned feed-forward layers (i.e., fully connected layer and convolu-

tional layer), a recurrent layer (elementary layer for Recurrent Neural Networks [RNNs]) allows
cyclical connections. These connections consequently endow the networks with the capability of
accessing previously processed inputs. However, it cannot access long-term temporal contextual
information, since it suffers from the vanishing gradient problem when training. To overcome this
limitation, the Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) unit and,
most recently, Gated Recurrent Unit (GRU) (Cho et al. 2014) were introduced, which make the
recurrent layer a powerful tool for speech analysis owing to the highly time-varying character of
speech and noise.
All these layer types, especially their stacked layers, provide deep neural networks the ability

to deal with the raised problem of reducing noise and reverberation at the front-end.
At the system back-end, the Hidden Markov Models (HMMs) and Gaussian Mixture Models

(GMMs) were widely used as acoustic models to characterise the distribution of speech a few
years ago. The most common ways include Maximum A Posterior (MAP) (Gauvain and Lee 1994)
estimation and Maximum Likelihood Linear Regression (MLLR) (Leggetter and Woodland 1995).
These techniques have been successfully applied to noise adaptation. In this article, we cannot
enumerate all traditional approaches, which are beyond the scope of this survey. A systematic
overview of traditional approaches on the back-end can be found in Li et al. (2014).

In spite of the success, most of these approaches suffer the significant drawbacks: (i) they are
particularly designed for generative models (e.g., GMM-HMM); (ii) they assume that the adapted
datamatchwith the observed data, which is often not true in practise; and (iii) they fail inmodelling
large-scale data and complex environments.
In recent years, the acoustic model has shifted from generative GMM to discriminative DNN

owing to its powerful capability of representation learning. In this case, traditional approaches
such asMAP do not work anymore. New noise adaptation techniques for the DNN acoustic models
need to be investigated. Besides, with the rise of big data era, it is now feasible to collect huge
amounts of realistic noisy speech via the microphones that are pervasive in the world. Moreover,
the advance of cloud computing makes it possible that the DNN acoustic model with millions of
trainable parameters can be learned from massive noisy data.

2.3 Standard Corpora and Evaluation Metrics

To better compare the effectiveness of various deep learning approaches for noise-robust ASR, we
introduce a set of widely used standard databases (see Table 1) in the ASR community. Among
them, the earliest and most famous databases are the Aurora series developed by the European
Telecommunications Standards Institute (ETSI).
Note that all Aurora databases were artificially simulated, except Aurora 3 (Moreno et al. 2000),

which was recorded in a real noisy-car environment. All Aurora databases were created based on
the clean and small-vocabulary database TIDigits for digit recognition, except Aurora 4 (Pearce and
Picone 2002), which was constructed by corrupting theWall Street Journal (WSJ0) corpus and desi-
gning it for Large Vocabulary Continuous Speech Recognition (LVCSR). All Aurora databases were
mainly corrupted by additive noise, except Aurora 5 (Hirsch and Finster 2005), which was devel-
oped for hand-free speech recognition and simulated by involving RIR obtained in rooms and cars.
Apart from the Aurora databases, more recently developed databases relate to the CHiME series.

All these CHiME databases (from the first to fourth) involve not only additive noise by adding
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Table 1. General Description of Some Standard Evaluation Corpora for Environmentally
Robust Speech Recognition

Dataset based on environments sim./real noise types channels

Aurora-2 (Pearce and Hirsch 2000) TIDigits eight conditions sim. add. (mainly) single

Aurora-3 (Moreno et al. 2000) TIDigits car real add. (mainly) single

Aurora-4 (Pearce and Picone 2002) WSJ0 str/tra/car/bab/res/air sim. add. (mainly) dual

Aurora-5 (Hirsch and Finster 2005) TIDigits rooms and cars sim. add. & con. single

CHiME-1 (Barker et al. 2013) Grid, WSJ0 home sim add. & con. dual

CHiME-2 (Vincent et al. 2013) Grid, WSJ0 home sim add. & con. dual

CHiME-3 (Barker et al. 2015) WSJ0 bth/bus/caf/ped/str real & sim add. & con. six

CHiME-4 (Vincent et al. 2016) WSJ0 bth/bus/caf/ped/str real & sim add. & con. six

REVERB (Kinoshita et al. 2016) WSJCAM0 ambient noise real & sim add. & con. eight

AMI (Carletta et al. 2005) - meeting real con. (mainly) four/eight

Voice Search (Schalkwyk et al. 2010) - voice search sim. add. & con. dual

These corpora are either realistically recorded or artificially simulated based on certain clean databases.
Additive and/or convolutional noises are collected in various environments.

various ambient noises but also convolutional noise. More specifically, the first and second CHiME
databases (Barker et al. 2013; Vincent et al. 2013) include two tracks: one is for small vocabulary
digit recognition based on Grid database, and the other is for LVCSR based on WSJ0; whereas the
third and fourth CHiME databases (Barker et al. 2015; Vincent et al. 2016) only include the data for
LVCSR. Moreover, the third and fourth CHiME databases considered more realistic noisy speech
for evaluation and applied a microphone array to obtain multi-channel signals.
Other frequently used databases include REVERB (Kinoshita et al. 2016), AMI (Carletta et al.

2005), and Voice Search (Schalkwyk et al. 2010). Particularly, the AMI and Voice Search contain
hundreds of recordings of spontaneous speech in real-life scenarios.
Overall, the standard databases were developed for scenarios from small to large vocabularies,

from artificial simulation to realistic recording, from additive noise only to convolutional noise
extended, and from single channel to multiple ones. All these development trends enable the ASR
systems to approach a more realistic application scenario in the wild.
The de facto standard metric to evaluate the performance of ASR systems is Word Error Rate

(WER) or Word Accuracy Rate (WAR). However, to measure the performance of the front-end
techniques such as speech enhancement, other intermediate subjective and objective metrics are
also frequently employed. Specifically, typical objective metrics include segmental Signal-to-Noise

Ratio (segSNR) (Hansen and Pellom 1998; Quackenbush et al. 1988), distance measures, Source-to-
Distortion Ratio (SDR) (Vincent et al. 2006), and Perceptual Evaluation of Speech Quality (PESQ)
(P.862 2001). More detailed definitions and explanations of these objective metrics can be found
in Hu and Loizou (2008). Although no research has proved that a good value of these intermedi-
ate metrics for enhancement techniques necessarily leads to a better WER or WAR, experimental
results have frequently shown a strong correlation between them. For example, in Weninger et al.
(2015) the authors conducted speech recognition on the enhanced speech and found that SDR and
WER improvements are significantly correlated with Spearman’s rho= 0.84 in single-channel case,
and Spearman’s rho = 0.92 in two-channel case, evaluated on the CHiME-2 benchmark database.

3 FRONT-END TECHNIQUES

From Section 3 to 5, we review some key techniques, which are concisely summarised and com-
pared in Table 2. The techniques at the front-end often relate to speech enhancement, source
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separation, and feature enhancement. Both speech enhancement and source separation attempt to
obtain the estimated temporal signals as clean as possible, which can certainly be used for any
speech applications including ASR. Feature enhancement, however, mainly focuses on purifying
the derived features, such as MFCCs, which are largely designed for specific intelligent tasks (i.e.,
ASR here). In this overview, we treat all three techniques as enhancement techniques, as they often
share the same or similar algorithms.
When applying deep learning approaches to the environmentally robust speech recognition sys-

tems, it is particularly important to effectively and efficiently represent the information of speech
signals, since training DNNs is computationally intensive. In many cases, two-dimensional repre-
sentations provide speech data in an effective form and can be obtained by applying a series of op-
erations to the raw signalsy (t ), including Short-Time Fourier Transform (STFT,Y (n)), square mag-
nitude (|Y (n) |2), Mel-frequency filterbank (Ymel (n)), log Mel-frequency filterbank (Y loдMel (n)),
and even Discrete Cosine Transform (DCT, Ydct (n)) (see Section 2.1 for more details). For a better
introduction of related approaches, we separately term the data spaces after each operation as tem-

poral, magnitude-spectral, power-spectral, mel-spectral, log-Mel-spectral, and Mel-cepstral domains.
Enhancement techniques can theoretically be applied to each domain, i.e., from the raw signals in
the temporal domain to the MFCCs in the cepstral domain.
Deep learning-based front-end techniques are normally designed in a supervised manner. For a

better review, we set the input of a learning model as y that is the representation extracted from
noisy speech and the target as x. Based on how the training target x is obtained, the techniques can
be categorised into (i) mapping-based methods, where x is the representation, straightforwardly
extracted from clean speech, or (ii)masking-basedmethods, where x is a mask calculated between
clean and noisy speech.

3.1 Mapping-Based Deep Enhancement Methods

The mapping-based methods aim to learn a non-linear mapping function F from the observed
noisy speech y (t ) into the desired clean speech s (t ), as

y (t )
F−→ s (t ). (10)

Owing to the fast-variation problems of raw speech signals and the high computational complexity
they require, such a learning strategy is often applied to the data in the spectral and cepstral
domains rather than the temporal domain.
To learn F , the neural networks are trained to reconstruct the target features x (extracted from

the clean speech s (t )) from the corresponding input features y (extracted from the corrupted
speech y (t )). The parameters of neural networks (models) θ are determined by minimising the
objective function of the Mean Squared Error (MSE):

J (θ ) =
1

N

N∑
n=1

‖F (yn ) − xn ‖2, (11)

where ‖ · ‖2 is the squared loss and n denotes the frame index. After the estimated clean features
x̂n = F (yn ) are obtained, they will be then reversed back to the time-domain signals ŝ (t ) by using
the phase information from the original noisy speech and evaluated by the objective measures as
aforementioned.

3.1.1 Based on Stacked AutoEncoder or Deep BolzmannMachine. Specifically, in 2013, a Stacked
AutoEncoder (SAE) was employed to map noisy speech to clean speech in the Mel-spectral do-
main (Lu et al. 2013). Given an AutoEncoder (AE) that includes one non-linear encoding stage and
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one linear decoding stage for real valued speech as

h(y) = д(W1y + b)

x̂ =W2h(y) + b,
(12)

whereW1 andW2 are the weight matrices of encoding and decoding, b is the bias, and д denotes
the activation function. The training pair for the first AE is y and x, and then the training pair
for the next AE will be h(y) and h(x) if weight matrices of the encoder and decoder are tied,
i.e.,W1 =WT

2 =W. The empirical results indicate that SAE-based enhancement methods notably
outperform the traditional methods like MMSE for enhancing speech distorted by factory and car
noises (Lu et al. 2013).

Analogously to this, another successful work has been shown in Xu et al. (2014b), where a
Deep Bolzmann Machine (DBM) was utilised to estimate the complex mapping function. In the
pre-training stage, noisy speech was used to train Restricted Bolzmann Machines (RBMs) layer by
layer in a standard unsupervised greedy fashion to obtain a deep generative model (Hinton and
Salakhutdinov 2006); whereas, in the fine-tuning process, the desired clean speech was set as the
target by minimising the objective function as Equation (22). Similar research efforts were also
extensively made on the log magnitude (Han et al. 2015) and the log-Mel-spectral domains (Xu
et al. 2015), respectively.
Motivated by the fact that the same distortion in different frequency bands has different effects

on speech quality, a weighted SAE was proposed in Xia and Bao (2013) and showed positive per-
formance for denoising. In detail, a weighted reconstruction loss function is employed to train SAE
on the power spectrum as

J (θ ) =
1

N

N∑
n=1

λw ‖F (yn ) − xn ‖2, (13)

where λw is a weight for thewth frequency band.
Further, related approaches were also shown in Ishii et al. (2013) and Feng et al. (2014), where the

authors utilised Stacked Denoising AutoEncoders (SDAEs) to enhance the Mel filterbank features
corrupted by either additive or convolutional noise for ASR. The networks were pre-trained with
multi-condition data and fine-tuned by mapping the noisy speech to the clean speech. Experimen-
tal results indicate that the SDAE-based mapping method remarkably outperforms the spectral
subtraction method in ASR.

3.1.2 Based on LSTM-RNN. For sequence-based pattern recognition, context information is
considered to be vitally important (Hochreiter and Schmidhuber 1997). However, the aforemen-
tioned denoising networks (i.e., SAE, DBM, and SDAE) are considered to be less capable in this re-
spect, although certain naive solutions for context-dependent processing have been applied, such
as expanding several sequential frames as a long vector input (Xu et al. 2014b). RNNs, especially
the LSTM-RNNs, have been frequently demonstrated to be highly capable of capturing the context
information in a long sequence (Graves 2013; Wöllmer et al. 2010a).

In this light, Maas et al. (2012) introduced RNNs to clean distorted input features (i.e., MFCCs).
Specifically, the model was trained to predict clean features when presented with a noisy input
frame by frame. This enhancement model has been shown to be competitive with other DNN-
based mapping models at various levels of SNR when evaluated by ASR systems. Following from
this work, Wöllmer et al. (2013) further proposed to use LSTM-RNNs to handle highly non-
stationary additive noise, which was then extended to coping with reverberation in Weninger
et al. (2013, 2014a, 2014c) and Zhang et al. (2014, 2016). With the help of LSTM-RNN, the speech
recognition systems performmuch better than the ones without LSTM-RNNwhen decoding noisy
speech (Weninger et al. 2013, 2014a, 2014c; Zhang et al. 2014).
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3.1.3 Based on CNN. Owing to the capability to capture the inherent representations embed-
ded in the spectro-temporal feature space or in the raw signals, CNNs have attracted increasing
interest in recent years (Amodei et al. 2016; Sainath et al. 2015). For image restoration and further
image processing tasks, deep convolutional encoder-decoder networks were proposed in Mao et al.
(2016) and delivered promising performance. This network was further introduced for speech en-
hancement (Park and Lee 2016), where the time-frequency spectrum (spectrogram) is viewed as
an image. Specifically, the encoder network includes multiple convolutional layers to discover the
primary information from the spectrum, and the decoder network is composed of a hierarchy of
decoders, one corresponding to each encoder, for compensating the details. To have suitable er-
ror back-propagation to the bottom layers and to pass important information to the top layers,
symmetrical links between convolutional and de-convolutional layers are added by employing
skip-layer connections.
However, one main drawback of the widely used spectral or cepstral representations is discard-

ing of potentially valuable information, such as phase. When recovering the speech, the noisy
phase spectrum is straightforwardly applied in constructing the enhanced speech, even though it
may suffer from distortion.
Most recently, a novel network structure, namely WaveNet (Oord et al. 2016), was announced

to synthesise natural speech. It takes a series of small causal and dilated convolutional layers
with exponentially increasing dilation factors, which contributes to a receptive field growth that
is exponential with respect to depth and a significant reduction of the computational complexity.
This provides an opportunity to directly map the noisy speech to clean speech in temporal domain,
which is supposed to retain the complete speech information (including phase). Two exemplary
works are shown in Qian et al. (2017) and Rethage et al. (2017). Particularly in Qian et al. (2017),
an explicit prior model that learns the conditional distribution of speech samples for clean speech
is further incorporated with WaveNet to regularise the enhanced speech to be more speech-like.
To further refine the model enhancement performance, adversarial training has recently at-

tracted increasing attention. This training algorithm implements two networks, i.e., one generative
network (G) and one discriminative network (D), in a cascaded network structure. The generative
network tries to map the noisy speech into the clean speech so as to fool the discriminative net-
work, whereas the discriminative network aims to distinguish whether its inputs come from the
enhanced speech (False) or the clean speech (True). Therefore, the two networks play a minimax
game and are optimised by

min
G

max
D

V (D,G ) = Ex∼pdata (x)[log(D (x))] + Ex̂∼pdata (x̂)[log(1 − D (G (y)))]. (14)

The adversarial training strategy was examined in Pascual et al. (2017) and Michelsanti and Tan
(2017) and was found to perform superior to other traditional approaches, such asWiener filtering.

3.1.4 Brief Discussion. The above reviewed works reflect a trend that the employed repre-
sentations for enhancement have gradually moved from cepstral domain into temporal domain,
mainly thanks to (i) the powerful capability of deep learning to automatically extracted effective
representations from raw data that ideally retain the complete information compared with the
manually extracted features like MFCCs, (ii) the advance of novel architecture of neural networks
(e.g., dilated CNN (Oord et al. 2016)) that dramatically reduce the computational load, and (iii) the
development of cloud computing that makes it possible to handle such a task.
They also reflect another trend relating to the network training strategy, which starts to

shift from a traditional way with a single network to an adversarial way with two networks
(Goodfellow et al. 2014). The adversarial training strategy regards the enhancement process
as an image generation process, with the aid of a discriminative network to enhance the
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generative quality of the generative network. With recent rapid development of GAN in machine
learning (Creswell et al. 2017), it can be expected that further improvements will be achieved in
speech/feature enhancement in the future.
However, while many works simply regard the spectrogram as a traditional visual image, few

works specifically take their differences into account. Traditional visual images are locally corre-
lated, i.e., nearby pixels are likely to have similar intensities and colours, whereas the spectrograms
often include harmonic correlations that spread along frequency axis while local correlation may
be weaker. Therefore, more efforts are required towards this direction.

3.2 Masking-Based Deep Enhancement Methods

Different from the mapping-based methods, masking-based methods aim to learn a regression
function from a noisy speech spectrum Y (n, f ) to a Time-Frequency (T-F) maskM (n, f ). That is,

Y (n, f )
F−→ M (n, f ). (15)

3.2.1 Masks. Two most commonly used masks in the literature include binary-based
masks (Wang 2005) and ratio-based masks (Srinivasan et al. 2006). Typical binary-based masks
often refer to Ideal Binary Mask (IBM), where a T-F mask unit is set to 1 if the local SNR is greater
than a threshold R (indicating clean speech domination) or 0 if otherwise (indicating noise domi-
nation). That is,

Mb (n, f ) =

{
1, if SNR (n, f ) > R,
0, otherwise,

(16)

where SNR (n, f ) denotes the local SNR within the T-F unit at the frame index n and the frequency
bin f . Hence, the IBM is a binary matrix. Typical ratio-based masks often indicate the so-called
Ideal Ratio Mask (IRM), where a T-F mask unit is assigned by the soft ratio of the clean speech and
the noisy (mixture) speech, as follows:

Mr (n, f ) =
Sα (n, f )

Sα (n, f ) + N α (n, f )
, (17)

where S (n, f ) and N (n, f ) are the magnitudes of clean speech and noise in the T-F domain, re-
spectively, and α is a warping factor of the magnitudes to differentially affect the sharpness of the
mask or the dynamic ranges of the features. Specifically, for example, if α=2/3, 1, or 2, the IRM
is calculated from an “auditory,” magnitude, or power spectrum, respectively. When α = 2, the
IRM is closely related to the Wiener filter and can be viewed as its instantaneous version. From
Equations (16) and (17), it can be seen that IRM-based approaches could deliver a less distorted
enhanced speech, while it could potentially involves much interference (Grais et al. 2016).
Wang andWang (2013) first introduced DNNs to perform IBM estimation for speech separation,

and reported large performance improvement over non-DNN-basedmethods. Subsequently,Wang
et al. (2014) compared a variety of masks and indicated that ratio masking (e.g., IRM) is superior to
binary masking (e.g., IBM) in terms of objective intelligibility and quality metrics. This conclusion
was further supported by the work in Narayanan and Wang (2013), where the obtained results
suggested that IRM achieves better ASR performance than IBM. Further, motivated by the advan-
tages and disadvantages of IBM and IRM, Grais et al. (2016) combined the IBM- and the IRM-based
enhanced (separated) speech by another neural network to exploit the compensation between two
approaches.
Rather than estimating the masks in the T-F domain, the masking-based approaches were also

successfully applied to a reduced feature space—Mel-frequency domain (Narayanan and Wang
2013; Weninger et al. 2014b) and log-Mel-frequency domain (Weninger et al. 2014) that have fre-
quently been proven to be effective for ASR in deep learning. The experimental results inWeninger
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et al. (2014b) showed that the masking-based approaches in the Mel-frequency domain perform
better than the ones in the T-F domain in terms of SDR.
Further, another trend in masking-based approaches is replacing DNNs with LSTM-RNNs as

the mask learning model (Weninger et al. 2014, 2014b, 2015), since LSTM-RNNs have shown
to be capable of learning the speech and noise context information in a long temporal range
thus also often being able to model events that appear non-stationary in the short term. The re-
search efforts (Weninger et al. 2014b) have demonstrated that LSTM-RNNs can notably outperform
DBM/SAE alternatives in the mask estimation for source separation.
However, both the IBM and IRM-based approaches for calculating the target masks simply ig-

nore the distorted phase information, even though it has been shown to be helpful for speech
enhancement (Paliwal et al. 2011). For this reason, Erdogan et al. (2015) proposed a Phase-Sensitive
Mask (PSM) that is calculated by

Mp (n, f ) =
|S (n, f ) |
|Y (n, f ) |cos (θ ), (18)

where θ is the difference between the clean speech phase θ s and the noisy speech phase θn , i.e.,
θ = θ s − θn . The experimental results on CHiME-2 database show that it outperforms the phase-
nonsensitive approaches.
Note that PSM does not completely enhance reverberant speech, since it cannot completely

restore the phase. For this reason, Williamson and Wang (2017b) further developed this approach,
naming it complex IRM (cIRM). It is defined as

Mc (n, f ) =
|S (n, f ) |
|Y (n, f ) | e

j (θ s−θy ) . (19)

Therefore, cIRM can be regarded as the IRM in the complex domain, while PSM corresponds to the
real component of the cIRM. Both two phase-based masks were demonstrated to be more effective
than normal IRMs in suppressing the reverberated noise in Williamson and Wang (2017b).

3.2.2 Objective Functions and Training Strategies. In the neural network training stage, given
the input y from the T-F domain of mixed noisy signalsY (n, f ) and the target x from the calculated
T-F mask M (n, f ), the parameters of neural networks θ are determined by the so-called Mask

Approximation (MA) objective function. That is, it attempts to minimise the MSE between the
estimated mask and the target mask as follows:

J (θ ) =
1

N

N∑
n=1

‖F (yn ) −M (n, f )‖2, (20)

where ‖ · ‖2 is the squared loss, n denotes the frame index, and F (yn ) is restricted to the range
[0,1].
In the test stage, to filter out the noise, the estimated mask M̂ (n, f ) = F (yn ) is sequentially

applied to the spectrum of the mixed noisy signal y by

x̂n = yn ⊗ M̂ (n, f ), (21)

where ⊗ denotes the elementwise multiplication. After that, it transforms the estimated clean
spectrum x̂ back to the time-domain signal ŝ (t ) by an inverse STFT.

Apart from the MA-based objective function, more and more studies have recently started to
use Signal Approximation (SA) objective functions (Huang et al. 2014, 2015; Weninger et al. 2014b).
Such an alternative straightforwardly targets minimising the MSE between the estimated clean
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spectrum x̂ = y ⊗ M̂ (n, f ) and the target clean spectrum x by

J (θ ) =
1

N

N∑
n=1

‖yn ⊗ M̂ (n, f ) − xn ‖2. (22)

This is indeed similar to the objective function used for the mapping-based methods (cf. Sec-
tion 3.1). Employing the SA-based objective function was empirically examined to perform better
than the MA-based one for source separation (Weninger et al. 2014b). Furthermore, the conclu-
sions found inWeninger et al. (2014b) andWang andWang (2015) indicate that combining the two
objective functions (i.e., MA and SA) can further improve the speech enhancement performance
in both the magnitude and the Mel-spectral domains.
Due to the importance of phase information as previously mentioned, Weninger et al. (2015)

took the phase information in the objective function, which is called Phase-sensitive SA (PSA).
Specifically, the network does not predict the phase but still predicts a masking. However, in the
objective function (cf. Equation (22)), the terms of yn and xn are in the complex domain, making
the network learn to shrink the mask estimates when the noise is high (Weninger et al. 2015).

Additionally, a multi-task learning framework was proposed in Huang et al. (2014, 2015) to
jointly learnmultiple sources (i.e., speech and noise) and themask simultaneously. The assumption
behind this idea is that the relationship between noise and its caused speech distortion could be
learnt and help for estimating the clean speech. The experimental results have shown that such a
joint training framework is superior to the isolated training way (Huang et al. 2014).

Although the masking-based approaches were initially designed for removing additive noise,
recent research has showed that they are capable of eliminating convolutional noise as well
(Erdogan et al. 2015; Weninger et al. 2014, 2015).

4 BACK-END TECHNIQUES

The back-end techniques are also known as model-based techniques. They leave the noisy ob-
servation unchanged and instead let the neural networks automatically find out the relationship
between the observed noisy speech and the phonetic targets. Compared with the aforementioned
front-end techniques, a drawback of the back-end techniques is that they have to change the pa-
rameters, or even structures, of a previously trained Acoustic Model (AM).
Early works focus on the improvement of the model structure to make it more robust to recog-

nise noisy speech. The most popular approaches involve with a combination of DNNs and HMMs,
such that they take advantage of neural networks for discriminative classification and HMM for
context learning. A tandem structure is one typical approach proposed in Sharma et al. (2000). It
utilises the neural networks to predict phonemes and explicitly considers the phoneme predic-
tion as a discriminative feature and combines it with original features for HMM to make a final
prediction.
Multi-streamHMM architecture (Geiger et al. 2014c) is another popular approach to incorporate

DNN with traditional GMM-HMM model. Specifically, given the HMM emission state s and the
input vector y, at every time frame n, the double-stream HMM has access to two independent
information sources, pG (yn |sn ) and pL (yn |sn ), the acoustic likelihoods of the GMM and the RNN
predictions, respectively. In particular, the RNN-based AM is discriminatively trained to generate
framewise phone predictions. The double-stream emission probability is computed as

p (yn |sn ) = pG (yn |sn )λpL (yn |sn )1−λ , (23)

where the variable λ ∈ [0, 1] denotes the stream weight. This approach combines GMM and DNN
to leverage the reliable adaptation performance of the former and high quality classification
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Table 2. A Summary of Representative Single-Channel Approaches Based on Deep Learning
for Environmentally Robust Speech Recognition

stage approaches typical publications advantages disadvantages

fr
on

t
(m

ap
pi
n
g-
ba
se
d)

MFCC (Feng et al. 2014; Maas et al. 2012; Weninger
et al. 2013; Wöllmer et al. 2013; Zhang et al.
2014)

low dimension, require less
computational load

lose much information, (almost)
irreversible to raw signals

(log) Mel (Ishii et al. 2013; Lu et al. 2013; Weninger et al.
2014a, 2014c)

low dimension, require less
computational load

lose some information, (almost)
irreversible to raw signals

(log/power) mag. (Han et al. 2015; Park and Lee 2016; Xu et al.
2014c, 2015)

invertible to the audio signal high dimension, require high
computational load, each element
is equally important

temporal (Qian et al. 2017; Rethage et al. 2017) retain the complete information large data size, require heavy
computational load

fr
on

t
(m

as
ki
n
g-
ba
se
d)

IBM (Grais et al. 2016; Wang et al. 2014; Wang and
Wang 2013)

little interference much magnitude distortion

IRM (Grais et al. 2016; Huang et al. 2015;
Narayanan and Wang 2013; Wang et al. 2014;
Weninger et al. 2014b)

little magnitude distortion much interference

PSM (Erdogan et al. 2015) less phase distortion and little
interference

do not restore the complete phase
information

cIRM (Williamson and Wang 2017a) learn a complete relationship
between noisy and clean speech
for both magnitude and phase

relative complex to compute

——————————————————————————————————————————————————————————————————————————————————

MA (Narayanan and Wang 2013; Wang and Wang
2013; Weninger et al. 2014b)

most straightforward way no enhanced phase

SA (Erdogan et al. 2015; Grais et al. 2016; Huang
et al. 2015)

directly optimise the objective no enhanced phase

PSA (Weninger et al. 2015) considered phase information
when predicting mask

ba
ck

tandem

double-stream

(Sharma et al. 2000; Wöllmer et al. 2009)

(Geiger et al. 2014c; Weninger et al. 2014c)

⎫⎪⎬
⎪
⎭

explicitly make use of
discriminative features

⎫⎪⎬
⎪
⎭
HMM model dependent

hybrid (Geiger et al. 2014d)

multi-condit. train. (Seltzer et al. 2013; Wang and Wang 2013) straightforward and very efficient require many data in different
noisy scenarios

model adapt. (Mirsamadi and Hansen 2015) flexible to different noisy
environments

require a relatively large amount
of adaptation data, otherwise easy
overfitted

NAT (Karanasou et al. 2014; Seltzer et al. 2013; Yu
et al. 2015)

easy to be implemented require another disassociated
model to estimate noise and
cannot be optimised jointly

dynamic NAT (Xu et al. 2014a) more efficient to deal with
non-stationary noise

more efforts to estimate noise

multi-task train. (Chen et al. 2015; Giri et al. 2015) exploit the clean-sensitive speech could lose some discriminative
features

jo
in
t

re-training (Weninger et al. 2013, 2014a) no need to change the structure of
acoustic model

do not guarantee a better speech
recogniser since the two nets are
optimised by different metrics

joint (Gao et al. 2015; Lee et al. 2016, 2017; Mimura
et al. 2016; Ravanelli et al. 2017; Wang and
Wang 2016)

exploit the complementary of
enhancement networks and
speech recognition networks

tricky to combine the two
networks

end-to-end (Amodei et al. 2016; Qian et al. 2016) automatically distil the salient
features for speech recognition
from raw noisy speech (or
low-level features), so it reduces
the information loss

require a large amount of training
data and heavy computational
load

Those methods are summarised at different ASR processing stages (front-end, back-end, and joint front- and back-end).

                                                                                                



Deep Learning for Environmentally Robust Speech Recognition 49:15

performance of the latter. In particular, when setting λ to 0, the structure is known as hybrid

NN/HMM model, where only the likelihoods of the NN predictions are employed for HMMs.
Recently, owing to the capability of LSTM-RNN in learning long-term dependence, the fre-

quently used fully connected layers in DNN have been shifted to LSTM layers in tandem (Wöllmer
et al. 2009), double-stream (Geiger et al. 2014c), or hybrid structures (Geiger et al. 2014d).

One main drawback of the combined NN/HMM structures is that it highly depends on the HMM
model that, nevertheless, is gradually losing its ground in speech recognition and being replaced
by the rapidly developed DNN model only (Amodei et al. 2016). Therefore, HMM-independent
approaches are more than necessary than ever before. The widely used approach comes to multi-

condition training (Seltzer et al. 2013). In doing this, various acoustic variations caused by different
noises are provided in the training process, reducing the acoustic distribution mismatch between
the training and the test speech. However, it requires a large amount of data in various noisy
conditions, which is rarely the case in practise.
To release the large-data-size requirement and make the model become flexible, another com-

mon way is model adaptation, which aims to modify the parameters of a pre-trained AM to com-
pensate the acoustic distribution mismatch. However, modifying the entire weights of the neural
networks (AM)with small adaptation data easily leads to overfitting and results in noise-dependent
parameter sets (Mirsamadi and Hansen 2015). Alternatively, a part of neural network parameters
can be modified. For example, the authors of the work (Mirsamadi and Hansen 2015) added an
extra layer with linear activations to the input layer, the hidden layers, or the output layer of
neural networks for model adaptation, which contributes to a considerable system robustness in
environmentally noisy conditions.
Rather than forcing the pre-trained AM to adapt to various noisy conditions, an alternative

approach aims to let the network-based AM be informed about the noise information (or acoustic
space information (Giri et al. 2015)) when training, which is often termed as Noise-Aware Training
(NAT) (Seltzer et al. 2013). In this case, a noise estimation n̂ presented in the signal serves as an
auxiliary input and is incorporatedwith the original observation input y, i.e., [y, n̂]. In this way, the
DNN is being given additional cues to automatically learn the relationship between noisy speech
and noise, which is beneficial to predict phonetic targets (Seltzer et al. 2013). Experimental results
on the “Aurora-4” database show that the NAT-based AM is quite noise robust.
Therefore, the key point is changed to how to represent the noise information. Early works

implement traditional signal processing approaches, such as MMSE, and estimate the noise over
each sentence. Recently, a more general way to represent noise is employing i-vectors (Dehak et al.
2011), which were originally developed for speaker recognition. The i-vector can be calculated
either from the hand-crafted features such as commonly used MFCCs (Karanasou et al. 2014) or
from the automatically extracted bottleneck representations by DNN (Yu et al. 2015); and either
from the raw noisy features or from the enhanced features, e.g., Vector Taylor Series (VTS) (Yu
et al. 2015).
Most of these studies assume that the noise is stationary within an utterance, so that the ob-

tained noise estimation or i-vector can be applied to the whole utterance. Nevertheless, this is
not always the case in practise. To address this issue, dynamic NAT was introduced in Xu et al.
(2014a), where the authors used masking-based approaches (cf. Section 3.2) to estimate the noise
that varies along time. This approach performs more efficient especially for non-stationary noise,
whereas it requires an extra DNN for noise estimation.
Apart from these approaches, amulti-task learning based AM has attracted increasing attention.

For example, the work done in Giri et al. (2015) and Chen et al. (2015), respectively, introduced
similar multi-task learning architectures but different network types (i.e., one is a feed-forward
DNN and the other one is a LSTM-RNN) for noisy speech recognition, where the primary task is
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the senone classification and the augmented task is reconstructing the clean speech features. In
these architectures, the objective function is calculated by

J (θ ) = λEc + (1 − λ)Er , (24)

where Ec and Er indicate the senone classification error and the clean feature reconstruction error,
respectively. The underlying assumption of this approach is that the representations that are good
for producing clean speech should be easier to be classified.

5 JOINT FRONT- AND BACK-END TRAINING TECHNIQUES

Most research efforts on flighting with the environmental noise in the past few year were sepa-
rately made on the system front-end or back-end. That is, speech/feature enhancement and speech
recognition are often designed independently, and, in many cases, the enhancement part is tuned
according to the metrics such as segSNR, SDR, and PESQ, which are not directly correlated with
the final recognition performance.
To address this issue, a straightforward way is to employ the enhanced speech obtained in the

front-end to re-train the pre-trained AM in the back-end (Weninger et al. 2013). This simply re-
mains everything unchanged but a further re-training process on the AM.
A more sophisticated joint DNN structure was proposed in Lee et al. (2016, 2017), where the au-

thors concatenated two independent pre-trainedDNNs. The first DNNperforms the reconstruction
of the clean features from noisy features augmented by a noise estimation. The second DNN at-
tempts to learn themapping between the reconstructed features and the phonetic targets (Lee et al.
2016). Then, join the two individual networks as one and further fine-tune the network parameters
together. Compared with the re-training strategy, the joint neural networks could learn more dis-
criminative representations for speech recognition when reconstructing the clean features from
the noisy ones by feature enhancement in the front-end.
Furthermore, the work done in Narayanan and Wang (2014) even left out the pre-training pro-

cess and directly concatenated a DNN-based speech separation front-end and a DNN-based AM
back-end to build a large neural network and jointly adjusted all of the weights. In doing this, the
enhancement front-end is able to provide enhanced speech desired by the acoustic model, and the
acoustic model can guide the enhancement front-end to produce more discriminative enhance-
ment. In other words, the linguistic information contained in the acoustic models can flow back to
influence the enhancement front-end at the training stage. Similar work was further done in Gao
et al. (2015), Mimura et al. (2016), and Wang and Wang (2016).

Despite the considerable effectiveness of such joint training frameworks, the enhancement pro-
cess and the speech recognition process suffer from a uni-directional communication. To this end,
a novel architecture was proposed in Ravanelli et al. (2017). It jointly optimises the enhancement
network and speech recognition network in a parallel way rather than a cascaded way; the activa-
tions of the hidden layer of each network will be mutually concatenated as new inputs of their next
hidden layer. Thus, all the components of two networks are jointly trained and better cooperate
with each other.
More recently, an end-to-end architecture has attracted dramatic attention and shown great

promise in the latest ASR systems (Amodei et al. 2016; Sainath et al. 2015). Its central idea is to
jointly optimise the parameters of the networks at the front-end that automatically learn the in-
herent representations from low-level features/signals for the task at hand and the networks at
the back-end that provide final predictions. For noisy speech recognition, a quite recent and well-
developed framework has been reported in Qian et al. (2016), where two tasks were evaluated: the
Aurora-4 task with multiple additive noise types and channel mismatch and the “AMI” meeting
transcription task with significant reverberation. In this framework, a variety of very deep CNNs
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with many convolutional layers were implemented, and each of them is followed by four fully
connected layers and one softmax output layer for senone prediction. Compared with DBMs, the
CNNs have the advantages (Qian et al. 2016): (1) they are well suited to model the local correla-
tions in both time and frequency in speech spectrogram and (2) translational invariance, such as
the frequency shift due to speaker or speaking style variations, can be more easily captured by
CNNs. The reported results on the AMI corpus by using the proposed end-to-end framework is
much higher than the results of traditional DBMs and are competitive to the LSTM-RNN-based
AM, and the results on Aurora-4 beat any other published results on this database, even without
performing any speech and feature enhancement approaches.

6 MULTI-CHANNEL TECHNIQUES

Microphone arrays andmulti-channel processing techniques have recently played an increasingly
significant role in the development of robust ASR (Barker et al. 2015; Kinoshita et al. 2016). A
central approach is acoustical beamforming, i.e., spatio-temporal filtering that operates on the out-
puts of microphone arrays and converts them to a single-channel signal while amplifying the
speech from the desired direction and attenuating the noise coming from other directions. The
beamformer output is often further enhanced by a microphone array post-filter (Marro et al. 1998;
McCowan and Bourlard 2003). After that, the back-end techniques for single-channel speech can
be applied to this enhanced data for speech recognition.
With the rapid development, deep learning has emerged as a powerful tool to evolute the tradi-

tional methods. In the following, we separately discuss the latest deep learning approaches either
in a supportiveway to assist traditional beamforming methods (a well-known survey can be found
in Van Veen and Buckley (1988)) and post-filtering methods in the front-end or an independentway
to address the multi-channel speech recognition in a joint front and back-end. Note that we do not
summarise the back-end techniques in this section, since it shares the same techniques with the
ones for single channels, as mentioned. The reviewed techniques are summarised and compared
in Table 3.

6.1 Front End: NN-Supported Beamformers and Post-Filters

Beamformers in general require a Direction-Of-Arrival (DOA) estimate for the target signal. In
Delay-and-Sum (DS) beamforming, which is one of the simplest approaches and applies a fixed
delay operation to align the signals of the different microphones before summing them, so as to
focus on the desired target direction. In contrast, adaptive beamformers update the filter coef-
ficients based on estimates of the noise and signal statistics and have now become the dominate
approaches to address the non-stationary noise due to its time-varying attribute. Among them, the
Minimum Variance Distortionless Response (MVDR) approach and the Generalised EigenValue (GEV)
approach have shown to be particularly promising recently (Barker et al. 2015; Vincent et al. 2016).

Specifically, the MVDR beamforming works in the frequency domain and aims to minimise
the energy at the beamformer output, while simultaneously keeping the gain in the direction
of the target signal fixed at unity. The complex-valued signal model is Y(n) = S (n)d + A(n), where
the vector Y(n) = (Y1 (n), . . . ,YM (n))T contains the instantaneous noisy observations at the nth
time instant on a given discrete frequency bin as registered by the M microphones, S (n) is the
corresponding complex frequency bin of the unknown transmitted signal, the steering vector
d is the desired signal spatial signature encoding its direction of arrival and A(n) is a (M × 1)
vector containing the noise and interference contributions. Both the signal and the noise are as-
sumed to have zero mean. In operation, the beamformer computes a linear combination of a com-
plex weight vector w and the observation vector Y(n) as x(n) = wHY(n), where (·)H denotes the
Hermitian transpose. In determining w using the MVDR criterion, the spatial covariance matrix
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representing the covariance of the noise plus interference will be needed. It is generally unknown
but can be estimated as a sample covariance matrix of a suitable segment of N observations as
RVV = (1/N )

∑
n Y(n)Y

H (n) (Mestre and Lagunas 2003). By then minimising wHRVVw with re-
spect to w subject to the constraint wHd = 1, as mentioned above, the MVDR beamformer filter
coefficients are given by Cox et al. (1987)

ŵMVDR =
R−1VV d

dHR−1
VV

d
. (25)

The MVDR beamformer is not robust against an inaccurately estimated steering vector d

(Khabbazibasmenj et al. 2012). In contrast, GEV beamformer requires noDOA estimate and is based
onmaximising the output signal-to-noise ratio (Warsitz and Haeb-Umbach 2007). The beamformer
filter coefficients for a given frequency bin are found as the principal eigenvector of a generalised
eigenvalue problem as required by Warsitz and Haeb-Umbach (2007)

ŵGEV = argmax
w

wHRSSw

wHRVVw
, (26)

where RSS and RVV are the required estimates of the spatial covariance matrices of the target
speech and noise/interference, respectively.
Recently reported NN-supported beamformers can be generally categorised into two types

(Ochiai et al. 2017): (i) beamformers with a mask estimation network (Heymann et al. 2015, 2016a,
2016b; Menne et al. 2016) and (ii) beamformers with a filter estimation network (Li et al. 2016;
Meng et al. 2017; Xiao et al. 2016a). Both approaches aim to obtain an enhanced signal based on
the formalisation of the conventional filter-and-sum beamformer in the time-frequency domain.
The difference between them is how the filter coefficients are generated by neural networks. The
former approach uses neural networks to estimate noise or speech masks (cf. Section 3.2), which
are then applied to calculate the spatial covariance matrix further followed by a calculation of filter
coefficients by Equations (25) and (26). On contrary, the later approach skips a series of interval
process. It directly utilises neural networks to estimate the filter coefficients. In both approaches,
the estimated filter coefficients are then applied to the multi-channel noisy signals to obtain the
enhanced speech signals.
Specifically, the mask estimation-based beamformer was first investigated in Heymann et al.

(2015), where LSTM-RNNs were used to estimate two IBMs for each microphone channel: The two
IBMs receptively indicate for each T-F bins whether they are presumably dominated by speech or
noise. To train neural networks, the authors further used a multi-task learning framework; the
inputs are noisy speech, and the targets are two IBMs. These obtained masks are then condensed
to a single speech and a single noise mask by a median filter, which are sequentially used for
estimating the spatial covariance matrices RSS and RVV and in turn the beamformer coefficients
ŵGEV . However, this approach requires both speech and noise counterparts of the noisy speech
for each microphone channel. In this case, only simulated data is possible to be employed for the
network training. To relax this requirement to some extent, a follow-up work has been presented
in Heymann et al. (2016a), where only the clean speech was employed for the mask estimation.
This slight improvement enables one to utilise more realistic noisy and clean speech pairs, which
can be recorded simultaneously by a close microphone (for clean speech) and a distant micro-
phone array (for noisy speech). The experimental results shown in Heymann et al. (2016a) were
competitive with the ones in previous work (Heymann et al. 2015). Apart from the mask estima-
tion for GEV, similar approach was also applied to MVDR, where the steering vector is calculated
by the principal component of the estimated spatial covariance matrix of speech, i.e., d = P (RVV ).
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Table 3. A Summary of Representative Multi-channel Approaches Based on Deep Learning
for Environmentally Robust Speech Recognition

stage approaches typical publications advantages disadvantages

fr
on

t

mask
estimation

(Erdogan et al. 2016; Heymann
et al. 2015, 2016a; Menne et al.
2016)

avoid relying on a DOA
estimation

require large-scale training data

filter
coefficients
estimation

(Li et al. 2016; Meng et al. 2017;
Xiao et al. 2016a)

easily to be integrated with DNN
AM as a joint network

based on the simulated data in all
possible scenarios

post-filter
estimation

(Pertilä and Nikunen 2014) do not require explicit estimates
of the signal and noise statistics

require large-scale simulated data

jo
in
t

channel
concatenation

(Liu et al. 2014; Swietojanski
et al. 2013)

require no knowledge of
microphone array geometry and
signal information

unclear on a severe mismatch
among multiple channels

cross-channel
max-pooling

(Swietojanski et al. 2014) able to pick the most informative
channel

unable to make use of the spatial
information found in
multi-channel signals

factoring
spatial &
spectral
filtering

(Sainath et al. 2017) robust to varying target speaker
direction of arrival

additional computational cost

end-to-end (Hoshen et al. 2015; Ochiai et al.
2017)

automatically extracted the
underlying and salient
representations over multiple
channels

heavy parameters tuning and
computational load

Those nethods are summarised at different ASR processing stages (front-end and joint front- and back-end).

The effectiveness of all these mentioned approaches has been demonstrated in the fourth CHiME
Challenge (Heymann et al. 2016b; Menne et al. 2016).

A typical filter coefficients-based approach was evaluated in Xiao et al. (2016a), where the net-
works were trained with generalised cross correlation from simulated multi-channel data from a
given array geometry using all possible DOA angles. As conventional neural networks are not able
to handle complex values directly, the real and imaginary parts of each complex weight are pre-
dicted independently (Xiao et al. 2016a). A similar investigation was also shown in Li et al. (2016)
and Meng et al. (2017).
As for post-filtering, very few recent articles appear to have used neural networks for this pur-

pose. One such study evaluated a non-deep MLP network in predicting the post-filter parameters
for a circular microphone array (Pertilä and Nikunen 2014).

6.2 Joint Front- and Back-End Multi-Channel Techniques

Rather than using neural networks to support traditional beamformers and post-filters for speech
enhancement, joint front- and back-end multi-channel ASR systems have recently attracted con-
siderable attention with a goal of decreasing the WER directly (Hoshen et al. 2015; Liu et al. 2014;
Swietojanski et al. 2014). In Swietojanski et al. (2013), the individual features extracted from each
microphone channel are concatenated as a long single feature vector and fed into a DNN for AM.
Whilst such a feature concatenation operation is simple, it was still found to be effective for dere-
verberation on the AMI dataset (Swietojanski et al. 2013) and was further verified in Liu et al.
(2014).

A more sophisticated approach was proposed in Swietojanski et al. (2014). In this work, the
authors utilised a joint network structure of several individual convolutional layers followed by a
shared fully connected feedforward network. In more detail, each individual convolutional layer
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Table 4. Benchmarks for Four Selected Standard Corpora (i.e., Aurora-4, CHiME-2, CHiME-4, and AMI)

single channel multiple channels WER

publications front-end back-end joint front joint model (or SDR)

Aurora-4

(Narayanan and
Wang 2013)

IBM/IRM (MA;
Mel)

MCT DNN 16.50%

(Seltzer et al. 2013) NAT; MCT;
re-training

DNN 12.40%

(Kundu et al. 2016) NAT, MTL 8.80%

(Qian et al. 2016) end-to-end VDCNN 8.81%

CHiME-2

(Weninger et al. 2013) mapping: MFCC Re-training BLSTM 26.73%

(Geiger et al. 2014b) multi-
stream,re-
training

BLSTM 41.42%

(Weninger et al.
2014b)

masking: IRM (MA,
SA; Mel)

LSTM 17.68 (SDR)

(Geiger et al. 2014d) hybrid BLSTM 22.20%

(Weninger et al.
2014a)

mapping: log Mel re-training BLSTM 22.16%

(Erdogan et al. 2015) masking: PSM (SA;
log Mel)

BLSTM 14.76 (SDR)

(Han et al. 2015) mapping: log mag hybrid DNN ≈25%
(Chen et al. 2015) masking: IRM (SA;

log Mel)
MTL; hybrid BLSTM 16.04%

(Narayanan and
Wang 2015)

masking: IRM (MA;
Mel)

joint DNN 15.40%

(Weninger et al. 2015) masking: IRM
(PSA; Mel)

BLSTM 13.76%

(Wang and Wang
2016)

masking: IRM
(power spec.)

multi-stream;
model adapt.;
MCT

joint DNN 10.63%

CHiME-4a

(Menne et al. 2016) mask est. BLSTM //; 4.0%,5.2%

(Heymann et al.
2016b)

mask est. WRN &
BLSTM

1.7%,9.9%;
3.1%,3.9%

(Xiao et al. 2016b) filter coeff.
est.; mask est.

LSTM 21.4%,20.9%;
5.0%,6.4%

(Erdogan et al. 2016) re-training;
hybrid

mask est. BLSTM //; 3.4%,4.4%

(Qian and Tan 2016) NAT end-to-end VDCNN &
LSTM

12.9%,13.9%;
6.3%,6.4%

AMIb

(Swietojanski et al.
2013)

MCT channel
concatenation

DNN-HMM 57.30%

(Swietojanski et al.
2014)

cross-channel
max-pooling

CNN 49.40%

(Liu et al. 2014) channel
concatenation

DNN 44.80%

(Continued)
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Table 4. Continued

single channel multiple channels WER

publications front-end back-end joint front joint model (or SDR)

(Qian et al. 2016) end-to-end VDCNN 46.90%

(Xiao et al. 2016a) filter coeff. est. end-to-end DNN 42.20%

(Ochiai et al. 2017) mask est. end-to-end 39.00%

Note that only the deep learning related approaches were indicated for each present system. That is, many other traditional
approaches might also be utilised. Further note that DNN mentioned in the table generally refers to Deep Boltzmann
Machine (DBM) or Deep Belief Network (DBN). MCT: Multi-condition Training; MTL: Multi-task learning; WRN: Wide
Residual Network (Zagoruyko and Komodakis 2016); VDCNN: Very Deep CNN.
[a] results are provided for the one and six channel signals (separated by ‘;’) on the simmulated and real subsets of the
evaluation dataset (separated by ‘,’);
[b] only the results for MDM subset are provided.

was operated on each channel independently with the magnitude spectrum as input, and a max
pooling was proceeded across channels to choose the channel with the largest response in each
node. This algorithm performs better than the one by applying a CNN after a DS beamformer
(Swietojanski et al. 2014).

Encouraged by this work as well as the research trend of end-to-end ASR systems, this work
was extended to handle raw speech directly and without the operation of cross-layer max pool-
ing (Hoshen et al. 2015). The advantage of these extensions is that the system can automatically
exploit the spatial information found in the fine time structure, which primarily lies in the pre-
viously discarded FFT phase value, of the multichannel signals (Hoshen et al. 2015). A follow-up
work was reported in Sainath et al. (2017), where the authors employed two convolutional lay-
ers, instead of one layer, at the front-end. The assumption is that the spatial and spectral filtering
operations can be separately processed by two convolutional layers. That is, the first layer is de-
signed to be spatially selective, and the second layer is implemented to decompose frequencies
that are shared across all spatial filters. By factoring the spatial and the spectral filters as separate
layers in the network, the performance of the investigated system was notably improved in terms
of WER (Sainath et al. 2017).

7 CONCLUSIONS

In this survey, we have attempted to provide a comprehensive overview on the state of the art and
most promising deep learning approaches with the goal of improving the environmental robust-
ness of speech recognition systems. These technologies are mainly introduced from the viewpoint
of single-channel and multi-channel processing at different stages of the ASR processing chain,
i.e., the front-end, the back-end, or the joint front- and back-end.
To intuitively compare the performance of different approaches, we selected four benchmark

databases fromTable 1, i.e., Aurora, CHiME-2, CHiME-4, and AMI. The rationale behind this choice
is that Aurora-4 includes a large vocabulary among the Aurora series corpora; CHiME-2 is more
frequently used in the past few years in comparison with CHiME-1 in single and two channels;
CHiME-4 is the most recently employed standard database compared with CHiME-3 to address
both additive and convolutional noise in multiple channels; and AMI has large-scale data com-
pared with all aforementioned databases and is public available compared with Voice Search. The
experimental results for each benchmark database are shown in Table 4.
From the table, we can find that (i) the deep learning-based robust ASR systems are shifting from

taking conventional hand-crafted features (e.g., MFCCs) as the input, to automatically extracting
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the representative and discriminative features directly from noisy raw speech, mainly due to the
fact that raw speech signals keep the entire information (e.g., phase) related to the targets (i.e.,
phoneme or word); (ii) separate front-end and back-end systems are gradually defeated by joint,
even end-to-end training systems, owing to the powerful non-linear learning capability of deep
neural networks that can optimise all processing stages simultaneously; and (iii) the importance
of multi-channel approaches is more striking considering the promising performance they offer.
Due to the growth in popularity of microphones embedded in smartphones, for example, more

realistic and large size of data are increasingly utilised to train speech recognition model for flight-
ing with the diverse and severe acoustic environments. This consequently requires more complex
and deep neural network structures and high computing resources.
Despite great achievements that deep learning has accomplished in the fast few years, as shown

in the literature, an obvious performance gap still remains between the state-of-the-art noise-
robust system and the one evaluated in a degradation-free, clean environment. Therefore, further
efforts are still required for speech recognition to overcome the adverse effect of environmental
noises (Barker et al. 2015; Kinoshita et al. 2016; Vincent et al. 2016). We hope that this review could
help researchers and developers to stand on the frontier of the developments in this field and to
make greater breakthroughs.
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