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Abstract

Music and speech exhibit striking similarities in the communication of emotions in the acous-

tic domain, in such a way that the communication of specific emotions is achieved, at least

to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points

of view, determining the degree of overlap between both domains is fundamental to under-

stand the shared mechanisms underlying such phenomenon. From a Machine learning per-

spective, the overlap between acoustic codes for emotional expression in music and speech

opens new possibilities to enlarge the amount of data available to develop music and

speech emotion recognition systems. In this article, we investigate time-continuous predic-

tions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning

between these domains. We establish a comparative framework including intra- (i.e., mod-

els trained and tested on the same modality, either music or speech) and cross-domain

experiments (i.e., models trained in one modality and tested on the other). In the cross-

domain context, we evaluated two strategies—the direct transfer between domains, and the

contribution of Transfer Learning techniques (feature-representation-transfer based on

Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our

results demonstrate an excellent cross-domain generalisation performance with and without

feature representation transfer in both directions. In the case of music, cross-domain

approaches outperformed intra-domain models for Valence estimation, whereas for Speech

intra-domain models achieve the best performance. This is the first demonstration of shared

acoustic codes for emotional expression in music and speech in the time-continuous

domain.

Introduction

It is common knowledge that music has the remarkable capacity to stir human emotions and

affect our moods in everyday life. Although this is an intuitive fact for most people, under-

standing the process of emotion induction through music proved to be a major challenge to

research in various disciplines. It is not until the past few decades that a consistent body of
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evidence started unveiling key aspects of such a pervasive phenomenon and shedding new

light on the underlying mechanisms supporting the link between music perception and emo-

tion production (see [1, 2]). It is now known that the emotions experienced by music listeners

are influenced by a variety of parameters related to listener traits and states, musicians’ perfor-

mance, and listening and cultural contexts, therefore, rendering the whole process of emotion

production listener- and context-dependent (see [2, 3] for detailed accounts). Nonetheless,

researchers have also provided important evidence demonstrating that the emotions perceived

(i.e., recognised) by listeners in a piece of music seem to depend mostly on particular configu-

rations of acoustic and musical features—it is now well-known that modulations of speed and

continuity, accentuation, pitch and range, timbre and dynamics are at the very centre of the

communication of emotional meaning (see [4] for an overview), with specific configurations

communicating similar emotions universally (e.g., [5–7]).

The fact that the most consistent relationships between musical structure and emotional

qualities involve basic variables in human audition rather than complex, music-specific cues,

indicates that the way emotions are conveyed through acoustic patterns embedded in music is

remarkably similar to the expressive patterns characteristic of speech prosody (the nonverbal

aspects of speech that, amongst other things, are crucial in the communication of emotional

information). In a meta-analysis that reviews 104 studies of vocal expression and 41 studies of

music performance and compared the acoustic characteristics of speech and music associated

with particular emotions [8], the authors clearly demonstrate a great degree of overlap between

the emotion-specific acoustic patterns of acoustic cues used to express discrete emotions in

both domains. Subsequent empirical work, that compared directly both domains, has provided

further evidence, both in terms of specific emotions ([9]) as well as in terms of affective dimen-

sions ([10, 11]). In sum, these and other studies provide a strong basis on which to purport the

existence of a general mechanism for the expression and recognition of emotions in the acous-

tic domain (see also [12] for a discussion and account on the possible evolutionary roots of

such mechanism).

In this article, we propose to investigate the level of overlap between the acoustic cues to

emotion in music and speech. From an Affective Sciences perspective, it is important to

explore the level of overlap between the acoustic cues to emotion in music and speech, because

it can help explain the reasons why listeners perceive music as expressive of emotion (e.g., [8,

13] by highlighting the underlying mechanisms supporting such phenomenon (e.g. [2, 14].

Furthermore, it can provide support to theories of music origins suggesting that speech and

music evolved from a common origin (e.g., [15, 16]). From a Machine Learning perspective, it

is advantageous to explore the existence of shared acoustic codes to emotions in both domains

since the undifferentiated use of music and speech signals can enlarge the amount of available

data which can be used to improve the performance of Speech Emotion Recognition (SER)

and Music Emotion Recognition (MER) systems. In particular, the possibility of using speech

to develop MER systems is of paramount importance given the fact that there is very little

labelled data in this domain. On the other hand, music expresses a wider range of emotional

states that are not necessarily present in available speech databases. In that sense, it is also ben-

eficial to develop SER systems by providing a more complete sample of the full emotional spec-

trum. Additionally, it can lead to the development of hybrid systems, i.e., emotions

recognition systems that are applicable to both music and speech signals, which may be partic-

ularly important for novel applications in Affective Computing where a holistic understanding

of affective signals in the world would be highly beneficial.

Shared acoustic codes underlie emotional communication in music and speech
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Time-continuous predictions of emotion in music and speech

In [10, 17, 18], it was shown that the prediction of musical affect demands models sensitive to

the temporal context of music structural features that continuously adapt the predictions of

emotion qualities based on the present and past inputs. This is particularly important in every-

day life scenarios where continuous streams of information are always available, and predict-

ing emotion in a time-continuous way is essential to improve interactions between humans

and machines. Moreover, it allows to detect both nuanced and evident differences in emotion

continuously over time, without determining particular segmentations beforehand. For these

reasons, we deal with time-continuous predictions of emotional responses to music and

speech.

Only a few works have modelled time-continuous music and speech emotion recognition,

and only two have directly compared both domains. In relation to music, the first basic

attempt to model time-continuous emotional responses was proposed by [19], who has created

multiple linear regression models to predict Arousal and Valence ratings for a set of six music

pieces. Nonetheless, such models are not sensitive to the temporal context. In [17], the use of

Recurrent Neural Networks (RNN) was introduced to model the same set of music pieces. The

authors found that a significant part of the listener’s affective response could be predicted from

a small set of six psychoacoustic features—loudness, tempo, texture, mean pitch, pitch varia-

tion, and sharpness. This methodology was later successfully applied to a new set of music

[18]. Still, a major limitation of these works is the very small set of music pieces resultant from

the time-consuming annotation process, which renders doubts about their generality. Such

limitations have recently been partially addressed with the introduction of the MediaEval

“Emotion in Music” task in 2013 [20], which has led to the creation of a large database of 1000

songs (extended in 2014 to almost 1500 [21]). In the speech domain, [22] applied LSTM-RNNs

to the estimation of Arousal and Valence from a subset of natural speech recordings from the

SEMAINE database [23] (see also [24]). Recently, the Audio/Visual Emotion Challenges

(AVEC) have increasingly focused on time-continuous predictions of emotion from audio

(and video) (e.g., [25]).

The first attempt to compare (time-continuous) emotions perceived in music and natural

speech was conducted by [10]. The authors applied the same methodology proposed in [17]

and [18] to model music and speech separately, and have shown that, an almost identical set of

acoustic features allowed to predict the emotions perceived by human listeners in both

domains. These variables were loudness, tempo/speech rate, melodic/prosodic contour, spec-

tral centroid, spectral flux, sharpness, and roughness. Unfortunately, like in previous studies,

the database size was very limited (8 music pieces and 9 speech samples), and speech and

music were modelled separately.

The first direct comparison between both domains (i.e., using the same models and feature

sets), albeit in the categorical domain, was presented by [11]. The authors demonstrated that a

model trained to classify music or speech instances into a set of discrete emotions using a com-

mon set of 200 acoustic features, had a good performance when tested on speech or Music

(respectively). Finally, within a time-continuous framework, [26] evaluated whether cross-

domain predictions of emotion are a viable option for acoustic emotion recognition. Overall,

results indicated a good cross-domain generalisation performance (especially for the model

trained on speech and tested on music), but the data used included less than 14 minutes of

music and 12 minutes of speech.

In the context of this paper, our aims are two-fold. First, we want to explore the extent to

which time-continuous affective-acoustic patterns are generalisable across music and speech,

and to predict emotion in music using models trained on emotional speech, and vice-versa.

Shared acoustic codes underlie emotional communication in music and speech
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Second, we want to explore the use of knowledge transfer techniques to deal with differences

in the feature spaces and distributions of both types of stimuli.

Background and methods

Emotion representation

When modelling emotion it is fundamental to define the conceptual model used for its numer-

ical representation. Early work on music emotion recognition focused on classifying music

pieces into categorical labels describing specific emotions [27]. The typical lists of emotions

(or affect categories) used were the so-called basic emotions (e.g., anger, fear, surprise). None-

theless, these terms are seldom adequate to describe the emotions present in a music piece and

are very dependent on stylistic aspects [28, 29]. In other cases freely chosen tags are used (e.g.,

[30]), although the quality of this annotation process is questionable (e.g., tags often do not

describe emotional states, terms can be highly ambiguous, large number of tags). Moreover,

emotions perceived and experienced with music are often ambiguous, mixed and dynamic

(e.g., [10, 31]), which demands a more flexible frameworks for emotion representation.

A framework that has proved to be particularly adequate to address these issues are the so-

called dimensional models of affects. According to dimensional theorists, the subjective expe-

rience of emotion can be depicted by the combination of two or more underlying psychologi-

cal ‘dimensions’, and therefore that human emotions can be represented as positions in a

multidimensional space (the dimensions themselves are usually derived empirically through

factorial analysis). A very popular dimensional taxonomy in this domain is the circumplex

model of affect proposed by Russell [32], which construes emotions as linear combinations of

two independent neurophysiological dimensions—arousal and valence. Arousal describes the

level of activation or intensity of the emotions experienced. Valence depicts the hedonic tone

of the emotion in a continuum from negative to positive affect. In the context of this work, we

adopt Russell’s taxonomy for emotion representation. Apart from its intrinsic benefits, Rus-

sell’s taxonomy has the additional advantage of allowing to represent a wide range of emotions

that are not specific to music or speech, and that can described by the same variables. This is

fundamental because the emotions expressed in speech (triggered by events in everyday life)

can be very different from those expressed by music (often of aesthetic nature [2]). Further-

more, dimensional models are nowadays commonly used in SER and MER (e.g., [25, 33])

Deep long-short term memory recurrent neural networks

From the machine learning point of view, time-continuous predictions of continuous dimen-

sions in a two-dimensional space largely benefit from context-sensitive models. Given their

proven ability to model time-continuous emotions in both music (e.g., [34]) and speech (e.g.,

[35]), we consider the contribution of Long Short-Term Memory RNNs (LSTM-RNNs) [36].

LSTM-RNNs are architecturally similar to the traditional recurrent neural networks (RNN;

e.g., [37]) except that, the nonlinear hidden units are replaced by a special kind of memory

blocks, which endow the network with the capacity of accessing long-range temporal contexts

and predict the outputs based on such information. A single LSTM memory block comprises

one (or several) self-connected memory cells and three multiplicative units—input, output

and forget gates. These units set up the cells with analogues of write, read and reset operations,

and allow LSTM memory cells to store and access information over long sequences (and corre-

sponding periods of time) which permits to overcome the vanishing gradient problem of sim-

ple RNNs, whereby the influence of the network inputs on the hidden units (and therefore the

outputs) decays or blows up exponentially as the information cycles through the network

recurrent connections.

Shared acoustic codes underlie emotional communication in music and speech
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Fig 1 shows a LSTM memory block with one cell. The cell input is initially scaled by the

activation function of the input gate. Then, the cell output is computed from the activation of

the output gate, plus the memory cell values in the previous time step (controlled by the activa-

tion of the forget gates). For a given memory block, with W as the weight matrix, xt the input

vector, ht the hidden vector, bt the hidden bias vector, the activation vector of the input gate it
can be expressed as follows:

it ¼ fgðWxixt þWhiht� 1 þWcict� 1 þ biÞ; ð1Þ

where, fg is the logistic sigmoid function.

Similarly, the activation of the forget gate ft is expressed as:

ft ¼ fgðWxfxt þWhfht� 1 þWcf ct� 1 þ bf Þ: ð2Þ

The memory cell value ct is then the sum of the input vector at time t and its own activation

in the previous time step:

ct ¼ fiðWxcxt þWhcht� 1 þ bcÞ þ f t � ct� 1; ð3Þ

where fi is the tanh activation function.

Fig 1. LSTM memory block.

https://doi.org/10.1371/journal.pone.0179289.g001
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The output of the memory cell is controlled by the output gate activation:

ot ¼ fgðWxoxt þWhoht� 1 þWcoct þ boÞ; ð4Þ

Finally, the output of the memory block is:

ht ¼ ot � foðctÞ; ð5Þ

where fo is the tanh activation function.

Generally, LSTM-RNNs have shown remarkable performance in a variety of Machine

Learning tasks, including, handwriting recognition [38], keyword spotting [39], or phoneme

classification [40]. Furthermore, as mentioned earlier in this section, they have also been used

in the context of time-continuous predictions of emotion in music and speech with consider-

able success. For more details on LSTM networks the reader is referred to [36].

Acoustic features for emotion in speech and music

In order to promote the reproducibility of this work, we use a well-developed set for automatic

recognition of paralinguistic phenomena—the official feature set of the 2013 INTERSPEECH

Computational Paralinguistics Challenge (ComParE). This feature set is already a standard in

SER (e.g., [41, 42]) and MER (e.g., [21, 33]). The ComParE feature set comprises 65 of low-

level audio descriptors (LLDs; see Table 1) and their first order derivates (Δ LLDs; a total of

130 features), which cover a broad set of descriptors from the fields of speech processing,

Music Information Retrieval, and general sound analysis. For the computation of all LLDs, we

used overlapping windows with a step size of 10 ms. LLDs related to voice were computed

using 60 ms long time frames and Gaussian windows (σ = 0.4), whereas LLDs related to all

other features were calculated using 25 ms long time frames and Hamming window functions

(leading to 17% and 40% overlaps, respectively). In order to adapt the sampling rate of the fea-

ture set to that of the annotations, we also computed the mean and standard deviation

Table 1. ComParE feature set: List of 65 energy-, spectral- and voicing-related low-level descriptors

(LLD).

Energy related LLDs (4) Group

Sum of auditory spectrum (loudness) prosodic

Sum of RASTA-style filtered auditory spectrum prosodic

RMS Energy prosodic

Spectral LLDs (55) Group

RASTA-style auditory spectrum, bands 1–26 (0–8 kHz) spectral

MFCC 1–14 cepstral

Spectral energy 250–650 Hz, 1 k–4 kHz spectral

Spectral Roll off point 0.25, 0.50, 0.75, 0.90 spectral

Spectral Flux, Centroid, Entropy, Slope spectral

Psychoacoustic Sharpness, Harmonicity spectral

Spectral Variance, Skewness, Kurtosis spectral

Zero-Crossing Rate prosodic

Voicing related LLDs (6) Group

F0 (SHS & Viterbi smoothing) prosodic

Prob. of voice sound quality

log. HNR, Jitter (local, delta), Shimmer (local) sound quality

https://doi.org/10.1371/journal.pone.0179289.t001
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functionals of each feature over 2 s time windows with 50% overlap (step size of 1.0 s). This

resulted in a total of 260 features extracted at a rate of 1 Hz. The computation of these features

was done using the open-source feature extractor openSMILE ([43]). For full details on the

ComParE feature set please refer to [11].

Transfer learning with denoising auto-encoders

The concept of Transfer Learning (TL) is inspired by the fact that humans can use previously

acquired knowledge in one domain to solve new problems, faster and efficiently, in new

domains. In the realm of Machine Learning, TL has been proposed to deal with the problem-

atic situation of having training and test samples derived from different feature spaces and

data distributions. In this scenario, most statistical models need to be retrained with new data

that matches the new distributions, which is an expensive process and often unrealistic. As an

example, in the SER field, a common limitation of models trained on a specific speech corpus

is the tendency to under-perform with recordings from other sources. This can be due to vari-

ous reasons, but often is related to the characteristics of the speakers in each corpus, the type of

emotions being conveyed, the level of portrayal vs spontaneity, the recording conditions,

among others (see [44]). In point of fact, TL has recently started to be applied in this area with

evident success ([45]).

In this work, we explore the existence of shared acoustic codes communicating emotions in

music and speech, and evaluate the extent to which TL can benefit the generalisation of emo-

tion recognition across domains. Considering that we are using a common taxonomy to repre-

sent emotions in both domains, we have a typical transductive transfer learning (tTL) setting

[46]—the source (TS) and target (TT) tasks are the same (TS = TT; regression of emotion

dimensions), but the source (DS) and target (DT) domains are different (DS 6¼ DT). Specifically,

given that in our case the source and target feature spaces are the same, but the marginal prob-

ability distributions of the inputs for each domain are different, our task is related to domain

adaptation [47]. Given DS and DT (with respective learning tasks TS and TT), tTL aims to

improve the learning of the target predictive function fT(.) in DT using the knowledge in DS

and TS (DS 6¼ DT and TS = TT).

For the transfer of knowledge related to emotion decoding from music (or speech) to

speech (or music), our aim is to find adequate feature representations that maximise domain

convergence and the regression model error. In particular, in our task only a relatively small

amount of labelled data is available in the source domain DS and no labelled data exists on the

target domain DT. Typically, under these settings, transferring knowledge of features represen-

tations (aka feature-representation-transfer) is achieved through unsupervised learning frame-

works [46]. Several techniques have been proposed for unsupervised feature-representation-

transfer (e.g., see [46] for a detailed overview). In this paper, we focus on representation learn-

ing [48] in order to learn transformations of the data in the source and target feature domains

that ease the extraction of useful representations for inputting to the emotion regression mod-

els. In particular, we focus on directly learning a parametric map from the features to their rep-

resentations which, unlike learned representations based on latent variables, does not require

that the posterior distribution is known and allows extracting stable deterministic numerical

feature values [48]. One such class of methods is the regularised version of the auto-encoder

(AE) framework [49] that forces the AE to develop more general internal feature representa-

tions (as insensitive as possible with respect to changes in input). Popular techniques imple-

menting this method are Sparse Auto-Encoders [50] and Denoising Auto-Encoders (DAE)

[51], with the latter often associated with better outcomes [52]. DAEs are trained to recon-

struct a clean, ‘repaired’ input from its corrupted version [51], that is, to denoise corrupted

Shared acoustic codes underlie emotional communication in music and speech
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versions of their inputs. In so doing, the DAE must capture the structure of the input distribu-

tion in order to reduce the effect of the corruption process, and as a consequence learn (useful)

higher level representations. This method has been shown to be efficient in a wide range of

tasks (see [52]), including, recently, in SER (e.g., [45]).

Databases

In our TL test-bed, we established a (realistic) scenario in which a large pool of unlabelled data

is pervasively available in both domains (e.g., speech and music from online sources), but only

a relatively small amount of labelled data is available in the source domain DS and none in the

target domain DT. In our experiments we further establish two sub-scenarios, whereby music

is the source domain and speech the target domain, and vice-versa. The next subsections

describe the four databases used (two of music and two of speech instances). Our choices for

the labelled databases were driven by the quality and reliability of the annotations in order to

have a robust set of data for our Machine Learning experiments, as well as their availability

which can facilitate reproducibility of this work.

Speech

DAE pre-training: Semaine database. The SEMAINE corpus [53] was developed specifi-

cally to address the task of achieving emotion-rich interactions, and it is adequate for this task

as it comprises a wide range of emotional speech. It includes video and speech recordings of

spontaneous interactions between human and emotionally stereotyped ‘characters’ (Prudence,

who is even-tempered and sensible; Poppy, who is happy and outgoing; Spike, who is angry

and confrontational, and Obadiah, who is sad and depressive). Audio was recorded at 48 kHz

with 24 bits per sample. In our experiments, we use a subset of this database (called Solid-SAL),

which is freely available for scientific research purposes (see http://semaine-db.eu), and it was

used as the official database in the First International Audio/Visual Emotion Challenge

(AVEC 2011) [54]. In this subset of SEMAINE, the characters are role-played by human opera-

tors. Table 2 shows the details of Solid-SAL database.

Regression task: RECOLA database. The RECOLA database [55] (the official database of

AVEC 2015, the 5th International Audio/Visual Emotion Challenge and Workshop [56]) con-

sists of 9.5 hours of multimodal recordings (audio, video, and peripheral physiological activity)

of spontaneous dyadic interactions between French adults whom were performing a remote

collaborative task. Initially, each participant was asked to rank a number of items according to

their importance for the survival of a group of crew members in a deserted and hostile area

after a plain crash. Then, they had to discuss their ratings with another peer and reach a con-

sensus on how to survive in the proposed disaster scenario (mean duration of the interactions

was circa 15 minutes).

In this paper, we use the RECOLA-Audio module which consists of the audio recordings of

each participant in the dyadic phase of the task. In particular, we use the non-segmented high-

Table 2. Overview of the speech databases used in this paper (f: female).

Database SEMAINE RECOLA

Number of recordings 95 23

Number of speakers 28 (14 f) 23 (12 f)

Total duration (h:m:s) 7:30:29 1:55:00

Total number of frames (1 s long) 27 029 6 900

https://doi.org/10.1371/journal.pone.0179289.t002
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quality audio signals (WAV format, 44.1kHz, 16bits), obtained through unidirectional headset

microphones, of the first five minutes of each interaction. These sections contain the most

emotionally expressive moment of the interactions, and include annotations of perceived emo-

tions by six French speakers. Annotations consist of time-continuous ratings of the level of

Arousal and Valence dimensions of emotion perceived by each rater while seeing and listening

the audio-visual recordings of each participant task.

The details of the sound files used are shown in Table 2. Given that not all participants con-

sented to the release of their recordings, and the authors only released part of the data from the

annotated sound files, the total number of instances is 23. The time frame length used is this

work is 1s given that no changes in time-continuous annotations are expected at lower rates [19].

It should be noted that the RECOLA database contains speech in the French language,

whereas SEMAINE is an English database. In that respect it should noted that we are focusing

on the non-linguistic aspects of speech (prosody) and that cross-cultural research has demon-

strated that emotions conveyed by the human voice (and by music as well) can be communi-

cated accurately across cultures and that convincing evidence points to similar prosodic codes

underlying this phenomenon (e.g., [57, 58]. This is apparent, for instance, in our capacity to

understand how other feel even if they speak an unfamiliar language.

Music

DAE pre-training: MediaEval 2014 (ME14). The MediaEval “Emotion in Music” task is

dedicated to the estimation of Arousal and Valence scores continuously in time and value for

song excerpts from the Free Music Archive. The whole corpus (development and test sets for

the 2014 challenge) includes 1 744 songs belonging to 11 musical styles—Soul, Blues, Elec-

tronic, Rock, Classical, Hip-Hop, International, Folk, Jazz, Country, and Pop (maximum of

five songs per artist). The numerical details of the ME14 corpus are shown in Table 3.

Regression task: Compilation of data from Music Psychology studies (MP). The music

database compiled for this study consists of emotionally diverse full music pieces from a vari-

ety of musical styles (“Classical” and contemporary Western Art, Baroque, Bossa Nova, Rock,

Pop, Heavy Metal, and Film Music). Each piece was administered in the context of controlled

laboratory experiments in which the emotional character of each piece was evaluated time-

continuously by 35 to 52 participants using a computer mouse to control a cursor on the

screen to indicate the continuous level of Arousal and Valence perceived at each moment [10,

17, 18, 59]. In what follows, we describe each study. The numerical information pertaining to

the various datasets is summarised in Table 4.

MPDB1
This subset of our database consists of the data reported in [60], and gently made

available by the author. This dataset includes six full (or long excerpts) music pieces ranging

from 151 s to 315 s in length (only classical music). Each piece was annotated by 35 partici-

pants (14 females). The time series correspondents to each music piece were collected at 1 Hz.

Table 3. Overview of the Mediaeval “Emotion in Music” task corpus (ME14) and database derived

from previous Music Psychology empirical studies (MP).

Database ME14 MP

Number of pieces 1000 20

Number of genres 11 8

Total duration (h:m:s) 8:19:59 1:28:50

Total number of frames (1 s long) 30 000 5 749

https://doi.org/10.1371/journal.pone.0179289.t003
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The golden standard for each piece was computed by averaging the individual time series

across all raters.

MPDB2
The dataset by [18] includes 9 full pieces (43s to 240s long) of classical music

(romantic repertoire) annotated by 39 subjects (19 females). Values were recorded every time

the mouse was moved with a precision of 1 ms. The resultant timeseries were then resampled

(moving average) to a synchronous rate of 1 Hz. The golden standard for each piece was com-

puted by averaging the individual time series across all raters.

MPDB3
The music in the third study [10] consists of 8 pieces of film music (84 s to 130 s

long) taken from the late 20th century Hollywood film repertoire. Emotion ratings were given

by 52 participants (26 females). The annotation procedure, data processing, and golden stan-

dard calculations were identical to MPDB2
.

MPDB4
The music used in [59] includes seven music pieces (127 s to 502 s in length) of het-

erogeneous styles (e.g., Rock, Pop, Heavy Metal, Classical). Each music piece was annotated by

38 participants (29 females) using an identical methodology to MPDB2
and MDB3

. Data process-

ing and golden standard calculations were also identical.

Experimental setup, procedure and measures

In the next subsections we describe our experimental procedure. The contents are organised

in two subsections. In the first, we attempt to use DAEs for feature-representation-transfer

with the aim of improving the cross-modal generalisation. The DAEs are trained on the large,

unlabelled music and speech databases (SEMAINE and ME14). In the second part, we conduct

the regression experiments on the target tasks (predicting Arousal and Valence) using a three-

part comparative framework. First, we created a baseline to allow establishing a reference to

compare against the performance of TL. The baseline consists of intra domain models, i.e.,

models developed and tested only on music or speech. Second, given that we use the same fea-

ture set for both domains, we establish a basic cross-domain setup whereby a model is trained

with data from one modality and tested with data from another. Third, we attempt to use

DAEs for feature-representation-transfer with the aim of improving the cross-modal generali-

sation. In all cases we conducted bidirectional experiments, that is, transfer learning from

music to and from speech.

Pre-training of the first layer

The first step was to pre-train the first layer of the network using a DAE framework. The DAE

takes as input time-continuous feature vectors of acoustic descriptors, and attempt to repro-

duce these time series at the output units from corrupted version of the inputs. In this paper,

we inject Gaussian noise with zero mean and variable standard deviation (σ; see details below)

at the input layer (only during training) in order to generate a corrupted version of inputs

Table 4. Music database: Collection of music pieces used in five different Music Psychology studies

and employed in our work for the Arousal and Valence regression tasks.

Dataset MPDB1
MPDB2

MPDB3
MPDB4

Number of pieces 6 9 8 7

Number of genres 1 1 1 7

Total duration (m:s) 18:38 23:40 13:11 33:21

Number of time frames (1s long) 1 118 1 420 791 2 001

https://doi.org/10.1371/journal.pone.0179289.t004
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during training (see [61] for other methods of corruption). In all tests and trials the DAEs

were trained on the ME14 (music) and SEMAINE (speech) databases in an unsupervised fash-

ion. Also, we computed 10 trials (repetitions) in each test condition, each with randomised ini-

tial weights in the range [-0.1, 0.1] in order to obtain a more robust performance estimation.

Training was stopped once there was no improvement after 20 consecutive learning iterations,

or a maximum of 300 iterations was reached. The architecture implemented for each DAE

consisted of an input layer composed of 260 units with sigmoidal activation functions, one hid-

den layer composed of a variable number of LSTM blocks (#HBlayer1
), and one output layer

composed of 260 units also with sigmoidal activation functions.

In order to understand how the transfer learning process is affected by the size of the hid-

den layer (the dimensionality of the feature vector to be transferred) and the σ of the noise

injected in the input layer (which will impact the generalisability of the feature vector), we

trained different DAEs with a variable number of hidden layer sizes (#HBlayer1
2 [50, 75, 100,

150, 200]) and different noise parameters. Each combination of #HBlayer1
and σ will later be

used tested in the regression experiments (as mentioned, for each parameter set combination

(#HBlayer1
, σ and lrdae), we computed 10 independent trials of the models with randomised ini-

tial weights in the range [-0.1, 0.1]).

The only parameter optimised in the pre-training phase was the learning rate (lrdae). This

optimisation was done in two steps. First, for each value of #HBlayer1
, we trained the model

with different learning rates (lrdae 2 [1 × 10−7, 1 × 10−6, 5 × 10−6]; momentum = 0.9 and σ = 0.1

for all tests) (again this process was repeated 10 times for each #HBlayer1
/lrdae pair). The optimal

lrdae for each #HBlayer1
was determined by selecting the lowest average reconstruction error

(computed using the rmse) over the 10 trials. Second, for each #HBlayer1
(using the optimised

lrdae for each layer size), we varied the characteristics of the noise injected at the inputs (σ 2
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) (also repeated 10 times for each #HBlayer1

/σ combination). As a

result, we created 10 different DAEs (each with an optimised learning rate) that correspond to

30 different initialisation of the first layer to be used in the regression tests (each with 10

repeated trials).

Note that the size of the hidden layers is smaller than the number of inputs features given

that we expect redundancy amongst features. By setting the hidden layer to be smaller than the

input layer, our goal is to implicitly reduce the dimensionality of the feature space by eliminat-

ing redundancy and improving generalisation performance.

Models training on the target task

We used a multi-task learning framework for the joint learning of Arousal and Valence time-

continuous values. In all tests, the network’s basic architecture consisted of 260 inputs (the

number of acoustic features), two hidden layers (with LSTM memory blocks) of variable size,

and two output units with linear activation functions (corresponding to Arousal and Valence

outputs). In all cases, mirroring the pre-training phase, we computed ten trials (repetitions) in

each test condition, each with randomised initial weights in the range [-0.1, 0.1]. We con-

ducted three separate blocks of experiments—intra-domain (ID), cross-domain (CD), and

cross-domain with TL (CDTL):

• ID experiments correspond to the traditional approaches—separate models were created for

each domain (music and speech) using the extracted acoustic features. During training, for

each domain, we used a leave-one-out nested cross-validation schema (Nmusic = 33 and

Nspeech = 23). In each fold, N − 2 instances are used for training (training set), one is used for

parameter optimisation (validation set), and another instance is left out for testing (test set).

The best parameter set is determined as the average performance over the left-out instances
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of each fold. Once the best model was found, its performance to unseen data was determined

as the average performance over the test instances of each fold.

• CD experiments focused on developing the model with data from one domain (music or

speech) and directly tested on the other domain (speech or music, respectively). In the

model development and optimisation phase, we used a leave-one-out cross-validation strat-

egy. The performance for each condition was estimated as the average performance over the

left-out instances of each training fold. The optimised model was then tested on cross-

domain data (music if trained on speech, and vice-versa).

• CDTL experiments were also focused on creating the models with data from the source

domain (music or speech) and test them on the target domain (speech or music, respec-

tively). Again, we used a leave-one-out cross-validation strategy in the development phase

using the source domain database, and the model performance was estimated on the data-

base of the target domain. The key difference between CDTL and CD is that the first layer was

not randomly initialised. Instead, we initialised the first layer with the weights and biases

matrix of the DAEs described in the previous sections. Tests were conducted with each

(lrdae, #HBlayer1
) pair.

Architecture and hyper-parameter optimisation. Each sequence (music or speech

instance) was presented randomly to the model during training, and both the input and output

data were standardised to the mean zero and unit variance (using the parameters of the corre-

spondent training sets in each cross-validation fold).

For all models, we optimised the number of hidden LSTM blocks in each layer using a

learning rate of 1e−6 (no Gaussian noise was applied to the inputs, and a momentum of 0.9 was

used). The size of the first hidden layer was varied between 50 and 200 neurons (#HBlayer1
2

[50, 75, 100, 150, 200]). As noted, in the case of the CDTL experiments, we initialised the weight

and biases matrices of the first layer with the parameters of the previously trained DAEs (note

that the sizes of the first hidden layer are the same). In practice, this was done by removing the

output layer of the previously trained DAEs, and adding an extra hidden layer and a new out-

put layer (composed by two units: Arousal and Valence). These weights were kept fixed while

training the models on the target task. Given that we trained 6 DAEs with the same number of

hidden units (due to the various σDAE used), unlike the ID and CD experiments, we conducted

6 tests (instead of one) per hidden layer in order to test the impact of the σDAE value used in

the pre-training phase.

After determining the #HBlayer1
size (or #HBlayer1

/σDAE pair in the case of the CDTL experi-

ments) yielding the best performance on the target tasks, we optimised the size of the second

hidden layer on the target task (#HBlayer2
2 [2, 4, 6, 8, 10]). Then, using the optimal architec-

tures (#HBlayer1
and #HBlayer2

sizes) we optimised the learning rate (LRmodel 2 [1 × 10−7,

1 × 10−6, 5 × 10−6]). Finally, we injected Gaussian noise with different standard deviations

(σmodel; mean was 0) in the input layer to regularise the training process (σmodel 2 [0.1, 0.2, 0.3,

0.4, 0.5, 0.6]). In addition to the input noise, we used an early stopping strategy to avoid over-

fitting the training data. The training process was halted after 20 iterations without improve-

ment to the performance of the validation set, and a maximum of 500 iterations of the learning

algorithm was allowed.

Performance measures

We use three measures to quantify the models’ performance: an index of precision—the root

mean squared error (rmse), a measure of similarity—Pearson’s linear correlation coefficient

(r), and a measure that combines both—the Concordance Correlation Coefficient (ccc; [62]).
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Given that the trade-off between precision and similarity of the temporal paths is fundamental

for an accurate estimation of unfolding of the emotional expression (particularly in the case of

music since in speech fast changes in emotional tone are less likely to occur in most circum-

stances), we optimised the model using the ccc cost function. We report rmse and r for clarity,

and because it allows to better interpret the results given that ccc is a compound measure. The

rmse is measured in the same units as the data, and should therefore be interpreted carefully.

Given that model outputs (as well as the golden standard) vary between -1 and 1, an informa-

tive way is to consider a normalised version of the rmse, which can be achieved by diving the

original rmse values by the range of observed values (in our case 1 − (−1) = 2. This value is an

intuitive measure of the magnitude of the error. The interpretation of r is straightforward—

larger values indicate a better linear correlation between model outputs and target values. Our

analysis will be guided by the interpretation of ccc, r and rmse. ccc provides a global indication

of the models’ performances in terms of precision (also depicted by rmse) and similarity (mea-

sured by r) of the affective trajectories for each piece. In order to determine whether the differ-

ent conditions yielded results that are significantly different from each other, we conducted

statistical comparisons between the performances in each experiment using Student’s t-tests

with Bonferroni corrections for multiple comparisons (three tests, therefore the p-values were

multiplied by three).

Results

DAE pre-training

In Table 5, we show the statistics on the reconstruction errors of the DAEs with different num-

ber of hidden blocks and noise variability (σ) applied to the inputs. These results were obtained

with the optimised learning rate for each hidden layer size (as described in the previous sec-

tion; values also indicated in the table: LRdae). As it can be observed, the DAEs could reproduce

very well the input features for all parameters tested. The optimised learning rate tended to

increase for higher values of σ, as well as the rmse. r tended to decrease for increasing σ. The

best reproductions of the inputs were achieved for smaller sizes of the hidden layer.

Regression task

In Table 6, we summarise the complete set of results obtained for the MER (left) and SER

(right) regression tasks in the three experimental conditions: intra-domain (M2M and S2S),

cross-domain (M2S and S2M), and cross-domain with TL (M2STL and S2MTL). DS2DT indi-

cates the direction of knowledge transfer—DS is the source domain (Music or Speech), and DT

is the target domain (Speech or Music). The performance figures shown correspond to the

Table 5. DAE performance for different hidden layer sizes, and various variances of the Gaussian noise σ applied to the inputs during training. For

each combination of σ and #LSTMblocks, we indicate the mean-squared error rmse and Person’s linear correlation coefficient r (rmse / r for each cell).

LRdae σ #LSTMblocks

50 75 100 150 200

5 × 10−7 0.1 27 / 0.808 21 / 0.880 16 / 0.926 12 / 0.950 9 / 0.968

1 × 10−6 0.2 28 / 0.806 21 / 0.881 16 / 0.928 13 / 0.950 10 / 0.969

1 × 10−6 0.3 28 / 0.804 21 / 0.881 17 / 0.921 14 / 0.942 13 / 0.955

1 × 10−6 0.4 28 / 0.799 22 / 0.872 18 / 0.909 16 / 0.930 14 / 0.943

1 × 10−6 0.5 29 / 0.791 22 / 0.863 19 / 0.899 17 / 0.916 16 / 0.928

5 × 10−6 0.6 29 / 0.785 23 / 0.851 20 / 0.887 19 / 0.902 18 / 0.912

https://doi.org/10.1371/journal.pone.0179289.t005
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average of each measure across the five best trials in each experimental condition, and are

shown separately for Arousal and Valence for better interpretability. In the table, we also indi-

cate the values of the hyper-parameters optimised in the development phase.

Before describing the results pertaining to the focus of this article (the comparisons between

the experimental conditions), it is important to make some considerations about the quality of

the predictions. As it can be observed in Table 6, results show very good fits to the Arousal

data for both Music and Speech experiments, and moderate fits to Valence. Indeed, in relation

to Arousal, r> 0.5 in all experiments which suggest an excellent fit to the data. Furthermore,

all rmse’s are smaller than 0.223, which, considering that the range of the outputs is [-1, 1], cor-

responds to a maximum normalised rmse of approximately 11% (0.223/2), and therefore also

an excellent precision. The results concerning Valence are clearly less positive, which is not

surprising given the fact that Valence is harder to be perceived by people and automatically

estimated (see, for instance, [10, 21]). This is particularly evident in terms of similarity (r can

be as low as 0, 175), but not so accentuated in terms of precision (the worst normalised rmse
was 13%, which is similar to Arousal). Generally, these results indicate a good fit the data in

both domains, and confirm our expectations in terms of modelling emotional responses to

music and speech using acoustic descriptors (in this case the ComPaRe 2013 feature set).

Music as the target domain. We focus now on the statistical analysis of the experiments

where Music was used as the target domain, i.e., M2M, S2M and S2MTL).

In relation to Arousal, results show that all conditions achieved statistically the same perfor-

mance in terms of ccc and r (p> 0.05 in all cases). In terms of precision, the performance of

the cross-domain models was slightly worse than the model only trained on music (t(M, S2M)

= −3.96, p = 0.004, t(M, S2MTL) = −4.12, p = 0.003).

Regarding Valence, the two cross-modal models performed generally better than the base-

line model. Indeed, the statistical analysis of the ccc values showed that the performances of

S2M and S2MTL were significantly higher than the baseline model (t(M, S2M) = −3.84,

p = 0.005 and t(M, S2MTL) = −2.86, p = 0.021). Furthermore, the S2M model performed better

than S2MTL (t(S2M, S2MTL) = 2.36, p = 0.046), and therefore yielded the best performance.

Table 6. Results obtained for the test sets of the various experimental conditions (Music on the left side, and Speech on the right). The performance

of the various approaches is quantified using the root-mean-squared-error (rmse), Pearson’s linear correlation coefficient r, and the concordance correlation

coefficient ccc. For each experiment, the performance measures were averaged across the five best trials. ID: intra-domain (M2M and S2S, baseline models

trained and tested on the same database); CD: cross-domain (S2M and M2S); CDTL, cross-domain transfer learning (S2M and M2S); DS) DT (where DS is

the source domain, and DT the target domain).

MUSIC SPEECH

Intra-Domain Cross-Domain Intra-Domain Cross-Domain

M2M S2M S2MTL S2S M2S M2STL

First layer size 150 200 200 150 200 150

Second layer size 10 10 10 10 8 10

Learning rate 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6

Gaussian noise σ 0.5 0.5 0.4 0.4 0.1 0.1

Arousal rmse 0.194 0.223 0.223 0.105 0.142 0.141

r 0.517 0.524 0.542 0.821 0.693 0.719

ccc 0.317 0.276 0.269 0.749 0.545 0.567

Valence rmse 0.265 0.260 0.265 0.109 0.143 0.151

r 0.175 0.256 0.218 0.448 0.228 0.246

ccc 0.090 0.133 0.117 0.332 0.164 0.181

https://doi.org/10.1371/journal.pone.0179289.t006
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There were no differences in terms of precision, but the S2M lead to statistically better results

than the M2M model in terms of r (t(M, S2M) = −3.51, p = 0.008).

In sum, the models trained on speech (with or without the pre-trained layer) delivered sta-

tistically the same performance of the baseline model trained and tested on music for Arousal,

and the S2M model delivered the best results for Valence. In Figs 2 and 3 we show the Arousal

and Valence predictions for two music pieces (used here as examples; they do not necessarily

represent the best or worst instances). The Arousal and Valence values shown were obtained

from the best models in each condition (M, S2M and S2MTL). We also represent the respective

golden standards.

Speech as the target domain. We turn now to the experiments where Speech was the tar-

get domain. Looking first at Arousal, the baseline model yielded higher ccc than the cross-

domain models (t(S, M2S) = 31.2, p< 0.001, t(S, M2STL) = 14.7, p< 0.001). This was also the

case both in terms of r (t(S, M2S) = 7.21, p< 0.001; t(S, M2STL) = 9.59, p< 0.001), and rmse (t
(S, M2S) = −9.54, p< 0.001; t(S, M2STL) = −10.7, p< 0.001). There were no statistically signifi-

cant differences between both cross-domain models (p> 0.05). The results pertaining Valence

are identical. The intra-domain model S performed globally better than the cross-domain

models (t(S, M2S) = 24.2, p< 0.001, t(S,M2STL) = 15.9, p< 0.001), and there were no signifi-

cant differences between the cross-domain models M2S and M2STL. The differences in the

global performance are related to a decreased performance in terms of r for both cross-domain

models (t(S, M2S) = 15.1, p< 0.001, t(S,M2STL) = 16.3, p< 0.001), and a decrease in terms of

precision (t(S, M2S) = −2.43, p = 0.041; t(S,M2STL) = −5.28, p = 0.001). In Figs 4 and 5, we

show the predicted Arousal and Valence by the best models in each condition (S, M2S and

Fig 2. Time-continuous Arousal and Valence predictions by the intra- (M) and cross-domain (S2M,

S2MTL) models for Minority Report, Main Theme (taken from MDB3
, piece 6 in [10]). The golden standard

is also shown (‘Targets’).

https://doi.org/10.1371/journal.pone.0179289.g002
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M2STL)) against the respective golden standards for two speech samples (once more the two

instances selected do not necessarily represent the best or worst instances—they are used for

illustrative purposes only).

Discussion and conclusions

In this article, we focused on time-continuous predictions of emotion in music and speech,

and investigating the overlap between these two tasks. Indeed, as discussed at the outset, given

the tight relationships between the acoustic codes for emotional expression in music and

speech, it is plausible to assume that, the communication of emotion in both domains may be

achieved by means of shared acoustic patterns. In this context, we proposed to transfer knowl-

edge from one domain to the other with the aims of exploring the extent of the overlap

between domains, and testing whether it is possible to enlarge the amount of data available to

develop MER and SER systems by combining both domains. In our experiments, we estab-

lished a comparative framework including intra- (i.e., models trained and tested on the same

modality, either music or speech) and cross-domain experiments (i.e., models trained in one

modality and tested on the other). The intra-domain models were used as a baseline. In the

cross-domain context, we evaluated two strategies—the direct transfer of knowledge between

domains, and the contribution of Transfer Learning techniques, namely feature-representa-

tion-transfer based on Denoising Auto Encoders.

Fig 3. Time-continuous Arousal and Valence predictions by the intra- (M) and cross-domain (S2M,

S2MTL) models for a representative music piece: The Searchers, Suite (taken fromMDB3
, piece 8 in [10]).

The golden standard is also shown (‘Targets’).

https://doi.org/10.1371/journal.pone.0179289.g003
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There are various relevant conclusions and observations deriving from our results and anal-

yses. Starting with overall performances per domain, we found that the speech regression tasks

delivered a much better performance compared to the music task for both affective dimensions

(Arousal and Valence). Furthermore, as expected from most previous work on Affective Sci-

ences and Affective Computing, Arousal predictions were more accurate than those of Valence

for both domains. The fact that we obtained a better performance for the speech compared to

music may simply be the consequence of the datasets used, nonetheless there are at least two

other possible interpretations. First, predicting emotion in music may be a more challenging

task (especially in relation to Valence). This is plausible to assume for various reasons, includ-

ing the fact that emotion recognition in music is more stereotyped and listener dependant

(e.g., [2]), and that valence can be ambivalent in music (e.g., [63]). Furthermore, emotions

expressed in the voice have a functional (biological) role, and are meant to communicate spe-

cific emotional meanings, something that does not necessarily happen in the case of music [2].

Second, the music model may be under-performing because the feature set used was initially

developed for speech-related tasks, and, albeit commonly and effectively used for music tasks,

may be lacking important features for music emotion recognition. In point of fact, in [34] it

was shown that, the addition of only a few features related to duration, dissonance (rough-

ness), and sharpness to the feature set used in this paper can significantly improve intra-

domain music emotion recognition.

Fig 4. Time-continuous Arousal and Valence predictions by the intra- (S) and cross-domain (M2S, M2STL)

models for a RECOLA speech sample (male speaker; instance id: ‘Recola_P26_GRP13_2_HQ’). The

golden standard is also shown (’Targets’).

https://doi.org/10.1371/journal.pone.0179289.g004
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We turn now to our considerations concerned with the central focus of this paper—the

comparison between intra- and cross-domain experiments. In the of case of Music as the target

domain, we found that the Arousal predictions in all three conditions (M2M, S2M and S2MTL)

were similar, although the cross-domain models were slightly worse in terms of precision. The

cross-modal models (S2M and S2MTL) performed significantly better than the baseline model

(M2M) when predicting Valence, and there were no significant differences between both. In

relation to Speech as the target domain, for both Arousal and Valence predictions, the intra-

domain models (S2S) performed significantly better than the cross-domain models (M2S and

M2STL), which achieved statistically the same performance. These results evidence two impor-

tant aspects relating to the transfer of knowledge between domains:

1. Knowledge transfer (with or without domain adaptation) from speech to music was more

successful than in the opposite direction. Indeed, emotions in music could be predicted

with models trained on speech or music equally, whereas the speech model trained on

speech data outperformed those trained on music.

2. Knowledge transfer approaches with and without domain adaptation lead to the statistically

same results for both Music and Speech.

In relation to (1), our results can simply reflect the nature of the datasets, and particularly

the distributions of targets for each database. This is evident in Fig 6, which shows that music

and speech emotions ratings in the databases used are only partially overlapping—there are

Fig 5. Time-continuous Arousal and Valence predictions by the intra- (S) and cross-domain (M2S, M2STL)

models for a RECOLA speech sample (male speaker; instance id: ‘Recola_P56_GRP28_2_HQ’). The

golden standard is also shown (’Targets’).

https://doi.org/10.1371/journal.pone.0179289.g005
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Fig 6. Distribution of the target annotations of the databases used in the regression tasks. Dots and squares (music and speech, respectively)

represent the Arousal and Valence values at each time step for all instances used in the regression experiments (time is not represented).

https://doi.org/10.1371/journal.pone.0179289.g006
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zones in the bi-dimensional space formed by Arousal and Valence that are covered by the

music database, but not by the speech instances. The most clear examples are the top-left (high

Arousal and negative Valence) and bottom-right (low Arousal and positive Valence) quad-

rants, but it is generally visible that the emotions perceived in music are more varied. Another

possible justification for the knowledge transfer asymmetry is the fact that music makes use of

acoustic patterns to convey emotions that are not used in speech, and therefore such knowl-

edge is not transferable. This is plausible considering the much wider range of sounds (com-

pared to speech) that is possible to produce with music instruments (and nowadays

computers), and their qualities and organisation in time. In this context, there may be a wider

range of emotion conveying mechanisms at work, derived from a wider range of acoustic

sources available in music, and possibilities to combine sounds in meaningful ways (including

emotional). This is coherent with contemporary theories of music evolution, such as the musi-
language model [12], which posits that, music has specialised in the communication of affec-

tive meaning (whereas language specialised in the communication of referential meaning).

Furthermore, there is evidence of brain specialisations for music, which are related, among

other aspects, to the encoding of pitch along musical scales and the ascribing of a regular beat

to incoming acoustics signals [64]. Such brain networks may also encode important informa-

tion about music, and particularly patterns related to the recognition of emotion. In that case,

as mentioned above, it is also possible that the standard features used lack relevant information

specific to music.

Regarding (2), our findings reveal two important pieces of evidence: a) the standard cross-

domain approach led to excellent cross-domain generalisations; b) knowledge transfer by fea-

ture-representation-learning did not lead to significant improvements over the standard

cross-domain approach. One the one hand these findings indicate that the cross-domain mod-

els perform well even without adaptation of the feature space, reinforcing the ideas of a close

coupling between both domain in terms of acoustic codes for emotional communication. On

the other hand, considering that we have used deep neural networks in both cross-domain

experiments (with the same number of hidden layers), it may indicate that, the pre-training

process did not extract additional, relevant statistical information from the features spaces of

the source and target domains. In this case, larger, more varied unlabelled databases may be

needed to sample a sufficient amount of information from the features in both domains. Also,

deeper architectures may favour the extraction of relevant representations at different struc-

tural levels (see, for instance, [65] for stacked DAEs with sparse rectifier units approach), and

the fine-tuning of the pre-trained layer during the regression task may be also advantageous.

In sum, our results show an evident and excellent cross-domain generalisation of time-con-

tinuous estimations of emotional Arousal and Valence in music and speech even without the

support of Transfer Learning (in this case feature-representation-transfer). This is a clear dem-

onstration that there is a substantial overlap between the acoustic codes for emotional expres-

sion in music and speech, which can help explain the power of music to communicate

emotions to its listeners by confirming the existence of shared acoustic codes for emotional

communication. These findings are also beneficial for computer scientists interested in auto-

matic estimation of emotion due to the fact that data from either domain (music or speech)

can be used to develop models emotion recognition models. This is particularly relevant in

contexts where the amount of data in either domain is scarce, which is clearly the case of

music, but also in contexts where the whole emotional spectrum is not represented by a partic-

ular dataset and can be complement by data from another domain (the emotions typically

experienced with music are a different subset from those most commonly experiences in

everyday life circumstances; see for instance [28, 29]. Finally, we would like to highlight some

limitations of this work. The first one pertains to the datasets used. Time continuous labelled
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databases of music and speech are scarce, and the datasets used here are limited in that they

cannot cover the whole emotional spectrum. As mentioned, this may have limited the transfer

of knowledge from music to speech. Second, we have only tested a particular Transfer Learn-

ing technique and did not perform adaptation on the regression targets. In future work, we

plan to explore alternative Transfer Learning techniques (e.g. functional transfer) to further

evaluate whether it can benefit the knowledge transfer between features spaces, as well as

attempt to deal with the mismatches between the distributions of the regression outputs.

Third, we worked with a feature set that was optimised for Speech Emotion Recognition, even

though it is commonly (and successfully) used for Music Emotion Recognition tasks. In future

work, we intend to conduct more detailed analysis on the characteristics of feature space and

enlarge it with new cross- and intra-domain features.
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