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Abstract

In the present study, we applied Machine Learning (ML) methods to identify psychobiologi-

cal markers of cognitive processes involved in the process of emotion elicitation as postu-

lated by the Component Process Model (CPM). In particular, we focused on the automatic

detection of five appraisal checks—novelty, intrinsic pleasantness, goal conduciveness,

control, and power—in electroencephalography (EEG) and facial electromyography (EMG)

signals. We also evaluated the effects on classification accuracy of averaging the raw

physiological signals over different numbers of trials, and whether the use of minimal sets of

EEG channels localized over specific scalp regions of interest are sufficient to discriminate

between appraisal checks. We demonstrated the effectiveness of our approach on two

data sets obtained from previous studies. Our results show that novelty and power appraisal

checks can be consistently detected in EEG signals above chance level (binary tasks). For

novelty, the best classification performance in terms of accuracy was achieved using fea-

tures extracted from the whole scalp, and by averaging across 20 individual trials in the

same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance

was obtained by using the signals from four pre-selected EEG channels averaged across all

trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate

that accurate classification can be achieved with a relatively small number of trials and chan-

nels, but that averaging across a larger number of individual trials is beneficial for the classi-

fication for both appraisal checks. We were not able to detect any evidence of the appraisal

checks under study in the EMG data. The proposed methodology is a promising tool for

the study of the psychophysiological mechanisms underlying emotional episodes, and their

application to the development of computerized tools (e.g., Brain-Computer Interface) for

the study of cognitive processes involved in emotions.
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Introduction

Research in the affective sciences aims at understanding the mechanisms driving human emo-

tion (and related processes). Although a definition of emotion that all emotion researchers

would agree on is lacking (see e.g., [1–3]), emotions can generally be described as responses to

events that are important to an individual, and typically include cognitions, action tendencies,

bodily responses, expression and subjective feelings (see e.g., [1, 3, 4]). A prominent set of the-

ories in this area that attempts to explain the cause and variation of emotions are the so called

“appraisal” theories. Appraisal theorists consider event evaluation (appraisal) to be the core

mechanism of emotion elicitation and differentiation. They conceptualize emotion as an emer-

gent, dynamic process, initiated by the individual’s subjective appraisal of events (see [5–8]).

Appraisal refers to cognitive mechanisms that rapidly judge the personal impact of emo-

tion-evoking objects, events, or situations. Several appraisal criteria (e.g., novelty, pleasantness,

goal conduciveness, and coping potential) operate to assess the impact of an event on the indi-

vidual (e.g., [8]). The unique combination of the outcomes for the different appraisal criteria

determines the type and intensity of the elicited emotion(s). This outcome will in turn orches-

trate a series of (coordinated) responses in the so-called emotion components such as motiva-

tion (e.g., approach or avoidance), bodily responses (e.g., cardiovascular changes), expression

(facial, vocal, and gesture), and subjective feelings (the conscious experience of an emotion)

(see [5] for an overview). The role of appraisal processes in the elicitation and differentiation

of emotional episodes has been incorporated in the main theoretical approaches to emotion

(including modern work in the basic emotion and constructivist traditions, see e.g., [9, 10];

also, see [3] for a review). However, in the current work, we focus on appraisal models, as

these make the most specific predictions about these cognitive mechanisms.

The Component Process Model (CPM)

A prominent appraisal model of emotion that proposes a framework representing and opera-

tionalizing the components and functions of emotion as a psychobiological and cultural

adaptation mechanism is the CPM ([5]). The CPM describes a functional architecture of the

appraisal process. Specifically, several major so-called stimulus appraisal checks (SECs), each

evaluating specific information concerning the emotion-eliciting event, assess the overall sig-

nificance of an event in a fixed sequence (see Fig 1). First, the relevance of the event for the

individual is assessed. Second, the implications or consequences of the event, and how they

affect the individuals well-being are inferred. Next, coping potential estimates how well the

individual can cope with or adjust to these implications. Lastly, the normative significance of

the event for the individual is appraised (i.e., the impact of the event on self-concept, internal-

ized social norms and values). At each moment individuals rapidly evaluate events on the

bases of these major appraisal checks. Importantly, each major appraisal check determines a

number of specific subordinate appraisal criteria. For example, subordinate appraisal criteria

for relevance detection are novelty, intrinsic pleasantness (or valence) and goal relevance; for

implication assessment causal attribution, outcome probability, discrepancy-from-expectation,

goal conduciveness, and urgency; for coping potential determination control, power, and adjust-
ment. These appraisal checks are sequentially and recursively processed, and their results are

cumulatively integrated into a specific emotional response pattern which is centrally repre-

sented and often reaches consciousness. In other words, the profile of an appraisal check

sequence offers unique information about the quality and the intensity of the emotional state

of an individual person. Furthermore, the CPM holds that the outcome of each (subordinate)

appraisal check triggers a cascade of efferent effects to the autonomic nervous system (e.g.,
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cardiovascular and respiratory changes) and the somatic nervous system (causing muscular

activity changes which become evident as emotional expressions in face, voice, and body).

Analysis of brain and facial muscle activity

Although emotion theories offer very detailed explanations about appraisal processes, these

are typically phenomenological and very little is known about the actual biological substrates

supporting them. Research aimed at better understanding the cognitive and psychobiological

processes underlying emotion elicitation and expression often involves the study of patterns in

brain activity (electroencephalography; EEG) and facial muscle activity (facial electromyogra-

phy; facial EMG) (see [11] for a review of methods commonly used for the measurement

of emotion). Such data allows advancing the systematic testing of emotion theories and the

development of sophisticated tools for the assessment of (deviations in) emotional processing.

Recently, such methods have also been used to provide empirical evidence for the CPM (see

[12] for an overview).

However, the analysis of EEG and facial EMG data poses a number of important methodo-

logical challenges: In addition to issues related to high dimensionality (i.e., large number of

signals), both types of signals are characterized by non-stationarity, low signal-to-noise ratios

(SNRs), and large trial-to-trial and participant-to-participant variability. As a means to deal

with these challenges of physiological data analysis, traditional neuroscientific analysis strate-

gies are based upon averaging methods (i.e., calculating the grand average over trials of an

Fig 1. Component Process Model. The Component Process Model (CPM, e.g., [5]) describes a functional architecture

of the appraisal process.Several appraisal checks (each evaluating specific information of an event) assess in a fixed

sequence the overall significance of an event at four major levels: relevance of the event for the individual; implications
or consequences of the event; coping potential how well the individual can cope with or adjust to these implications;

and normative significance of the event.

https://doi.org/10.1371/journal.pone.0189367.g001
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experimental condition) to eliminate random noise and to enhance signal distinctiveness (i.e.,

SNRs). This approach is costly and time-consuming as it often requires hours of recordings

(e.g., a minimum number of trial repetition is necessary to reduce noise sufficiently through

averaging). This may affect the processes under investigation, for example, due to habituation,

fatigue, or learning. Moreover, extensive EEG and facial EMG recordings are not always possi-

ble, especially in the case of specific populations (e.g., babies, children, or patients with mental

or neurological conditions). The challenge is thus to create new analysis strategies that allow

a robust data-driven identification and discrimination of relevant information in EEG and

EMG signals based on a restricted number of trials.

In this context, Machine Learning (ML) methods are a promising technique. ML is a sub-

field of Computer Sciences focused on the study and creation of algorithms that can learn

from and make predictions on data [13], and permitting computers to learn without being

explicitly programmed [14]. Using ML techniques computers learn by searching for distinct

patterns in data. This helps them to deal with the challenges of central and peripheral physio-

logical signals without requiring a priori decisions about the analyses of the EEG and EMG

recordings.

Overview of this paper

In this paper, we describe an application of ML to the detection of EEG and facial EMG signal

patterns related to the processing of appraisal checks. Whereas ML techniques have been

applied to the recognition of user states (including affective states) from EEG [15] and EMG

[16] signals, this is the first time that ML is being used to identify evidence of fine-grained

information of emotional processes.

Using two data sets from previous studies [17, 18] designed to examine predictions of the

CPM about the processing and efferent effects of appraisal checks, our aims are three-fold:

First, we want to determine whether experimental manipulations of appraisal checks (e.g.,

the detection of a novel event vs. a familiar one) are consistently detectable in EEG and EMG

activity using ML techniques. In particular, having in mind the application of this work to the

automatic detection of appraisal checks in new data, we focus on a participant-independent

scenario, that is, creating models by detecting patterns from a subgroup of all participants, and

testing them in signals from a new subgroup of participants.

Second, we aim to identify the minimal number of trials of an experimental condition nec-

essary for a successful classification by the created ML models, using the single-trial recordings

and the average recordings over different numbers of trials (2, 3, 4, 5, 10, 20, and all trials; see

Fig 2). Third, we explore whether a small set of EEG channels over specific scalp regions (e.g.,

midline frontal and parietal) that have been previously shown to be associated with appraisal

processing is sufficient to detect signals related to specific appraisal checks (and therefore,

could reduce the complexity of an experimental setup).

Data sets

The data in this work were taken from two previous studies ([17, 18]) that addressed three fun-

damental questions regarding the mechanisms underlying the appraisal process: Whether

appraisal criteria are processed (a) in a fixed sequence, (b) independently of each other, and (c)

by different neural structures or circuits. In Study 1 ([17]), an oddball paradigm with affective

pictures was used to experimentally manipulate novelty and intrinsic pleasantness appraisal

checks. This data set includes EEG and facial EMG recordings from twenty-six subjects. In

Study 2 ([18]), a gambling task was applied in which feedback stimuli manipulated simulta-

neously the information about goal conduciveness, control, and power appraisals. This data
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set includes EEG and facial EMG recordings from twenty-four subjects. In both studies, EEG

was recorded during task performance, together with facial EMG, to measure, respectively,

cognitive processing and efferent responses stemming from the appraisal manipulations. Full

details about the studies can be found in the original publications. The complete data sets as

well as a full description (including pre-processing procedures) are freely available [19, 20]In

the following subsections, we provide the core information of the two data sets with relevance

to this article.

EEG recordings and pre-processing

The EEG was recorded at 512 Hz with a Biosemi Active-Two system (BioSemi Biomedical

Instrumentation, Amsterdam, the Netherlands) from 64 active electrodes referenced to an

active common mode sense (CMS) and with a passive driven right leg (DRL) ground electrode.

Fig 2. Typical EEG and EMG signals. Typical EEG (Pz electrode signal; left) and facial EMG (Frontalis muscle signal; right) signals

for the two contrasting conditions (“high” vs. “low”) of the Control appraisal check (one participant from Study 2). The signals are

shown for single trials and the average signal over 2, 3, 4, 5, 10, 20 and all trials (example data from [17]).

https://doi.org/10.1371/journal.pone.0189367.g002
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All electrodes were mounted in an elastic cap and evenly distributed over the head surface

according to the international extended 10–20 system.

Study 1. In this study [17] an oddball paradigm with affective pictures was used to

experimentally manipulate novelty and intrinsic pleasantness appraisal checks. Signals were

pre-processed offline using Brain Vision Analyzer software (version 2.0, Brain Products,

Gilching, Germany). Bad channels were interpolated using a topographic interpolation

(using spherical spline; [21]), with a maximum of six channels for each individual data set.

Interpolation affected channels from the smallest set (EEG channels of interest; see Section

Computational experiments for more details) in only one participant, and channels from

the second set (those of interest plus the surrounding 13 channels) in only four participants.

Overall, only 2.1% of the total data (25 participants x 64 channels) were interpolated. Finally,

data were downsampled to 256 Hz with a spline interpolation, filtered (high pass: 0.1 Hz, 24

dB/oct; low pass: 30 Hz, 48 dB/oct), and re-referenced to an average reference including all

electrodes.

Next, data were segmented into epochs ranging from -200 to +800 ms relative to stimulus

onset, based on codes synchronized to stimulus presentation. All segments were corrected for

the effects of eye blinks and eye movements using a standard procedure [22], and segments

including motor responses or artifacts (amplitude values larger than 75 μV, a difference > 100

μV between the lowest and the highest amplitude within the segment, a period > 100ms with

activity < 0.50 μV, or a difference > 50 μV between two subsequent sampling points) were

excluded.

Finally, baseline (-100 to 0 ms relative to stimulus onset) corrected data of the post stimulus

time interval were exported for all remaining segments of the six relevant experimental condi-

tions (2 novelty × 3 intrinsic pleasantness). The final number of EEG trials retained and used

in our study (across all participants and conditions) amounts to 16666. Channels of interest

were the three midline electrodes (Fz, Cz, Pz), for the P3 and the late positive potential (LPP)

event-related potential (ERP) components.

Study 2. In this study [18], a gambling task was applied in which feedback stimuli

manipulated simultaneously the information about goal conduciveness, control, and power

appraisals. Signals were pre-processed offline. First, they were downsampled to 256 Hz

using the Biosemi decimeter software package (BioSemi Biomedical Instrumentation,

Amsterdam, Netherlands). Next, in EEGLAB (version 11.0.4.3b; [23]), implemented in

Matlab R2012a (The MathWorks, Inc., Natick, MA), the data were high-pass filtered (0.1

Hz), noisy channels were removed, horizontal and vertical eye movements were corrected

(based on individual component maps, extracted by Infomax independent component anal-

ysis implemented in EEGLAB (see [24]). Then, the data were exported to Brain Vision Ana-

lyzer software (BVA, Brain Products, Gilching, Germany). In BVA, the spherical spline

interpolation of channels, low-pass filtering 30 Hz and segmentation (-200 ms pre-stimulus

and 1500 ms post-stimulus) were performed similar to Study 1. Interpolation affected a

channel from the smallest set (four EEG channels of interest) in only three participants, and

one or two channels from the second set (16 channels) in nine participants. Overall, only

4.4% of the total data (24 participants x 64 channels) was interpolated. Finally, trials in

which artifacts exceeded ±110 μV were removed (2.62% total amount of excluded trials

across all participants).

Finally, the segmented data were baseline corrected (-200 to 0 ms relative to stimulus onset)

and single trials were separated according to their experimental condition. The final number

of EEG trials retained in Study 2 and used in the present analyses (across all participants and

conditions) amounts to 20185. Channels of interest were Fz and FCz for the feedback-related

negativity ERP component, and Pz and POz for the P3 ERP component.
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Facial EMG recordings and pre-processing

The similar data acquisition and pre-processing steps were applied in both studies. Facial

EMG was recorded from six electrodes (Study 1: using a Biopac amplifier system and Study 2

using the Biosemi EMG electrodes). All electrodes were attached to the left side of the face, cor-

responding to three distinct bipolar montages over the medial frontalis, the corrugator super-

cilii, and the zygomaticus major muscle regions [25].

Signals were pre-processed offline using MATLAB software (version 7.12.0.635, The Math-

Works, Inc., Natick, MA, USA). All data were band pass filtered from 20-400 Hz, rectified,

smoothed with a 40 Hz low pass filter, and downsampled to 256 Hz. Next, data were seg-

mented into epochs ranging from 0 to 1,500 ms relative to stimulus onset, based on codes syn-

chronized to stimulus presentation.

Then, the distribution of EMG values for each muscle region was closely inspected for out-

lying values. Given the lack of established methods in the literature, EMG trials were evaluated

based on the range of values (maximum—minimum) for each muscle region. Outlying trials

were identified using a threshold of twice the upper 75th percentile value of ranges (over all

individual trials across participants and conditions) for each muscle region. This level seemed

to provide a good balance between excluding clearly divergent recordings (e.g., trials contami-

nated by movement artifacts) while still including relatively large reactions that contain an

important signal of the manipulated appraisal checks. Any trial whose range was greater than

this value, for any of the three muscle regions, in either the baseline or post-stimulus period,

was removed. If any participant had over 50% of total trials outlying, all trials for that partici-

pant were removed (this was the case for two participants). This decision was motivated by

considering that this excessive activity could be due to movement artifacts and/or misplace-

ment of the EMG electrodes.

Finally, all trials were baseline corrected in relation to the average of the pre-stimulus period

of 100 ms, and only the post-stimulus period of 1500 ms was exported for further analysis. The

final number of EMG trials retained amounts to 21529 (Study 1) and 18480 (Study 2).

Computational experiments

In this section, we describe the computational experiments conducted to model each appraisal

check independently. Given that the EEG and EMG recordings for each experimental condi-

tion consisted of the simultaneous manipulation of two (Study 1: novelty and intrinsic pleas-

antness) and three (Study 2: goal conduciveness, control, and power) appraisal checks, the

original experimental conditions were converted into appraisal check-specific three (intrinsic

pleasantness: three levels) and two (all other appraisal checks: two levels) class problems. In

this way, all available trials were used for the development of a ML classifier for each appraisal

check. In this context, a ML classifier is an algorithm developed to identify to which set of cate-

gories (or sub-populations) a given observation (hereafter named instance) belongs, by using

a training set of data containing observations (i.e., instances) whose category membership is

known. Using Study 1 as an example, all trials involving the presentation of “novel” stimuli

(outcome of the novelty check) were labeled as “novel” irrespective of the manipulated intrin-

sic pleasantness check (negative, neutral, or positive).

In order to investigate the impact of averaging different numbers of trials on the classifica-

tion performance, and to identify the minimal number of trials necessary to achieve the best

possible classification results, we created different classifiers to discriminate the outcome of

the various appraisal checks from single trials and averaged trials (2, 3, 4, 5, 10, 20, and all trials

available for each class). For each number of averaged trials T, the average of each EEG and

EMG channel signal of each participant was computed for all groups of T trials available for a
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specific class. When the number of available trials for a specific class is not a multiple of T,

the remaining trials were discarded. The number of instances available for each classification

experiment is shown in Table 1. In Table 2, we indicate the total number of trials per class in

each classification task, as well as the average, maximum and minimum number of instances

available per participant (shown separately for appraisal check, class, and signal type).

We also explored the use of two subsets of EEG channels localized at specific scalp regions

where effects of the appraisal checks were observed in the traditional EEG analyses of Studies 1

and 2. The specific EEG channels identified in the traditional analyses of the studies are shown

in Table 3. The first (smallest) set corresponds to those EEG channels measuring the activity in

the relevant localized scalp regions associated with the appraisal checks of each study. The sec-

ond set includes the same channels plus all immediately neighbouring channels. Finally, the

last set includes the full set of EEG channels. For each set of channels, we conducted classifica-

tion experiments for all single trials and averaged trials input signals. It should be noted that

Independent Component Analysis (ICA) could also have been used as a preliminary method

for the identification of maximally temporally independent EEG signals in the full scalp data,

which in turn could have been used to reduce the dimensionality of the EEG signal space. This

is indeed a standard method used in traditional EEG analyses. Nonetheless, given the evidence

from the original analysis results of Studies 1 and 2, we decided for a theoretically-driven selec-

tion (rather than a data-driven selection).

Support vector machine classifiers

In our experiments, we applied Support Vector Machines (SVMs; e.g., [26]) for the partici-

pant-independent classification of the single trials and the averaged trials of the EEG (so-called

ERPs) and EMG signals (frontalis, corrugator, and zygomaticus muscle regions) of the five

appraisal checks investigated in Study 1 (novelty, intrinsic pleasantness) and Study 2 (goal con-

duciveness, control, and power).

Table 1. Number of instances available in the data sets obtained from Study 1 and Study 2 for the classification of

single trials and averaged trials (Av.). Values are shown for both studies and signal types.

Study Input signal Number of instances

EEG EMG

1 Single trials 16666 21529

Av. of 2 trials 8222 10655

Av. of 3 trials 5449 7074

Av. of 4 trials 4071 5287

Av. of 5 trials 3244 4232

Av. of 10 trials 1583 2087

Av. of 20 trials 753 1012

Av. of all trials 150 138

2 Single trials 20185 18480

Av. of 2 trials 9938 9100

Av. of 3 trials 6590 6027

Av. of 4 trials 4935 4527

Av. of 5 trials 3921 3591

Av. of 10 trials 1927 1770

Av. of 20 trials 889 830

Av. of all trials 192 176

https://doi.org/10.1371/journal.pone.0189367.t001
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SVMs are supervised learning models based on the concept of decision hyperplanes, that is,

multi-dimensional boundaries that separate sets of objects with distinct class memberships.

The goal of the SVM algorithm is to maximize the separation between classes, which consists

of finding the hyperplane that has the largest distance to the nearest training data point of any

class (also known as functional margin). Since the larger the margin, the lower the generaliza-

tion error of the classification task. A set of training instances belonging to two or more cate-

gories are used to determine the hyperplane that best discriminates among different classes

(i.e., that with the widest possible gap). The testing instances are then mapped onto this multi-

dimensional space and the side of the gap they fall determines the predicted categories.

Formally, given a set of examples [xi, yi], i = 1, 2, . . .,m, where xi 2 R
d is a d-dimensional

feature vector, and yi 2 {0, 1} is a corresponding prediction of each example, the maximum

Table 2. Number of instances available in each classification task. The values indicated are the total number of trials for each class in each classification experiment, as

well as the average (Av.), maximum (Max.) and minimum (Min.) number of trials available per participant. Values are indicated separately for each signal type (EEG and

EMG).

Signal Study Appraisal Check Class Total Av. Min. Max.

EEG 1 Novelty Familiar 12946 518 292 721

Novel 3720 149 88 204

Intrinsic Pleasantness Unpleasant 5457 218 104 310

Neutral 5574 223 141 307

Pleasant 5635 225 135 311

2 Control High 15132 631 587 647

Low 5053 211 191 216

Goal Conduciveness High 10087 420 392 431

Low 10098 421 392 432

Power High 10098 421 392 432

Low 10087 420 377 431

EMG 1 Novelty Familiar 16766 729 633 721

Novel 4763 207 182 202

Intrinsic Pleasantness Unpleasant 7206 313 274 310

Neutral 7171 312 265 302

Pleasant 7152 311 276 324

2 Control High 15138 631 577 647

Low 5049 210 181 216

Goal Conduciveness High 10090 420 371 431

Low 10097 421 387 432

Power High 10086 420 378 431

Low 10101 421 380 432

https://doi.org/10.1371/journal.pone.0189367.t002

Table 3. Sets of EEG channels used in the classification experiments. For each study, the first (smallest) set comprises

those EEG channels measuring activity in the specific regions where the effects of the appraisal checks were observed

in the traditional EEG analyses of the studies. The second set includes the same channels plus all immediately neigh-

bouring channels. Finally, the last set includes the full set of EEG channels.

Study 1 Study 2

Set 1 Fz, Cz, Pz Fz, FCz, Pz, POz

Set 2 Fz, Cz, Pz,

FCz, F1, F2, AFz, C1,

C2, CPz, P1, P2, POz

Fz, FCz, Pz, POz,

F1, F2, AFz, FC1, FC2, Cz,

P1, P2, CPz, PO3, PO4, Oz

Set 3 All 64 channels All 64 channels

https://doi.org/10.1371/journal.pone.0189367.t003
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margin separating hyperplane can be found by solving the following optimization problem:

maxaWðaÞ ¼
Xm

i¼1

ai �
1

2

Xm

i;j¼1

yðiÞyðjÞaiajKðxi; xjÞ

participant to : 0 � ai � T; i ¼ 1; . . . ;m

Xm

i¼1

aiy
ðiÞ ¼ 0;

ð1Þ

where the a0is that are Lagrangian multipliers satisfy the above constraints, T is a defined con-

stant, and K(xi, xj) is a kernel function that can be linear, polynomial, radial basis, or sigmoidal.

To classify a given test example, the following function is implemented:

f ðxÞ ¼
Xm

i

aiyiKðxi; xÞ þ b; ð2Þ

where b is the ‘bias’ term that is often assumed to have zero mean. The sign of this function

determines the category of the test example.

For the experiments reported in this paper, we used SVM with linear kernel functions as

implemented in the WEKA toolkit [27], which uses the popular Sequential Minimal Optimiza-

tion (SMO) [28] algorithm for solving the optimization problem during training. We chose

SVM because this technique has matured theoretical foundations and has shown a remarkable

performance on a variety of classification tasks over the years, including classification of physi-

ological signals [29]. Furthermore, SVM have good generalization properties (e.g., [30, 31],

are robust against overtraining [31] and to the curse-of-dimensionality [30, 32]. In particular,

the last characteristic is especially relevant for the analysis of physiological signals since the

dimensionality of the feature space is high and the training sets are relatively small. Other

modelling techniques, especially those related to Deep Learning [33], also show a strong poten-

tial for this line of research, but a comparison and optimisation of ML techniques is beyond

the scope of the present study and will be part of our future work.

Feature extraction

We extracted a set of energy- and spectrum-related features from the EEG and EMG signals.

Features were extracted on the complete signals (window size of 1,500 ms) obtained in each

trial (or, depending on the classification experiment, the average signal across several trials)

as well as segments of the signals determined by a sliding window with a size of 200 ms (EEG)

and 400 ms (EMG) with 50% overlap. For the EEG signals, the sliding windows were only

applied to the initial 1,000 ms (leading to a total of nine segments: 0-200 ms, 100-300 ms, 200-

400 ms, 300-500 ms, 400-600 ms, 500-700 ms, 600-800 ms, 700-900 ms, and 800-1000 ms). For

the EMG signals, they were applied over the whole signal (1,500 ms), which resulted in seven

segments (0-400 ms, 200-600 ms, 400-800 ms, 600-1000 ms, 800-1200 ms, 1000-1400 ms and

1200-1500 ms; the last window is 100 ms shorter than previous given the signal length).

EEG features. For the entire signal segments (1,500 ms) and each of the nine 200-ms long

sliding windows, we used rectangular windows with 10% Hanning fade to compute the log

amplitudes of eight filter banks (i.e., arrays of band-pass filters that decompose each signal

into multiple frequency components) tuned to logarithmic-scaled frequencies in the region

between 1 and 40 Hz, as well as the root mean square (RMS) signal frame energy. A logarith-

mic scale was used in order to create a set of filter banks with more filters tuned to the lower

frequencies (i.e., those frequencies where we expected to find the relevant signal information).
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Additionally, for the entire segments, we also computed the spectral centroid (i.e., the balanc-

ing point of the spectrum), the positions of minimum and maximum amplitudes, the signal

entropy (i.e., the spectral complexity or irregularity), the standard deviation, and the slope (cal-

culated from the same eight logarithmic-scaled filter banks). In total, 96 static features were

extracted for each EEG channel.

EMG features. For the entire signal segments (1,500 ms) as well the seven 400-ms long

sliding windows, we used again rectangular windows with 10% Hanning fade to compute

the log amplitudes of another set of logarithmic scaled filter banks, and the RMS signal frame

energy. In the case of the EMG signals, we used a set of 10 filter banks in the frequency range

of 20-60 Hz. Similarly to the EEG signals, for the entire segments, we also computed the spec-

tral centroid, the positions of minimum and maximum amplitudes, the entropy, the standard

deviation, and the slope (calculated from the ten logarithmic-scaled filter banks). In total, 94

static features were extracted for each facial EMG region.

For both EEG and EMG signals, each instance is described by a static vector formed

through concatenating all the extracted features for each channel used in each classification

experiment (i.e., containing all features extracted for all channels used in each experiment).

Given that the largest number of input signals in our experiments corresponds to the 64 (full

scalp) EEG channels, the maximum size of the input vector in all classification experiments is

6144 (96 x 64). All features were extracted using openSMILE suite [34].

Development and testing methods

To limit the over-fitting of the classifiers to the training data and participant-specific activity,

we used a three-fold participant-independent nested cross-validation (SICV) schema. Each

fold comprises all trials (or average across trials) obtained from one third of the participants.

In each SICV fold, one partition is used for training the classifiers (training set), another for

estimating the model parameters during the development phase (validation set), and the third

partition for testing the classifier in the unsupervised phase with a new group of participants

(test set). All sets were standardized to the mean and standard deviation of the training sets in

each fold. Additionally, given that some of the class distributions are highly unbalanced (i.e.,

the number of instances belonging to each class is very different), upsampling of the minority

classes was performed on the training set to achieve even class distributions. This was achieved

by repeating the full set of instances of the minority class(es) so that the percentage of instances

representative of each class in the training set is as similar as possible (ideally 50% for binary

classifications and 33% for ternary). The complexity parameter C that regulates margin opti-

mization (C 2 10 − 5, 10 − 4, 10 − 3, 10 − 2, 10 − 1) was optimized using the validation sets of

each SICV fold. Then, for each fold, training and validation sets were concatenated and a new

classifier was trained with the optimized parameter C estimated in the development phase.

Finally, the classifiers developed for each SICV fold were tested on the respective test sets as

well as nine bootstrapped sets sampled (with replacement) from the original test set (with the

same number of instances). The whole procedure was repeated for all classification experi-

ments (both signals types and trials averaged) reported in this paper.

Performance measures

The classifiers’ performance was quantified using the unweighted average of the class-spe-

cific recalls (or Un-weighted Average Recall; UAR), which reflects the number of correctly

classified instances. Since the theoretical chance level (100/NumberofClasses) assumes infi-

nite sample sizes, the threshold of correct classification needs to be estimated in order to cor-

rectly interpret the difference between the UAR calculated and the actual chance level for
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each experiment. This is especially important in our study given the disparity between the

number of test instances used in the classification experiments (see Table 1), and particularly

the small number of instances in some of them (less than 50). In order to estimate the analyt-

ical chance levels, we used the method described in [35], that estimates the threshold that

needs to be exceeded in order to consider the decoding statistically significant for different

sample sizes using a binomial cumulative distribution. The difference between the UAR and

the analytical chance level (diffUAR) for a specific test set size was then used to determine

the actual performance of the classifiers relative to the analytical chance level at a 95% signifi-

cance level.

Results

The results for the classification experiments for each appraisal check by signal type (and

number of channels used per signal; only for EEG) and number of trials averaged is shown

in Tables 4 and 5 (EEG), and Tables 6 and 7 (EMG). The values shown correspond to the per-

formance of the optimized classifiers on the test sets of the three SICV folds plus nine boot-

strapped sets sampled (with replacement) from the original test sets (with the same number of

instances; a total of 3 + 3 � 9 = 30 test sets per classifier). This method was used to obtain robust

estimations of the algorithm on the test set data. Furthermore, by inferring the distribution of

the test predictions, we can also apply inferential statistics to determine if they are significantly

above the empirical chance level (using one-tailed Student’s t-tests for a single sample) and

determine the configurations (channels and trials averaged) that lead to the best performances

(using Linear Mixed Models (LMM)).

Table 4. Summary of the results pertaining the classification of the EEG signals in terms of novelty and intrinsic pleasantness appraisal checks manipulation (Study

1). Results are shown for different numbers of averaged trials (Av.) per participant, and different numbers of channels. The classifiers’ performance was quantified using

the Unweighted Average Recall (UAR), and the difference between the UAR and the analytical chance level (diffUAR). Star symbols indicate significant one-tailed Student’s

t -tests conducted to examine when classification performances were significantly above empirical chance level (���p< .001, ��p< .01, �p< .05). For details on the number

of trials averaged per participants see Table 2.

Number of Av. Trials UAR diffUAR

3 ch. 13 ch. 64 ch. 3 ch. 13 ch. 64 ch.

Novelty

All
 80.2±8.9��� 82.9±7.4��� 82.3±6.2��� 18.2±9.3 20.8±7.0 20.3±6.2

20 66.1±5.2��� 71.6±2.7��� 83.5±4.2��� 10.8±5.1 16.4±2.8 28.3±4.4

10 63.6±3.8��� 68.7±2.9��� 76.8±3.8��� 9.9 ±3.6 15.1±2.8 23.2±4.0

5 64.8±2.1��� 63.6±2.0��� 72.6±3.1��� 12.3±2.0 11.0±2.1 20.1±3.2

4 61.4±1.6��� 62.9±1.9��� 71.4±3.1��� 9.2 ±1.5 10.7±2.0 19.2±3.3

3 60.2±2.8��� 62.3±2.7��� 70.1±2.2��� 8.3 ±2.7 10.4±2.7 18.2±2.2

2 59.2±1.2��� 60.3±1.2��� 67.9±2.3��� 7.6 ±1.2 8.8 ±1.2 16.4±2.2

None 56.0±1.2��� 58.6±1.3��� 64.5±1.0��� 4.9 ±1.1 7.5 ±1.3 13.4±1.0

Intrinsic pleasantness

All
 33.5±6.2 36.1±8.8 37.9±7.1 -10.4±6.2 -7.9±9.0 -6.1±7.0

20 39.3±3.2� 37.1±3.0 37.2±2.3 1.0 ±3.4 -1.0±3.1 -1.1±2.3

10 36.2±1.9 33.1±1.9 36.3±1.9 -0.5 ±1.9 -3.7±1.8 -0.5±1.9

5 33.7±1.5 34.6±2.6 34.6±1.5 -2.0 ±1.5 -1.1±2.7 -1.1±1.5

4 34.2±2.0 36.5±2.3 36.4±1.6� -1.2 ±2.1 1.1 ±2.4 1.0±1.7

3 33.8±1.7 34.6±1.9�� 35.3±0.9 -1.4 ±1.8 -0.6±1.9 0.1±0.9

2 33.8±1.3 34.2±1.1 36.1±0.7� -1.0 ±1.4 -0.6±1.1 1.3±0.7

None 34.1±0.7 34.5±0.9 34.8±0.5� -0.2 ±0.7 0.2 ±0.9 0.4±0.5

https://doi.org/10.1371/journal.pone.0189367.t004
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EEG

The results from the classification experiments using EEG signals are shown in Tables 4 and 5.

Novelty. All classification tests were significantly (and largely) above empirical chance

level (p< .001 in all cases). The results obtained indicate that averaging across a larger number

of individual trials and using the information from all EEG channels is beneficial for the classi-

fication of the novelty appraisal check. The best performance (in terms of the difference relative

to the empirical chance level) was achieved using features extracted from the whole scalp (64

channels), and by averaging across 20 individual trials in the same experimental condition

(diffUAR = 28.3 ± 4.4; UAR = 83.5 ± 4.2). The worst performance was achieved in the classifi-

cation of single trials and using the features extracted from the three channels of interest (dif-
fUAR = 4.9 ± 1.1; UAR = 56.0 ± 1.2), although even here performance was significantly (but

only modestly) above chance level.

Intrinsic pleasantness. Only a few classification tests yielded results significantly above

empirical chance level, and those that did were very modest (around 1% above empirical

chance level).

Table 5. Summary of results pertaining the classification of EEG signals in terms of control, power and goal conduciveness appraisal checks manipulation (Study 2).

Results are shown for different sizes of numbers of averaged trials per participant, and different numbers of channels (ch.). The classifiers’ performance was quantified

using the Unweighted Average Recall (UAR), and the difference between the UAR and the analytical chance level (diffUAR). Star symbols indicate the significant one-tailed

Student’s t -tests conducted to examine when classification performances were significantly above empirical chance level (�p< .05, ��p< .01, ���p< .001). For details on

the number of trials averaged per participants see Table 2.

Number of Av. Trials UAR diffUAR

4 ch. 16 ch. 64 ch. 4 ch. 16 ch. 64 ch.

Control

All
 56.1±5.9 56.6±6.3 54.9±5.9 -4.8±5.9 -4.4±6.3 -6.0±5.9

20 50.2±4.7 55.0±3.3 48.7±4.3 -4.6±4.7 0.2±3.3 -6.1±4.3

10 50.8±2.7 51.4±3.3 51.4±2.1 -2.5±2.7 -1.9±3.2 -1.8±2.1

5 52.8±1.9 51.6±1.5 51.4±1.8 0.5±2.0 -0.7±1.5 -0.9±1.8

4 51.9±1.8 51.0±1.6 49.8±1.9 -0.2±1.8 -1.1±1.6 -2.2±1.9

3 51.0±1.4 51.5±1.6 48.7±1.3 -0.7±1.4 -0.2±1.6 -3.1±1.3

2 49.6±1.0 50.1±1.3 50.2±1.5 -1.8±1.0 -1.3±1.3 -1.2±1.5

None 50.4±0.6 49.7±0.6 49.5±0.7 -0.6±0.6 -1.3±0.6 -1.5±0.7

Power

All
 70.6±5.3��� 65.6±7.3� 59.1±6.0 9.7±5.3 4.7±7.3 -1.9±6.0

20 56.2±3.9� 55.2±3.1 54.1±3.2 1.5±4.0 0.5±3.1 -0.6±3.2

10 57.7±2.5��� 56.2±2.9��� 53.8±2.5 4.4±2.5 2.9±2.9 0.5±2.5

5 55.4±1.6��� 55.7±1.5��� 52.7±1.2 3.1±1.6 3.4±1.5 0.4±1.2

4 53.5±1.7��� 54.0±1.6��� 53.0±1.2 ��� 1.4±1.7 1.9±1.6 0.9±1.2

3 54.2±1.2��� 52.1±1.4 52.0±1.3 2.5±1.2 0.4±1.4 0.2±1.3

2 52.5±0.8��� 51.8±1.1� 52.3±0.9 ��� 1.0±0.8 0.4±1.1 0.9±0.9

None 51.9±0.5��� 51.9±0.6��� 50.7±0.9 0.9±0.5 0.9±0.6 -0.3±0.9

Goal Conduciveness

All
 53.4±8.5 59.2±6.4 56.3±5.6 -7.6±8.5 -1.8±6.4 -4.6±5.6

20 56.6±3.6 �� 55.4±3.0 55.4±3.1 1.8±3.6 0.6±3.1 0.6±3.1

10 54.9±2.0 ��� 52.4±2.8 51.5±2.2 1.6±2.0 -0.9±2.8 -1.8±2.2

5 54.2±1.6 ��� 53.1±1.7 �� 52.1±1.1 1.9±1.6 0.8±1.7 -0.2±1.1

4 52.8±1.4 �� 51.7±1.4 52.2±1.4 0.8±1.4 -0.4±1.4 0.2±1.4

3 53.3±1.1 ��� 52.3±1.1 �� 50.7±1.1 1.5±1.1 0.6±1.1 -1.0±1.1

2 51.8±0.9 � 51.9±0.9 �� 52.2±1.0 ��� 0.3±0.9 0.4±0.9 0.8±1.0

None 52.1±0.8 ��� 51.9±0.6 ��� 52.0±0.6 ��� 1.1±0.8 0.9±0.6 1.0±0.6

https://doi.org/10.1371/journal.pone.0189367.t005
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Control. None of the tests resulted in classification performances above the respective

empirical chance level.

Power. All classification tests using the features extracted from the four EEG channels

of interests for this task yielded performances significantly above the empirical chance level.

There is an apparent trend indicating that the performance improves when the signals being

classified are those averaged across a larger number of trials (i.e., those with a higher SNR).

The results are similar to the tests that used features extracted from 16 channels, although for

the tests using signals averaged across three and 20 individual trials the performances are not

significantly above the empirical chance level. The results obtained using all EEG channels are

either not significantly above chance level, or only marginally. Overall, the best performance

was obtained by using the signals from the four EEG channels of interest averaged across all

trials obtained for each individual in the Power condition (diffUAR = 9.7 ± 5.3).

Goal conduciveness. All classification tests using features extracted from the four chan-

nels of interest yielded results significantly above empirical chance level (with the exception

of all trials averaged), but only by a small margin (maximum of 1.9%). Only a few tests that

used features from 16 or 64 EEG channels yielded results above empirical chance level, and

by no more than 1%. The best results for this appraisal check was obtained using features

extracted from the four EEG channels of interest, and the signals averaged across five indi-

vidual trials.

EMG

None of the tests resulted in classification performances above the respective empirical chance

level for any of the appraisal checks studied in this paper.

Table 6. Summary of the classification results obtained for the novelty and intrinsic pleasantness appraisal checks

from the EMG signals (Study 1). Results are shown for different numbers of averaged trials per participant. The classi-

fiers’ performance was quantified using the Unweighted Average Recall (UAR), and the difference between the UAR

and the analytical chance level (diffUAR). Star symbols indicate the significant one-tailed Student’s t -tests conducted

to examine when classification performances were significantly above empirical chance level (�p< .05, ��p< .01,
���p< .001).

Appraisal check Number of Av. Trials UAR diffUAR

Novelty All
 54.4±8.7 -7.9±8.7

20 49.3±4.8 -5.2±4.7

10 47.9±2.4 -5.2±2.4

5 51.3±2.2 -0.9±2.2

4 50.8±1.2 -1.2±1.2

3 50.5±0.8 -1.2±0.8

2 50.7±0.6 -0.7±0.6

None 50.1±0.2 -0.9±0.2

Intrinsic Pleasantness All
 31.2±5.8 -13.1±5.8

20 33.4±2.7 -4.2 ±2.7

10 32.0±1.5 -4.3 ±1.4

5 33.9±1.6 -1.5 ±1.6

4 33.7±1.0 -1.5 ±1.0

3 32.8±0.7 -2.1 ±0.7

2 31.7±1.1 -3.0 ±1.2

None 33.6±0.6 -0.7 ±0.6


 For details on the number of trials averaged per participants see Table 2.

https://doi.org/10.1371/journal.pone.0189367.t006
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Conclusions

In this article, we have applied Machine Learning methods with the aim of finding evidence

of psychobiological markers of emotion processes in EEG and EMG signals. In particular, we

focused on determining whether various stages of event evaluation (appraisal) as postulated

by appraisal theories can be automatically detected in this type of psychophysiological signals.

Additionally, we attempted to determine the ideal number of trials of an experimental condi-

tion necessary for a successful classification of appraisal checks, as well as the usefulness of sig-

nals from localized activity over specific scalp regions of interest rather than the whole scalp.

Our results have shown that brain activity (EEG signals) allows clearly to detect the signal

related with novelty and power appraisal checks. Indeed, we were able to achieve a classification

accuracy of up to 85.5% and 70.6% (respectively) in this (binary) task. These results are even

more striking if we consider that we have developed participant-independent models, that is,

models developed with data from a subgroup of participants and generalized to a new group

of participants. This indicates that our method permits detecting novelty and power appraisal

checks in EEG signals, and that the model can be applied to new participants with similar

Table 7. Summary of the classification results obtained for the control, goal conduciveness and power appraisal

checks from the EMG signals (Study 2). Results are shown for different numbers of averaged trials per participant,

and different numbers of channels (only for EEG). The classifiers’ performance was quantified using the Unweighted

Average Recall (UAR), and the difference between the UAR and the analytical chance level (diffUAR) estimated using

the method described in [35]. Star symbols indicate the significant one-tailed Student’s t -tests conducted to examine

when classification performances were significantly above empirical chance level (�p< .05, ��p< .01, ���p< .001).

Appraisal check Number of Av. Trials UAR diffUAR

Control All
 45.5±7.3 -15.2±7.3

20 49.2±3.2 -5.7 ±3.2

10 47.9±2.1 -5.4 ±2.2

5 48.0±1.5 -4.4 ±1.6

4 48.0±1.6 -4.1 ±1.5

3 47.0±2.4 -4.9 ±2.4

2 49.4±1.3 -2.1 ±1.2

None 48.8±0.9 -2.3 ±0.9

Power All
 53.1±6.1 -7.7±6.1

20 52.0±3.4 -2.8±3.5

10 50.5±2.4 -2.8±2.5

5 50.4±1.2 -2.0±1.2

4 50.5±1.2 -1.6±1.2

3 49.8±1.2 -2.0±1.1

2 49.1±1.1 -2.4±1.1

None 48.5±0.7 -2.6±0.7

Goal Conduciveness All
 49.9±7.1 -10.9±7.1

20 49.8±3.7 -5.1±3.8

10 49.4±1.9 -3.9±1.9

5 50.4±2.0 -2.0±2.0

4 52.5±1.3 0.4 ±1.3

3 49.8±1.4 -2.1±1.4

2 50.7±0.9 -0.8±0.9

None 50.3±1.0 -0.8±1.0


 For details on the number of trials averaged per participants see Table 2.

https://doi.org/10.1371/journal.pone.0189367.t007
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characteristics to the sample used in this work (i.e., young, right-handed students who are in

good health) without the need to adapt it. To a lesser extent, we also found evidence in brain

activity for the goal conduciveness appraisal check. The best classification accuracy obtained

for this check was 56.6%, however, this value is only 1.8% above the empirical chance level

(54.8%). Our method did not allow us to detect intrinsic pleasantness and control appraisal

checks sufficiently well. As these latter checks have been found using traditional EEG analyses,

in the studies for which these data sets were originally collected [17, 18], this suggests that dif-

ferent feature sets and/or ML methods may be necessary for their automatic detection.

It should be noted that data interpolation from bad channels could potentially affect the

objective to test the number of required data channels, as interpolated channels are defined by

surrounding neighbours. However, our finding that classification results were generalisable

across participants (i.e., results were consistent while the number and location of the interpo-

lated channels varied across participants) suggests otherwise. Furthermore, we checked

the total number of interpolated channels per data set and per set of EEG channels and we

observed that a very small number of channels were interpolated in both studies (see data sets

section). This suggests that interpolation was mild and not containing systematic biases.

In relation to the EMG data, we were not able to detect signals related with the appraisal

checks under study. In all cases, the classification accuracy fell below the respective empirical

chance levels. Given that appraisal effects have been found in the EMG data of Study 2 using

traditional analysis methods, one possible explanation for this null finding may be that differ-

ent feature sets may be necessary for the automatic detection of appraisals in EMG. Indeed,

given the lack of information regarding the temporal location of the effects in the post-stimu-

lus phase, we have focused on extracting features from the whole signals as well as seven large

temporal windows, but it may be that these time intervals are not adequate. Several studies

show that the effect of appraisals in EMG are not stable over time, and may result in significant

differences between conditions only in brief (e.g., 100 ms) time windows during the post-

stimulus interval (see e.g. [36–38]). Although we tried to capture this non-stationarity in the

present ML-based study by segmenting the EMG data into shorter time windows, we chose

400-ms time windows in order to limit the overall number of tests. These windows may have

been too large to detect subtle (i.e., more temporally fine-grained) appraisal effects. Future

work should address this issue. It should also be noted that previous work has not investigated

the effects of all of the currently investigated appraisal checks in EMG activity. It is therefore

possible that the effects of some appraisal checks (e.g., Study 1) are not mirrored in facial mus-

cle activity changes (or at least hard to detect). Furthermore, the results may be affected by the

interaction between subsequent checks. Indeed, the EMG data analysis performed by Gentsch

and colleagues [36](Experiment 1) indicates that integrated information related to goal condu-

civeness and power triggers cheek muscle activity changes. Similarly, van Peer and colleagues

[17] found that some intrinsic pleasantness effects in the EEG data were affected by novelty. It

is possible that these appraisal check effects could not be detected in the current work due to

the fact that we have classified all appraisal checks in isolation (in order to be able to use all

available trials for each appraisal check).

It is important to highlight that the number of available data samples to train the models

(i.e., the training instances) was vastly altered when different numbers of trials were averaged.

This is potentially problematic given that Machine Learning is highly sensitive to the sample

size of the training data set. In principle, the models can learn more from a larger training set

size, which can lead to superior performance. To mitigate this problem, we have explicitly con-

sidered the size of the data set as a factor in the statistical analyses, through the calculation of

empirical chance levels based on the number of instances in each classification task (more tri-

als averaged meant less instances). The results for each classification task were based on the
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difference between its performance and the empirical chance levels, which allowed to compare

the performance of the various tasks in an unbiased way. Our findings thus show that classifi-

cation performance is robust across different numbers of trials. Furthermore, our results show

that the best performance was achieved by the models with smaller training sets (more trials

averaged). This is most likely due to the higher signal-to-noise ratio (SNR) of these averaged

signals, and suggests that the SNR may affect the results more than the training set size.

The proposed ML methodology is a promising tool for the development of computerized

tools (e.g., Brain-Computer Interface) that, combined with appropriate tools for automatic pre-

processing of the raw signals, can be applied to the study of cognitive processes central for the

elicitation and differentiation of emotional episodes. In particular, it provides a potential ave-

nue to explore the brain and efferent physiological correlates of specific emotion-related cogni-

tive processes, and their application to the study of the mechanisms underlying (general or

pathological) emotional responses. In this context, we have shown that Machine Learning offers

viable tools to discriminate appraisal checks from central physiological signals without requir-

ing a priori decisions about the analyses of the EEG recordings (e.g., choice of models or chan-

nels of interest). This is a great advantage compared to more traditional EEG analysis methods,

as for many emotion processes the specific psychophysiological markers are not known yet.

Additionally, we have shown that a robust discrimination can also be achieved using EEG sig-

nals averaged over only a small number of trials, which shows the potential for reducing the

efforts associated with long recording sessions (which are often not readily feasible with babies,

children, or clinical populations) and minimizing possible effects of habituation and learning.

However, it should be noted that, in our classification experiments with single trials and a

small number of averaged trials, the signals were collected in the context of a long recording

session, and therefore effects of fatigue, habituation, or learning may be present in our data and

may confound findings. It is possible that these effects masked the appraisal effects under inves-

tigation, which in turn may affect the features extracted and limit the classifiers to detect rele-

vant properties of the signals that would permit a successful classification. Future studies are

necessary to confirm that our results from the small trial sets can indeed be generalized to

experiments with a short recording session, in which fatigue and habituation are assumedly

negligible. Furthermore, is it important to note that the conclusions about the optimal number

of trials and electrodes may be specific to the behavioural tasks that were applied, and cannot

be readily generalized to other types of experimental paradigms, as the optimal values may dif-

fer, for example, due to the magnitude of the EEG signal relative to the background noise, or

the spatial characteristics of the EEG patterns. Also, the data sets used in this study include a rel-

atively small number of participants—a larger number would be necessary to unequivocally

demonstrate the scalability of the proposed methods to a larger number of individuals.

Ongoing work focuses on the identification of temporal physiological patterns in EEG

and EMG signals associated with the sequential nature of appraisal checks as predicted by the

CPM, which could in the future potentially reveal more information about the type and inten-

sity of the elicited emotion(s).
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