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Abstract—We consider neural network training, in applications
in which there are many possible classes, but at test-time, the
task is a binary classification task of determining whether the
given example belongs to a specific class, where the class of
interest can be different each time the classifier is applied.
For instance, this is the case for real-time image search. We
define the Single Logit Classification (SLC) task: training the
network so that at test-time, it would be possible to accurately
identify whether the example belongs to a given class in a
computationally efficient manner, based only on the output logit
for this class. We propose a natural principle, the Principle
of Logit Separation, as a guideline for choosing and designing
losses suitable for the SLC. We show that the cross-entropy loss
function is not aligned with the Principle of Logit Separation.
In contrast, there are known loss functions, as well as novel
batch loss functions that we propose, which are aligned with this
principle. In total, we study seven loss functions. Our experiments
show that indeed in almost all cases, losses that are aligned
with the Principle of Logit Separation obtain at least 20%
relative accuracy improvement in the SLC task compared to
losses that are not aligned with it, and sometimes considerably
more. Furthermore, we show that fast SLC does not cause any
drop in binary classification accuracy, compared to standard
classification in which all logits are computed, and yields a
speedup which grows with the number of classes. For instance, we
demonstrate a 10x speedup when the number of classes is 400,000.
Tensorflow code for optimizing the new batch losses is publicly
available at https://github.com/cruvadom/Logit Separation.

I. INTRODUCTION

With the advent of Big Data, classifiers can learn fine-

grained distinctions, and are used for classification in settings

with very large numbers of classes. Datasets with up to

hundreds of thousands of classes are already in use in the

industry [1], [2], and such classification tasks have been

studied in several works (e.g., [3], [4]). Classification with a

large number of classes appears naturally in vision, in language

modeling and in machine translation [5]–[7].

When using neural network classifiers, one implication of

a large number of classes is a high computational burden at

test-time. Indeed, in standard neural networks using a softmax

layer and the cross-entropy loss, the computation needed for

finding the logits of the classes (the pre-normalized outputs of

the top network layer) is linear in the number of classes [8],

and can be prohibitively slow for high-load systems, such as

search engines and real-time machine-translation systems.

In many applications, the task at test-time is not full

classification of each example into one of the many possible

classes. Instead, the task, each time the trained classifier is

used, is to identify whether the current example should be

classified into one of a small subset of the possible classes,

or even a single class. This class can be different every time

the classifier is used. Consider for example the case of real-

time image search [9], [10] from a live feed from multiple

cameras. When the user queries for images of object A, the

classifier has to process a large number of images, and decide

whether each image contains an instance of object A or not.

The classifier is then activated for the second time, this time

with a query to find images of object B. New images are now

processed by the classifier, to determine which ones contain

an instance of object B.

The setting described above has various applications in

which the object to detect might change every time the

model is used. For instance, consider cameras installed on

autonomous cars, security cameras for detecting objects of

interest, or live face recognition, where a different person is

to be identified each time, based on the given query.

In the setting that we consider, while every use of the

classifier at test-time tests for a single class (or a small number

of classes), the classifier itself must support queries on any of

the classes, since it will be used again and again, each time

with a different class as a query. As the number of classes

may be large, it is not reasonable to train a separate model for

every possible class that might be queried at test time. Instead,

our goal is to have a single model which supports all possible

class-queries.

For this type of applications, one would ideally like to have

a test-time computation that does not depend on the total

number of possible classes. A natural approach is to calculate

only the logit of the class of interest, and use this value alone to

infer whether this is the true class of the example. However, the

logit of a single class might only be meaningful in comparison

to logits of other classes, in which case, unless the other

logits are also computed, it cannot be used to successfully
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determine whether the test example belongs to the class of

interest. We name the goal of inferring class correctness

from the logit of that class alone Single Logit Classification
(SLC). Note that SLC is a binary classification task, stressing

the fact that only one logit is computed. In Figure 1 we

demonstrate the speedup yielded by SLC, compared to binary

classification in the method which computes all logits and uses

them for normalization, as the number of classes increases. For

instance, computing only a single logit yields a 10x speedup

in evaluation time when there are 400,000 possible classes.

The speedup increases with the number of possible classes.

See Section VI for full details on the experimental setting and

the resulting speedup.

Fig. 1. Computation time of the logits from network inputs, using an
inception-V3 image classification architecture [11], where the topmost layer
is replaced according to the appropriate number of classes. When applying
SLC, computation cost is fixed regardless of the number of classes, which
can lead to considerable speedups when the number of classes is large. See
Section VI for full details regarding speedups and the experimental setting.

In this work, we show that when using the standard cross-

entropy loss for training, the value of a single logit is not

informative enough for determining whether this is indeed

the true class for the example. In other words, the cross-

entropy loss yields poor accuracy in the SLC task. Further,

we identify a simple principle that we name the Principle of
Logit Separation. This principle captures an essential property

that a loss function must have in order to yield good accuracy

in the SLC task. The principle states that to succeed in the SLC

task, the training objective should optimize for the following

property:

The value of any logit that belongs to the correct
class of any training example should be larger than
the value of any logit that belongs to a wrong class
of any (same or other) training example.

We give a formal definition of the Principle of Logit

Separation in Section II. See Figure 2 for an illustration. We

study previously suggested loss functions and their alignment

with the Principle of Logit Separation. We show that the Prin-

ciple of Logit Separation is satisfied by the self-normalization

[12] and Noise-Contrastive Estimation [13] training objectives,

proposed for calculating posterior distributions in the context

of natural language processing, as well as by the binary cross-

entropy loss used in multi-label settings [14], [15]. In contrast,

the principle is not satisfied by the standard cross-entropy loss

and by the max-margin loss. We derive new training objectives

for the SLC task based on the Principle of Logit Separation.

These objectives are novel batch versions of the cross-entropy

loss and the max-margin loss, and we show that they are

aligned with the Principle of Logit Separation. In total, we

study seven different training objectives. Tensorflow code

for optimizing the new batch losses is publicly available at

https://github.com/cruvadom/Logit Separation.

We corroborate in experiments that the Principle of Logit

Separation indeed explains the difference in accuracy of the

different loss functions in the SLC task, concluding that

training with a loss function that is aligned with the Principle

of Logit Separation results in logits that are more informative

as a standalone value, and as a result, considerably better SLC

accuracy. Specifically, objectives that satisfy the Principle of

Logit Separation outperform standard objectives such as the

cross-entropy loss on the SLC task with at least 20% relative

accuracy improvement in almost all cases, and sometimes

considerably more. In another set of experiments, we show that

when using loss functions that are aligned with the Principle of

Logit Separation, SLC does not cause any decrease in binary

classification accuracy for a given class, compared to the case

where all logits are computed, while keeping the computation

cost independent of the total number of classes. Finally, we

perform further experiments to determine the speedup factor

one can gain by using SLC instead of computing all logits. We

show that when the number of classes is large, considerable

speedups are gained.

We conclude that by designing a training objective ac-

cording to the Principle of Logit Separation and applying

SLC when the number of classes in large, one can gain

considerable speedups at test time without any degradation in

model accuracy. As the number of classes in standard datasets

has been rapidly growing over the last few years, SLC and

the Principle of Logit Separation may play a key role in many

applications.

A. Related Work

We review existing methods that are relevant for faster

test-time classification. The hierarchical softmax layer [16]

replaces the flat softmax layer with a binary tree with classes

as leaves, making the computational complexity of calculating

the posterior probability of each class logarithmic in the

number of classes. A drawback of this method is the additional

construction of the binary tree of classes, which requires expert

knowledge or data-driven methods. Inspired by the hierarchical

softmax approach, [8] exploit unbalanced word distributions

to form clusters that explicitly minimize the average time for

computing the posterior probabilities over the classes. The

authors report an impressive speed-up factor of between 2 and

10 for posterior probability computation, but their computation

time still depends on the total number of classes. Differentiated
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Fig. 2. The Principle of Logit Separation. Left: when training with the cross-entropy loss, the logit values for the class ‘Cat’ can be the same for two
examples, one where it is the true class (blue) and one where it is not (red). Therefore, at test-time, a logit with the same value for the class ‘Cat’ does not
indicate whether the example belongs to this class. Right: With a loss function that is aligned with the Principle of Logit Separation, all true logits are greater
than all false logits at training time. Hence, at test time, a single logit can indicate the correctness of its respective class.

softmax was introduced in [17] as a less computationally

expensive alternative to the standard softmax mechanism, in

the context of neural language models. With differentiated

softmax, each class (word) is represented in the last hidden

layer using a different dimensionality, with higher dimensions

for more frequent classes. This allows a faster computation for

less frequent classes. However, this method is applicable only

for highly unbalanced class distributions. Several sampling-

based approaches were developed in the context of language

modeling, with the goal of approximating the softmax function

at training-time. Notable examples are importance sampling

[18], negative sampling [19], and Noise Contrastive Estimation

(NCE) [13], [20]. These methods do not necessarily improve

the test-time computational burden, however we show below

that the NCE loss can be used for the SLC task.

II. THE PRINCIPLE OF LOGIT SEPARATION

In the SLC task, the only information about an example is

the output logit of the model for the single class of interest.

Therefore, a natural approach to classifying whether the class

matches the example is to set a threshold: if the logit is above

the threshold, classify the example as belonging to this class,

otherwise, classify it as not belonging to the class. We refer

to logits that belong to the true classes of their respective

training examples as true logits and to other logits as false
logits. For the threshold approach to work well, the values of

all true logits should be larger than the value of all false logits

across the training sample (in fact, it is enough to separate true

and false logits on a class level, but we stick to the stronger

assumption in this work). This is illustrated in Figure 2. The

Principle of Logit Separation (PoLS), which was stated in

words in Section I, captures this requirement. We formalize

this principle below.

Let [k] := {1, . . . , k} be the possible class labels. Assume

that the training sample is S = ((x1, y1), . . . , (xn, yn)), where

xi ∈ R
d are the training examples, and yi ∈ [k] are the labels

of these examples. For a neural network model parametrized

by θ, we denote by zθy(x) the value of the logit assigned by

the model to example x for class y. The Principle of Logit

Separation (PoLS) can be formally stated as follows:

Definition 1 (The Principle of Logit Separation). The Prin-

ciple of Logit Separation holds for a labeled set S and a
model θ, if for any (x, y), (x′, y′) ∈ S (including the case
x = x′, y = y′) and any y′′ �= y′, we have zθy(x) > zθy′′(x′).

The definition assures that every true logit zθy(x) is larger

than every false logit zθy′′(x′). If this simple principle holds

for all train and test examples, it guarantees perfect accuracy

in the SLC task, since all true logits are larger than all false

logits. Thus, a good approach for a training objective for SLC

is to attempt to optimize for this principle on the training set.

For a loss �, �(S, θ) is the value of the loss on the training

sample using model θ. A loss � is aligned with the Principle of

Logit Separation if for any training sample S, a small enough

value of �(S, θ) ensures that the requirement in Definition 1 is

satisfied for the model θ. In the following sections we study

the alignment with the PoLS of known losses and new losses.

III. STANDARD OBJECTIVES IN VIEW OF THE POLS

In this section we show that the cross-entropy loss [21],

which is the standard loss function for neural network classi-

fiers (e.g., [22]) and the multiclass max-margin loss [23], do

not satisfy the PoLS.

A. The Cross-Entropy Loss

The cross-entropy loss on a single example is defined as

�(z, y) = − log(py), (1)

where

py :=
ezy∑k
j=1 e

zj
=

( k∑
j=1

ezj−zy
)−1

.

Note that py is the probability assigned by the softmax layer.

It is easy to see that the cross-entropy loss does not satisfy

the PoLS. Indeed, as the loss depends only on the difference

between logits for every example separately, minimizing it

guarantees a certain difference between the true and false logits
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for every example separately, but does not guarantee that all

true logits are larger than all false logits in the training set.

Formally, the following counter-example shows that this loss

is not aligned with the PoLS. Let S = ((x1, 1), (x2, 2)) be

the training sample, and let θα, for α > 0, be a model such

that zθα(x1) = (2α, α), and zθα(x2) = (−2α,−α). Then

�(Sθα) = 2 log(1 + e−α). Therefore for any ε > 0, there is

some α > 0 such that �(Sθα) ≤ ε, but zθα2 (x1) > zθα2 (x2),
contradicting an alignment with PoLS.

B. The Max-Margin Loss

Max-margin training objectives, most widely known for

their role in training Support Vector Machines, are used in

some cases for training neural networks [24], [25]. Here we

consider the multiclass max-margin loss suggested by [23],

defined as

�(z, y) = max(0, γ − zy +max
j �=y

zj), (2)

where γ > 0 is a hyperparameter that controls the separation

margin between the true logit and the false logits of the

example. It is easy to see that this loss too does not satisfy

the PoLS, since minimizing it again guarantees only a certain

difference between the true and false logits for every example

separately, and not across the entire training sample. Indeed,

consider the same training sample S as defined in the counter-

example for the cross-entropy loss above, and the model θα
defined there. Setting α = γ, we have �(Sθγ ) = 0. Thus for

any ε > 0, �(Sθγ ) < ε, but z
θγ
2 (x1) > z

θγ
2 (x2), contradicting

an alignment with PoLS.

IV. OBJECTIVES THAT SATISFY THE POLS

In this section we consider objectives that have been pre-

viously suggested for addressing problems that are somewhat

related to the SLC task. We show that these objectives indeed

satisfy the PoLS.

A. Self-Normalization

Self-normalization [12] was introduced in the context of

neural language models, to avoid the costly step of computing

the posterior probability distribution over the entire vocabulary

when evaluating the trained models. The self-normalization

loss is a sum of the cross-entropy loss with an additional term.

Let α > 0 be a hyperparameter, and py as defined in Eq. (1).

The self-normalization loss is defined by

�(z, y) = − log(py) + α · log2(
k∑

j=1

ezj ).

The motivation for this loss is self-normalization: The sec-

ond term is minimal when the softmax normalization term∑k
j=1 e

zj is equal to 1. When it is equal to 1, the exponentiated

logit ezj can be interpreted as the probability that the true class

for the example is j. [12] report a speed-up by a factor of 15 in

evaluating models trained when using this loss, since the self-

normalization enables computing the posterior probabilities for

only a subset of the vocabulary.

Intuitively, this loss should also be useful for the SLC task:

If the softmax normalization term is always close to 1, there

should be no need to compute it, thus only the logit of the

class in question should be required to infer whether this class

in the correct one for the example. Indeed, we show that the

self-normalization loss is aligned with the PoLS. When the

first term in the loss is minimized for an example, correct and

wrong logits are as different as possible from one another.

When the second term is minimized for an example, the sum

of exponent logits is equal to one. Therefore, when both terms

are minimized for an example, the correct logit converges to

zero while wrong logits converge to negative infinity. When

this is done for the whole training sample, all correct logits are

larger than all wrong logits in the training sample. A formal

proof is provided in Appendix A.

B. Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) [13], [20] was consid-

ered, like self-normalization, in the context of natural language

learning. This approach was developed to speed up neural-

language model training over large vocabularies. In NCE,

the multiclass classification problem is treated as a set of

binary classification problems, one for each class. Each binary

problem classifies, given a context and a word, whether this

word is from the data distribution or from a noise distribution.

Using only t words from the noise distribution (where t is an

integer hyperparameter) instead of the entire vocabulary leads

to a significant speedup at training-time. Similarly to the self-

normalization objective, NCE, in the version appearing in [13],

is known to produce a self-normalized logit vector [26]. This

property makes NCE a good candidate for the SLC task, as

single logit values are informative for the class correctness, and

not only when compared other logits in the same example.

The loss function used in NCE for a single training example,

as given by [13], is defined based on a distribution over

the possible classes, denoted by q = (q(1), . . . , q(k)), where∑k
i=1 q(i) = 1. The NCE loss, in our notation, is

�(z, y) = − log gy − t · Ej∼q [log(1− gj)] , (3)

where

gj := (1 + t · q(j) · e−zj )−1

During training, the second term in the loss is usually approxi-

mated by Monte-Carlo approximation, using t random samples

of j ∼ q, to speed up training time [13].

We observe that NCE loss is aligned with the PoLS. First,

observe that gj is of a similar form to σ(zj) where σ(z) =
(1 + e−z)−1 is the sigmoid function. Therefore, it is easy to

see that when the term above is minimized for one example,

the value of true logit zy converges to infinity, and the values

of all false logits converge to negative infinity. When the above

term is minimized for the entire training set, all true logits are

larger than all false logits across the training set. A formal

proof is provided in Appendix B.

230

                                                                                                                                               



C. Binary Cross-Entropy

The last known loss that we consider is often used in

multilabel classification settings. In multilabel settings, each

example can belong to several classes, and the goal is to

identify the set of classes an example belongs to. A common

approach [14], [15] is to try to solve k binary classification

problems of the form “Does x belong to class j?” using a

single neural network model, by minimizing the sum of the

cross-entropy losses that correspond to these binary problems.

In this setting, the label of each example is a binary vector

(r1, . . . , rk), where rj = 1 if x belongs to class j and 0

otherwise. The loss for a single training example with logits

z and label-vector r is

�(z, (r1, . . . , rk)) = −
n∑

j=1

rj log(σ(zj))+(1−rj) log(1−σ(zj)) ,

where σ(z) = (1 + e−z)−1 is the sigmoid function. This loss

can also be used for our setting of multiclass problems, by

defining rj := 1j=y for an example (x, y). This gives the

multiclass loss

�(z, y) = − log(σ(zy)) +
∑
j �=y

log(1− σ(zj)).

The binary cross-entropy is also aligned with the PoLS.

Indeed, similarly to case of the NCE loss, it is easy to see

that when the term above is minimized for one example, the

value of true logit zy converges to infinity, and the values of

all false logits converge to negative infinity. When the above

term is minimized for the entire training set, all true logits are

larger than all false logits across the training set. A formal

proof is provided in Appendix C.

V. NEW TRAINING OBJECTIVES FOR THE SLC TASK

In this section we propose new training objectives for the

SLC task, designed to satisfy the PoLS. These objectives adapt

the training objectives of cross-entropy and max-margin, stud-

ied in Section III, that do not satisfy the PoLS, by generalizing

them to optimize over batches of training samples. We show

that the revised losses satisfy the PoLS. This approach does

not require any new hyper-parameters, since the batch size

is already a hyperparameter in standard Stochastic Gradient

Descent. Further, this allows an easy adaptation of available

neural network implementations to the SLC task. When the

cross-entropy loss or the max-maring loss are minimized,

they guarantee a certain difference between the true and the

false logits of each example separately. Our generalization of

these losses to batches of examples enforces an ordering also

between true and false logits of different examples.

A. Batch Cross-Entropy

Our first batch loss generalizes the cross-entropy loss,

which was defined in Eq. (1). The cross-entropy loss can

be given as the Kullback-Leibler (KL) divergence between

two distributions, as follows. The KL divergence between two

discrete probability distributions P and Q over [k] is defined

as KL(P ||Q) :=
∑k

i=j P (j) log(P (j)/Q(j)). For an example

(x, y), let P(x,y) be the distribution over [k] which determin-

istically outputs y, and let Qx be the distribution defined

by the softmax normalized logits, Qx(j) = ezj/
∑k

i=1 e
zi .

Then it is easy to see that for py as defined in Eq. (1),

KL(P(x,y)||Qx) = − log py, exactly the cross-entropy loss in

Eq. (1).

We define a batch version of this loss, using the KL-

divergence between distributions over batches. Recall that the

i’th example in a batch B is denoted (xi, yi). Let PB be the

distribution over [m]× [k] defined by

PB(i, j) :=

{
1
m j = yi,

0 otherwise.

Let QB be the distribution defined by the softmax normalized

logits over the entire batch B. Formally, denote Z(B) :=
m∑
i=1

k∑
j=1

ezj(xi). Then QB(i, j) := ezj(xi)/Z(B). We then

define the batch cross-entropy loss as follows.

Definition 2 (The batch cross-entropy loss). Let m > 1 be
an integer, and let B be a uniformly random batch of size m
from S. The batch cross-entropy loss of a training sample S
is

�(S) := EB [Lc(B)], where Lc(B) := KL(PB ||QB).

This batch version of the cross-entropy loss is aligned with

the PoLS. Indeed, when this loss is minimized for one training

batch, all true logits converge to some positive value (as a

normalized exponentiated true logit converges to 1/m), while

all false logits converge to negative infinity (as a normalized

exponentiated false logit converges to zero). Therefore, when

minimizing this loss across the whole training set, all true

logits are larger than all false logits in the training set. A

formal proof is provided in Appendix D.

B. Batch Max-Margin

Our second objective is a batch version of the max-margin

loss, which was defined in Eq. (2). For a batch B, denote the

minimal true logit in B, and the maximal false logit in B, as

follows:

zB+ := min
(x,y)∈B

zy(x), and zB− := max
(x,y)∈B,j �=y

zj(x).

Definition 3 (The batch max-margin loss). Let m > 1 be an
integer, and let B be a uniformly random batch of size m
from S. Let � be the single-example max-margin loss defined
in Eq. (2), let γ > 0 be the max-margin hyper-parameter. The
batch max-margin is defined by

�(S) := EB [Lm(B)],

where

Lm(B) :=
1

m
max(0, γ − zB+ + zB−) +

1

m

∑
(x,y)∈B

�(z(x), y).

The batch version of the max-margin loss is aligned with

the PoLS. Minimizing the first term in the loss makes sure that
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all true logits in the batch are larger than all false logits in the

batch. Therefore, minimizing the loss over the entire training

set makes sure that the PoLS holds. A formal proof is provided

in Appendix D. Note that while the seconds term in the loss

is not necessary for ensuring alignment with the PoLS, it is

necessary for practical reasons, as without it the gradient is

propagated through only two logits from the entire minibatch,

which leads to harder optimization and poorer generalization.

VI. EXPERIMENTS

We first empirically show that the PoLS plays a dominant

role in SLC accuracy, and that all loss functions that are

aligned with the PoLS yield considerably better accuracy in

SLC compared to loss functions that are not aligned with

the PoLS. We then investigate whether a single logit suffices

for obtaining a good binary classification accuracy, compared

to the method of computing all logits and using them for

normalization. We find that when using a PoLS-aligned loss

function, binary classification accuracy is about the same

whether we use a single logit only (SLC) or all logits. Lastly,

we evaluate the speedups gained by using SLC for binary

classification, instead of computing all logits. We show that

the speedup increases with the number of classes. For instance,

we demonstrate a 10x speedup when the number of classes is

approximately 400,000.

A. PoLS and SLC Accuracy

We tested the SLC tasks on neural networks trained with

each of the objectives. To evaluate the success of a learned

model in the SLC task we measured, for each class j and each

threshold T , the precision and recall in identifying examples

from class j using the test zj > T , and calculated the Area

Under the Precision-Recall curve (AUPRC) defined by the

entire range of possible thresholds. We also measured the

precision at fixed recall values (with dictate the threshold T
to use) 0.9 (Precision@0.9) and 0.99 (Precision@0.99). We

report the averages of these values over all the classes in the

dataset.

We tested five computer-vision classification benchmark

datasets (using their built-in train/test splits): MNIST [27],

SVHN [28] CIFAR-10 and CIFAR-100 [29]. The last dataset

is Imagenet [30], which has 1000 classes, demonstrating the

scalability of the PoLS approach to many classes. Due to its

size, training on Imagenet is highly computationally intensive,

therefore we tested only two representative methods for this

dataset, which do not require tuning additional hyperparame-

ters. For every dataset, a single network architecture was used

for all training objectives.

The network architectures we used are standard, and were

fixed before running the experiments. For the MNIST dataset,

we used an MLP comprised of two fully-connected layers with

500 units each, and an output layer, whose values are the

logits, with 10 units. For the SVHN, CIFAR-10 and CIFAR-

100 datasets, we used a convolutional neural network [31]

with six convolutional layers and one dense layer with 1024

units. The first, third and fifth convolutional layers used a

5 × 5 kernel, where other convolutional layers used a 1 × 1
kernel. The first two convolutional layers were comprised of

128 feature maps, where convolutional layers three and four

had 256 feature maps, and convolutional layers five and six

had 512 feature maps. Max-pooling layers with 3 × 3 kernel

size and a 2×2 stride were applied after the second, fourth and

sixth convolutional layers. In all networks, batch normalization

[32] was applied to the output of every fully-connected or con-

volutional layer, followed by a rectified-linear non-linearity.

For every combination of a training objective and a dataset

(with its fixed network architecture), we optimized for the

best learning rate among 1, 0.1, 0.01, 0.001 using the classi-

fication accuracy on a validation set. Except for Imagenet,

each model was trained for 105 steps, which always sufficed

for convergence. For the Imagenet experiments, we used an

inception-v3 architecture [11] as appears in the tensorflow
repository. We used all the default hyperparameters from this

implementation, changing only the loss function used. For

every tested loss function, we trained the inception-v3 model

for 6 · 106 iterations.

Experiment results are reported in Table I. Since many of

the measures in our experiments are close to their maximal

value of 1, we report the value of one minus each measure,

so that a smaller number indicates a better accuracy. For each

dataset, the losses above the dashed line do not satisfy the

PoLS (Section III), while the losses below the line do (Sections

IV and V). In the table, the best result for each dataset and

measure is indicated in boldface. Finally, the bottom row

in each dataset stands for the mean relative improvement

between PoLS-aligned losses and other losses, i.e., the relative

improvement of the mean of PoLS-aligned losses for a given

measure, compared to the mean of losses that are not aligned

with the PoLS.

From the results in Table I, it can be seen that the mean

relative improvement of training objectives that are aligned

with the PoLS compared to non-aligned objectives is usually at

least 20%, and in many cases considerably more. We conclude

from these experiments that indeed, alignment with the PoLS

is a crucial ingredient for success in the SLC task.

B. SLC vs Computing All Logits

To investigate whether using a single logit (SLC) degrades

binary classification accuracy, we compared the binary clas-

sification accuracy obtained by SLC with the one obtained

by using all logits. In the latter case, we used all output

logits of the cross-entropy loss after softmax normalization,

which is computationally expensive compared to SLC. The

experiment setting and binary classification accuracy measures

are identical to the one used in Section VI-A.

Results are presented in Table II. The first two rows present

results for binary classification using a single logit (SLC): The

first row reports the mean result for loss functions that are

aligned with the PoLS reported in Table I. The second row

reports the results for the batch cross-entropy, which is the

PoLS-aligned loss that obtained the best accuracy in Table I.
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TABLE I
RESULTS ON SINGLE LOGIT CLASSIFICATION (SLC), USING THE DIFFERENT LOSS FUNCTIONS. LOWER VALUES ARE BETTER. IN ALMOST ALL CASES,

LOSS FUNCTIONS THAT ARE ALIGNED WITH THE PRINCIPLE OF LOGIT SEPARATION (UNDER THE DASHED LINE) YIELD A MEAN RELATIVE

IMPROVEMENT OF AT LEAST 20% IN SLC ACCURACY MEASURES, AND SOMETIMES CONSIDERABLY MORE.

Dataset Method 1-AUPRC 1-Precision@0.9 1-Precision@0.99

MNIST

CE 0.008 0.005 0.203
max-margin 0.012 0.018 0.262

self-norm 0.002 0.001 0.021
NCE 0.002 0.002 0.021
binary CE 0.002 0.000 0.037
batch CE 0.001 0.001 0.022
batch max-margin 0.002 0.001 0.034

Mean relative improvement 82.0% 91.3% 88.4%

SVHN

CE 0.023 0.028 0.545
max-margin 0.021 0.025 0.532

self-norm 0.015 0.014 0.298
NCE 0.021 0.017 0.320
binary CE 0.015 0.016 0.312
batch CE 0.015 0.013 0.280
batch max-margin 0.018 0.020 0.384

Mean relative improvement 23.4% 39.6% 40.8%

CIFAR-10

CE 0.109 0.326 0.703
max-margin 0.094 0.285 0.705

self-norm 0.073 0.204 0.599
NCE 0.081 0.214 0.594
binary CE 0.070 0.210 0.607
batch CE 0.072 0.202 0.602
batch max-margin 0.075 0.226 0.636

Mean relative improvement 26.9% 30.9% 13.6%

CIFAR-100

CE 0.484 0.866 0.974
max-margin 0.490 0.893 0.977

self-norm 0.378 0.807 0.970
NCE 0.383 0.795 0.964
binary CE 0.426 0.870 0.978
batch CE 0.371 0.795 0.961
batch max-margin 0.468 0.903 0.983

Mean relative improvement 16.8% 5.2% 0.5%

Imagenet
(1000 classes)

(6 · 106 iterations)

CE 0.366 0.739 0.932

batch CE 0.245 0.563 0.865

Relative improvement 33.1% 23.8% 7.2%

The third row reports results for the cross-entropy method, in

which all logits are computed and used for normalization.

The results in Table II show that cross-entropy with all logits

yields results that are comparable to the results obtained with

a single logit, and specifically, with the batch cross-entropy:

none of the approaches is consistently more successful in clas-

sification than the other. Since calculating cross-entropy with

all logits is more computationally demanding, we conclude

that in our setting of binary classification with multiple classes

at test time, SLC, and specifically batch cross-entropy, is an

attractive alternative to standard cross-entropy with all logits.

C. SLC Speedups

We estimated the speedups gained by performing SLC,

compared to methods in which all logits are computed. We

used five prominent image classification architectures (Alexnet

[22], VGG-16 [33], Inception-v3 [11], Resnet-50 and Resnet-

101 [34]). As we are interested in test-time performance, we

only measure the time required for computing the forward-pass

of a given network. To measure SLC computation time, we

replace the top layer by a layer with single unit and measure

the time to compute the single logit given an input to the

network. To measure the computation time when computing

the logits of k classes, we replace the top layer with a layer

containing k units, and again measure the time it takes to

compute all logits, given an input to the network.

The computation time of a model generally does not depend

on its input data or on its accuracy. The time to compute a

forward pass of a given model is practically identical whether

the input data is random noise or originates from a real dataset
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TABLE II
COMPARING BINARY CLASSIFICATION WITH A SINGLE LOGIT (SLC) VS. ALL LOGITS. LOWER VALUES ARE BETTER. POLS-ALIGNED SLC METHODS

ARE ABOVE THE DASHED LINE. RESULTS ARE COMPARABLE, THUS SLC DOES NOT CAUSE ANY DEGRADATION IN BINARY CLASSIFICATION ACCURACY,
COMPARED TO THE CASE WHERE ALL LOGITS ARE COMPUTED.

Dataset Method 1-AUPRC 1-Precision@0.9 1-Precision@0.99

MNIST
Mean PoLS methods 0.002 0.001 0.027
batch CE 0.001 0.001 0.022

CE with all logits 0.001 0.000 0.020

SVHN
Mean PoLS methods 0.017 0.016 0.319
batch CE 0.015 0.013 0.280

CE with all logits 0.015 0.016 0.313

CIFAR-10
Mean PoLS methods 0.074 0.211 0.608
batch CE 0.072 0.202 0.602

CE with all logits 0.074 0.214 0.648

CIFAR-100
Mean PoLS methods 0.405 0.834 0.971
batch CE 0.371 0.795 0.961

CE with all logits 0.380 0.801 0.973

Imagenet
batch CE 0.245 0.563 0.865

CE with all logits 0.223 0.566 0.872

of the same dimensions and data range. Therefore, in these

experiments we use random noise as input to the networks,

and the networks themselves are randomly initialized and not

trained. Computation is done using Tensorflow and a single

NVIDIA Maxwell Titan-X GPU, and forward-pass compu-

tation time per example is averaged across 100 minibatches

of 32 examples. We use the public implementation of all

architectures, as appears in the tensorflow repository.
The timing results are given in Table III. For each network

architecture, the first row reports the forward-pass computation

time with a single logit. The following rows correspond

to different numbers of classes. We report the forward-pass

computation time, as well as the speedup obtained by using

SLC for this number of classes. This speedup is calculated

as the ratio between the computation time for this number of

classes and the computation time for SLC (the first row). As

expected, the results show a speedup for all architectures, with

larger speedups when there are more classes.
For networks with up to 214 = 16384 classes, the speedup is

relatively small, since computation of the network layers other

than the logit layer dominates the forward-pass computation

time. In contrast, when there are many classes, the computation

of logits dominates the forward-pass computation time. Hence,

SLC obtains a x2.8-x.5.7 speedup for 218 = 262144 classes,

and x8.5-x21.3 speedup for 218.5 = 370727 classes.
In our experiments in Sections VI-A and VI-B, we showed

that our findings scale well from 10 to 100 and 1000 classes,

and we expect these results and findings to scale further to

models with a larger number of classes. Ideally, we would

have directly tested datasets with hundreds of thousands of

classes, to show that the results from Sections VI-A and

VI-B scale to datasets with this many classes. However, since

such datasets are very large (for instance, the Imagenet-21K

dataset has 21,000 classes and more than 14 million examples),

these experiments were infeasible with our computational

resources. In comparison, a single Inception-V3 model for the

significantly smaller Imagenet dataset (∼ 1 million examples),

took approximately three weeks to train on a single GPU.

We conclude from this set of experiments that using SLC

instead of computing all logits can result in considerable

speedups, that grow with the number of classes.

VII. CONCLUSION

We considered the Single Logit Classification (SLC) task,

which is important in various applications. We formulated the

Principle of Logit Separation (PoLS), and studied its alignment

with seven loss functions, including the standard cross-entropy

loss and two novel loss functions. We established, and corrob-

orated in experiments, that PoLS-aligned loss functions yield

more class logits that are more useful for binary classification.

We further demonstrated that training with a PoLS-aligned

loss function and applying SLC leads to considerable speedups

when there are many classes, with no degradation in accuracy.

Recent years have seen a constant increase in the number of

classes in datasets from various domains, thus we expect SLC

and the PoLS to play a key role in applications.

Future work plans include extending the scope the Principle

of Logit Separation by applying it to other training mecha-

nisms that do not involve loss functions [35].
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TABLE III
SPEEDUP EXPERIMENT RESULTS. WHEN THE NUMBER OF EXAMPLES IS

LARGE, SLC RESULTS IN A CONSIDERABLE SPEEDUP.

Architecture Classes Inference Time [s] SLC Speedup

Alexnet

1 (SLC) 3.6 · 10−3 —
210 3.7 · 10−3 x1.04
214 4.0 · 10−3 x1.14
216 5.7 · 10−3 x1.59
218 20.2 · 10−3 x5.68
218.5 76.0 · 10−3 x21.38

VGG-16

1 (SLC) 9.4 · 10−3 —
210 9.6 · 10−3 x1.02
214 9.9 · 10−3 x1.05
216 11.4 · 10−3 x1.20
218 26.4 · 10−3 x2.79
218.5 80.5 · 10−3 x8.52

Inception-v3

1 (SLC) 6.0 · 10−3 —
210 6.2 · 10−3 x1.03
214 6.5 · 10−3 x1.09
216 7.3 · 10−3 x1.22
218 18.7 · 10−3 x3.11
218.5 76.6 · 10−3 x12.75

Resnet-50

1 (SLC) 6.1 · 10−3 —
210 6.4 · 10−3 x1.04
214 6.6 · 10−3 x1.08
216 7.4 · 10−3 x1.20
218 19.1 · 10−3 x3.11
218.5 78.0 · 10−3 x12.69

Resnet-101

1 (SLC) 8.0 · 10−3 —
210 8.2 · 10−3 x1.03
214 8.3 · 10−3 x1.04
216 9.4 · 10−3 x1.19
218 23.5 · 10−3 x2.95
218.5 80.4 · 10−3 x10.10

APPENDIX

All the considered losses are a function of the output

logits and the example labels. For a network model θ, denote

the vector of logits it assigns to example x by zθ(x) =
(zθ1(x), . . . , z

θ
k(x)). When θ and x are clear from context, we

write zj instead of zθj (x). Denote the logit output of the sample

by Sθ = ((zθ(x1), y1), . . . , (z
θ(xn), yn)). A loss function

� : ∪∞n=1(R
k × [k])n → R+ assigns a loss to a training

sample based on the output logits of the model and on the

labels of the training examples. The goal of training is to find

a model θ which minimizes �(Sθ) ≡ �(S, θ). In almost all

the losses we study, the loss on the training sample is the

sum over all examples of a loss defined on a single example:

�(Sθ) ≡
∑n

i=1 �(z
θ(xi), yi), thus we only define �(z, y). We

explicitly define �(Sθ) below only when this is not the case.

A. Self-normalization

We prove that the self-normalization loss satisfies the PoLS:

Let a training sample S and a neural network model θ, and

consider an example (x, y) ∈ S. We consider the two terms of

the loss in order. First, consider − log(py). From the definition

of py (Eq. 1) we have that

− log(py) = log(
k∑

j=1

ezj−zy ) = log(1 +
∑
j �=y

ezj−zy ).

Set ε0 := log(1 + e−2). Then, if − log(py) < ε0, we have∑
j �=y e

zj−zy ≤ e−2, which implies that (a) ∀j �= y, zj ≤
zy − 2 and (b) ezy ≥ ∑k

j=1 e
zj/(1 + e−2) ≥ 1

2

∑k
j=1 e

zj .
Second, consider the second term. There is an ε1 > 0 such

that if log2(
∑k

j=1 e
zj ) < ε1 then (c) 2e−1 <

∑k
j=1 e

zj <
e, which implies ezy < e and hence (d) zy < 1. Now, let

θ such that �(Sθ) ≤ ε := min(ε0, ε1). Then ∀(x, y) ∈ S,

�(zθ(x), y) ≤ ε. From (b) and (c), e−1 < 1
2

∑k
j=1 e

zj < ez
y

,

hence zy > −1. Combining with (d), we get −1 < zy < 1.

Combined with (a), we get that for j �= y, zj < −1. To

summarize, ∀(x, y), (x′, y′) ∈ S and ∀y′′ �= y′, we have that

zθy(x) > −1 > zθy′′(x′), implying PoLS-alignment.

B. Noise-Contrastive Estimation

Recall the definition of the NCE loss from Eq. (3):

�(z, y) = − log gy − t · Ej∼q [log(1− gj)]

where gj := (1+t ·q(j) ·e−zj )−1. We prove that the NCE loss

satisfies the PoLS: gj is monotonic increasing in zj . Hence,

if the loss is small, gy is large and gj for j �= y, is small.

Formally, fix t, and let a training sample S. There is an ε0 > 0
such that if − log gj ≤ ε0, then zj > 0. Also, there is an ε1 > 0
(which depends on q) such that if −Ej∼q [log(1− gj)] ≤ ε1
then ∀j �= y, log(1−gj) must be small enough so that zj < 0.

Now, consider θ such that �(Sθ) ≤ ε := min(ε0, ε1). Then for

every (x, y) ∈ S, �(zθ(x), y) ≤ ε. This implies that for every

(x, y), (x′, y′) ∈ S and y′′ �= y′, we have that zθy(x) > 0 >
zθy′′(x′), thus this loss is aligned with the PoLS.

C. Binary cross-entropy

This loss is similar in form to the NCE loss: for gj as in

Eq. (3), gj = σ(zj − ln(t · q(j))). Since σ(zj) is monotonic,

the proof method for NCE carries over and thus the binary

cross-entropy loss satisfies the PoLS as well.

D. Batch Losses

Recall that the batch losses are defined as �(Sθ) :=
EB [L(Bθ)], where Bθ is a random batch out of Sθ and L is Lc

for the cross entropy (Definition 2), and Lm is the max-margin

loss (Definition 3). If true logits are greater than false logits in

every batch separately when using, then the PoLS is satisfied

on the whole sample, since every pair of examples appears

together in some batch. The following lemma formalizes this:

Lemma 1. If L is aligned with the PoLS, and � is defined by
�(Sθ) := EB [L(Bθ)], then � is also aligned with the PoLS.

Proof. Assume a training sample S and a neural network

model θ. Since L is aligned with the PoLS, there is some

ε′ > 0 such if L(Bθ) < ε′, then for each (x, y), (x′, y′) ∈ B
and y′′ �= y′ we have that zθy(x) > zθy′′(x′). Let ε = ε′/

(
n
m

)
,

235

                                                                                                                                               



and assume �(Sθ) < ε. Since there are
(
n
m

)
batches of size m

in S, this implies that for every batch B of size m, L(Bθ) ≤ ε′.
For any (x, y), (x′, y′) ∈ S, there is a batch B that includes

both examples. Thus, for y′′ �= y′, zθy(x) > zθy′′(x′). Since this

holds for any two examples in S, � is also PoLS-aligned.

1) Batch cross-entropy: To show that the batch cross-

entropy satisfies the PoLS, we show that Lc does, which by

Lemma 1 implies this for �. By the continuity of KL, and

since for discrete distributions, KL(P ||Q) = 0 ⇐⇒ P ≡ Q,

there is an ε > 0 such that if L(Bθ) ≡ KL(PB ||Qθ
B)] < ε,

then for all i, j, |PB(i, j) − Qθ
B(i, j)| ≤ 1

2m . Therefore, for

each example (x, y) ∈ B,

ez
θ
y(x)

Z(B)
>

1

2m
, and ∀j �= y,

ez
θ
j (x)

Z(B)
<

1

2m
.

It follows that for any two examples (x, y), (x′, y′) ∈ B, if

y �= y′, then zθy(x) >
1

2m > zθy′(x′). Therefore L satisfies the

PoLS, which completes the proof.

2) Batch max-margin: To show that the batch max-margin

loss satisfies the PoLS, we show this for Lm and invoke

Lemma 1. Set ε = γ/m. If L(Bθ) < ε, then γ−zB+ +zB− < γ,

implying zB+ > zB− . Hence, any (x, y), (x′, y′) ∈ B such that

y �= y′ satisfy zθy(x) ≥ zB+ > zB− ≥ zθy(x
′). Thus L is aligned

with the PoLS, implying the same for �.
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