
SON Function Performance Prediction
in a Cognitive SON Management System

Simon Lohmüller1, Fabian Rabe1, Andrea Fendt1, Bernhard Bauer1, Lars Christoph Schmelz2
1 Universität Augsburg, Department of Computer Science, Augsburg, Germany

{simon.lohmueller, fabian.rabe, andrea.fendt, bernhard.bauer}@informatik.uni-augsburg.de
2 Nokia, Network Management and Automation, Munich, Germany

christoph.schmelz@nokia.com

Abstract—As a reply to the increasing demand for fast mobile
network connections the concept of Self-Organising Networks
(SONs) has been developed, reducing the need for humans
to execute Operation, Administration and Maintenance (OAM)
tasks for mobile networks. However, a SON contains functions
which are provided by different vendors as black boxes, making
it hard to predict the performance of the network, especially
under untested configurations. Since Mobile Network Operators
(MNOs) have to fulfil rising mobile network performance de-
mands while reducing costs at the same time, it is crucial to gain
a better understanding of the network behaviour to allow a cost-
neutral performance improvement while simultaneously reducing
the risk of network misconfiguration and service disturbance.
In this paper an approach is introduced to enhance SON
Management models with cognitive Machine Learning (ML)
methods. Therefore, the simulated behaviour of three different
SON Functions is analysed and described by a Linear Regression
(LR) Model. In a second step, performance data of network
cells are analysed for similarities using k-Means Clustering. The
findings of these two steps are then combined by fitting the models
onto smaller clusters of cells. Finally, the utility of these models
for predicting the performance of the network is evaluated and
the different stages of refinement are compared with each other.

I. INTRODUCTION

In addition to an increasing demand for mobile internet
connections, the Internet of Things is creating a whole new
category of devices demanding reliable and capable Radio Ac-
cess Technologies (RATs) [1]. However, prices per megabyte
are actually going down due to fierce competition among
Mobile Network Operators (MNOs). This puts high pressure
on MNOs to reduce expenses to remain profitable. To meet
the expected demand, MNOs are forced to invest into their
infrastructure and will inevitably be faced with high Capital
Expenditures (CAPEX). Currently, the operation of a network
is still largely based on a centralised MNO approach, executed
by human operators. Therefore, the focus lies on limiting
Operational Expenditures (OPEX) [2] which can be achieved
by automating the time-consuming, expensive and error-prone
tasks manually executed by human MNOs [1].

Modern cellular networks are large systems consisting of
countless separate cells covering a wide variety of different
environments. These environments differ in multiple domains
such as their geographical layout or the motion profile of each
user. To enable a satisfactory user experience it is necessary
to configure cells in accordance to requirements posed by the

environment. This can be achieved by changing the so called
Network Configuration Parameters (NCPs), e.g., increasing the
transmission power or changing the tilt of an antenna. How-
ever, the Operation, Administration and Maintenance (OAM)
of such networks is very labour intensive, i.e., to adjust NCPs
manually, not mentioning the experience an operator would
need to do so. Furthermore, certain aspects of the environment
can change over time, e.g., commuters leaving the down town
area of a city in the evening and thereby producing a multiple
of traffic compared to the rest of the day. This requires a
constant readjustment of the parameters, immensely increasing
the workload for an MNO. Based on these needs the concept
of Self-Organising Network (SON) was developed [1].

In SON, a multitude of SON Functions, i.e., autonomously
working closed control loops, monitor the performance of the
network in terms of Key Performance Indicators (KPIs) and
adapt the NCPs if required. Such SON systems are faced
with several problems: First, SON Functions are implemented
and sold by different vendors who provide their products
as black boxes where the inner workings are unknown to
the MNO. Second, these SON Functions usually only aim
at one dedicated KPI and hence, several of these functions
need to run in parallel to satisfy a variety of MNO’s goals.
Third, these SON Functions themselves have SON Function
Configuration Parameters (SCPs), such as activation thresholds
and step-sizes which need to be set. Determining suitable
SON Function Configuration Parameter Values (SCVs) for
the SCPs is a crucial step to guarantee a satisfactory Quality
of Service (QoS) in domains like network coverage, voice
quality, and data rates. Finally, different SON Functions may
aim at improving different KPIs while adapting the same
NCPs and hence may not be achievable together. While SON
Coordination [3] tries to resolve such NCP conflicts after
their appearance, SON Management tries to find optimal
configurations beforehand that do not influence each other
negatively. To overcome these problems, several projects, e.g.
[4] and [5], have worked on automating the process of finding
suitable SON Function configurations. Also the authors in
[6], [7] and [8] have constantly amplified the initial SON
Management. However, due to the SON Functions being black
boxes, the MNO is forced to rely on documentation provided
by the vendor of a SON Function which can be provided
in the form of lookup tables mapping SCV sets to expected

KPIs - also known as SON Function Model (SFM) [2] [9].
Since each vendor of a SON Function derives these mappings
from experiments in his/her own testing environment, there is
little guarantee that they hold true in real world applications
where the SON Function might face a different environment
and work alongside other SON Functions [8]. Testing all SCV
sets in the real network is simply not feasible. Furthermore,
a situation may occur where none of the tested SCV sets do
well in achieving given objectives. In this case it would be
helpful to predict the behaviour of untested sets which possibly
do better in fulfilling KPI targets. These facts motivate the
following Core Questions (CQ):
Q1 Is it through means of Machine Learning (ML) possible

to generate models which accurately map SCVs to KPIs?
Q2 Is it possible to reliably estimate the performance of

unknown SCV sets?
Q3 Can ML help finding similarly behaving cells, allowing

for more tailored models?
There are several use cases in SON where ML is already
applied. For instance, [10] proposes a Reinforcement Learn-
ing framework for the coordination of two distributed SON
Functions and [11] proposes a solution to learn the best
configuration for a Mobility Load Balancing (MLB) function.
However, all these approaches do not deal with the problem of
several SON Functions concurrently aiming at different KPI
targets. Therefore, an approach is presented to enhance SON
Management with ML capabilities to overcome this problem.

II. BACKGROUND

A. Supervised Learning - Linear Regression (LR)

Q1 has been whether it is possible to generate models
which accurately predict KPIs based on the SCVs of a SON
Function. For this paper SON Functions from the area of Self-
Optimisation, namely MLB, Mobility Robustness Optimiza-
tion (MRO) and Coverage and Capacity Optimization (CCO),
were simulated with different SCV sets and the resulting KPIs
were measured. Since this needs labelled data, meaning it
needs to know the true output for given inputs, this is a prob-
lem for Supervised Learning algorithms. Supervised models
are trained on datasets of the form (X1, Y1), (X2, Y2), ..., with
Xi representing the input and Yi the associated output or label.
The quality of a model built through Supervised Learning can
be checked by comparing the predicted Ŷ to the actual Y .
Once a satisfying model is built, it can then be used to predict
the behaviour of the actual system under unseen inputs. Since
each KPI is a continuous value and an algorithm is asked to
predict continuous results, an effective approach is LR.

1) The Model: LR takes an input vector X with n features
{x1, x2, ..., xn} resulting in the following model:

ŷ = β0 + β1 ∗ x1 + β2 ∗ x2 + ...+ βn ∗ xn = f̂(X) (1)

Fitting an LR Model equals estimating the coefficients
{β0, ..., βn}. In order to do so there needs to be
a labelled dataset with k observations of the form
{(X1, Y1), (X2, Y2), ...}, with k ≥ n, otherwise Eq. 1 can not

be solved. If k = n, then there is precisely one solution for
each β. If k > n, then it is in most cases not possible to find
βs such that each sample can be described with zero residual.

A residual is defined as the difference between a known
output yi and the estimated output ŷi:

εi = yi − ŷi (2)

To fit f̂() to the dataset, the least squares method is employed
in order to reduce the residuals. Since the model for LR f̂()
was defined in Eq. 1, it is now possible to merge the two
equations into the following:

εi = yi − f̂(Xi)

εi = yi − (β0 − β1 ∗ x1,i − β2 ∗ x2,i − ...− βn ∗ xn,i)
(3)

The goal is to determine the set of β0, β1, ... which have the
minimal Residual Sum of Squares (RSS) which is defined as
the sum over all squares of each available residual:

RSS = ε21 + ε22 + ...+ ε2k (4)

Inserting Eq. 3 into Eq. 4 leads to:

RSS =

k∑
i=1

(yi − (β0 − β1 ∗ x1,i − ...− βn ∗ xn,i))2 (5)

Since there are more data points k than unknown coefficients
β, the equation has more than one solution. Through derivation
and some calculus the optimal set of βs can be calculated.

2) Increasing Flexibility: So far only linear combinations
of the different features {x1, x2, ...} of X have been con-
sidered. However, polynomials with higher degrees than 1
as model are thinkable. According to [12] this is still con-
sidered to be LR, since the polynomials can just be con-
sidered as additional features where Xpoly now consists of
{x1, x21, x31, ..., x2, x22, ...}. This transformation of X enables
more complicated models while still retaining the same pro-
cedure as with classical LR. In the same vein as adding
polynomials of features it is quite reasonable to expect that
certain inputs have synergies with each other and influence the
output to a different extent than each of them does individually.
These so called interaction terms (and their polynomials) can
then be used to extend the input vector X and as a result lead
to an even more flexible model.

3) Bias vs. Variance: Bias refers to the error that is in-
troduced by approximating a real-life problem which may be
extremely complicated, by a much simpler model. In contrast,
variance describes how much a model changes when fit to a
different dataset. Both a too biased model and a too flexible
model have shown to have flaws when trying to build a reliable
model [12], hence bias and variance need to be balanced.

4) Quality of Fit: For a comparison of models it is neces-
sary to evaluate the fit of a model to the available data. Metrics
to measure the overall error of a model are, e.g., the Mean
Absolute Error (MAE) [13], Mean Squared Error (MSE) [14]
and Root Mean Squared Error (RMSE) [13], each with their
own advantages and drawbacks. In this paper the error will be
measured using the RMSE (Eq. 6) since it is interpretable in

the actual units of the output, thus being easier to understand
while still retaining the high penalty for larger residuals [13].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − f̂(xi))2 (6)

After selecting the error metric, different models can be
compared and tuned to reduce the error and lead to a model
which better captures the behaviour of the underlying system.
Nonetheless, searching for a model with zero error is not the
way to generate successful predictions. This is due to the
fact that all measurements Y are tainted by the error ε when
measured: Y = f(X) + ε. Since ε is random, it can not be
included in the model f̂(). Hence, it is logical to split the
residuals into

|Y − Ŷ | = εreducible + εirreducible (7)

with εreducible referring to the reducible error induced through
wrong models and εirreducible referring to errors from the
random noise in the system.

5) Training and Testing: Since it is impossible to know
how much of an error is due to εreducible and how much
due to εirreducible without explicitly knowing f(), an extra
step is necessary to evaluate the true performance of any
given model regarding its original goal: Predicting outputs of
unseen inputs and comparing these to the measured outputs.
A drawback of the polynomial models of high degrees is that
they are able to capture the training data very well, but show
an increased amount of jitter in areas without data points.
These high variations in ŷ lead to big residuals when tested on
new data, an effect called over-fitting: The model describes the
data presented during fitting so well, that it incorporates the
εirreducible in its predictions and fails to capture the underlying
f(). The solution for this problem is to not fit the model on
all available data from the start. Instead, the dataset is split
into training data and testing data. The model is then trained
by fitting it to the training data, before it is tested against
the remaining testing data. All models are then compared on
the basis of their performance on the test dataset. Over-fitted
models will have small residuals on the training data, but are
too sensitive to the noise and fail on the testing data.

B. Unsupervised Learning - k-Means Clustering
Although there are many approaches to unsupervised learn-

ing, for this paper only Clustering is relevant, predominantly
for Q3 mentioned in Sec. I: Finding similarly behaving cells.
The goal of Clustering algorithms is to examine the similarity
of samples based on their features, and then find groups of
samples which share a high similarity within the group com-
pared to samples from groups laying outside. These clusters
are usually defined through centroids which are virtual data
points representing the proto-element of each group. One of
the simplest and fastest algorithms for creating clusters is the
k-Means algorithm. It is important to note that the user needs
to decide manually on the number of clusters k when running
the algorithm, so even more domain knowledge is necessary
for a successful application of this algorithm.

III. DATA GENERATION

A. Tooling

In order to evaluate the SON Function performance pre-
diction proposed in this paper, a Long Term Evolution (LTE)
network was simulated in System Experience of Advanced
SON (SEASON), a simulation engine initially developed by
Nokia Siemens Networks [15]. On top of SEASON sits the
SON Function Engine (SFE) which is the run-time envi-
ronment for the SON Functions and acts as an interface to
SEASON. For simulation a scenario based on the topology of
the Helsinki city centre is used, instantiating buildings as well
as the road network. The scenario spans an area of around
60 km2, equipped with 35 cells and populated with up to
2000 mobile users, half of them travelling at the speed limit
of the roads and the other half walking by foot. To put the
network under increased stress a highway with 1000 very fast
moving mobiles has been added to the scenario. Three SON
Functions have been evaluated, namely MLB, MRO and CCO
where each of them aims at optimising one single KPI, namely
the Physical Cell Load (Load), the Handover Ping Pong Rate
(PiPo) and the Channel Quality Indicator (CQI). For each
simulation run, only one single SON Function is active to
prevent both coordination issues and interferences of two SON
Functions. After each granularity period, i.e., 90 minutes of
simulated time, SEASON reports measured KPIs per cell to
the SFE. Each function is thereby configured with the same
SCVs, but since each cell is situated in a different environment
with varying KPIs, they become active independently and
change NCPs of cells individually. For data evaluation Python,
in particular the Pandas and Scikit-learn libraries have been
used which host all the implementations of the ML algorithms
and methods described in Sec. II.

B. Data Description

Before beginning with the creation of models, it is worth
examining the samples gathered through simulation.

1) Raw Data: To make the analysis easier, the data is
parsed into one data frame per SON Function, each data frame
following the structure of Tab. I. Each row represents the
measurements from a single cell in one round. Columns CQI,
PiPo and Load store the measured KPIs (normalised to a value
range of [0, 1.0]) for that instance whereas threshold and step-
size hold the respective SCV under which these measurements
were collected. Each SCV set is a tuple of threshold and step-
size out of 32 possible combinations. Looking at the raw
data distribution some interesting properties are noticeable:
First, the data shows similar patterns across SON Functions.

TABLE I: Excerpt of the CCO Raw Data

Round Cell ID CQI PiPo Load threshold step-size

1 Cell 1 0.641 0.024615 0.35 0.01 1.0
Cell 10 0.672 0.000027 0.94 0.01 1.0
Cell 11 0.279 0.000029 0.94 0.01 1.0

...

Although each SON Function optimises only for a single

KPI, the resulting KPIs show similar distributions across all
SON Functions. One might expect that the respective KPI
of the active SON Function shows a different distribution
compared to the cases when the SON was not optimised for
this specific KPI. In addition, even within a SON Function
the measurements cluster around the same value. One might
expect that due to the large differences in tested SCVs, the
values show a wider spread across the complete domain, e.g.,
some configurations having a huge negative impact on the
KPI. Also, the values within single configurations often spread
over a wide interval. This is a crucial observation since the
fit of a model is measured based on the predicted output of ŷ
compared to the actual output of a sample y (Eq. 2). However,
any model will only predict a single value ŷ based on the input
which is the SCV set. Due to the wide interval of measured ys
for a single SCV set the irreducible error will always be very
large, therefore making accurate predictions for a single cell
hard. To sum up the findings so far: Changing SCV sets of a
single SON Function appears to have only a small effect on
the performance of the network. Additionally, the measured
values show a large variance for each configuration which
makes it hard to postulate definitive statements such as ”under
configuration X the cell will have the KPI Ŷ ”.

2) Prepared Data: It was shown above that the irreducible
error would be fairly large when predicting the performance
of a single cell in a single round, leading to bad models due
to the large amount of noise. To combat that noise, the high
level of detail (KPI per cell, per round, per SCV set) of the
data is forgone and solely the average KPI per SCV set is
aggregated, their structure is shown in Tab. II.

TABLE II: Excerpt of the CCO Prepared Data

threshold step-size sample count CQI variance CQI average

1.00 5.0 385.0 0.039244 0.526753
0.90 5.0 385.0 0.039113 0.522019

...
0.10 2.0 1155.0 0.035454 0.540144
0.01 2.0 1155.0 0.036258 0.547881

IV. SON FUNCTION PERFORMANCE PREDICTION

A. Generating a Learned SFM

The goal is to model and describe the causal relationship
between the SCV sets and the respective KPI of each SON
Function. Referring back to Subsec. II-A, the input consists
of threshold and step-size. Depending on the SON Function
the output variable is the respective KPI: CQI, PiPo or Load.

1) Model Construction: Before building the actual model it
is worth investigating the premises of the experiment, in order
to avoid common pitfalls and misinterpretations of the results.
A fundamental premise is the assumption of ceteris paribus.
As the simulation is a controlled environment with little noise
and the only factors changed are the independent variables
of the SCV sets, an actual causal relationship between SCV
sets and observed average KPIs can be assumed. To avoid
over-fitting, the raw data samples are split into a train and

a test set with a relation of 2 : 1 before the averaging
happens, thereby ensuring that the model selection happens
on a different set of data than the model evaluation. In order
to answer Q2 how well the performance of untested SCV
sets can be predicted, it is necessary to split the group of
configurations into training and testing as well. However, due
to the relatively few distinct configurations simulated, Leave
One Out (LOO) Cross Validation is employed. Let n be the
amount of simulated SCV sets. Then the model is trained on
n − 1 configurations and asked to predict the KPI of the n-
th configuration. This step is repeated for each configuration,
therefore leading to n slightly different models with the same
degree of flexibility, and n residuals. On these residuals the
error metrics can be calculated describing how well one type
of model is able to predict the KPIs of unseen SCV sets.

2) Model Selection: As explained in Subsec. II-A, the LR
Model can be made increasingly more flexible by extending
the input vector with polynomials and combinations of the
existing features. The potential drawbacks of an overly flexible
model are illustrated in Par. II-A3. Each SON Function was
fitted with different models mapping threshold t and step-
size s to the KPI. The flexibility was increased stepwise from
the linear model in Eq. 8 up to the cubic model with cubic
interaction terms in Eq. 9, so that for each SON Function 9
different models were created.

K̂PI = β0 + β1 ∗ t+ β2 ∗ s (8)

K̂PI = β0 + β1 ∗ t+ β2 ∗ s+ β3 ∗ t ∗ s+
β4 ∗ t2 + β5 ∗ s2 + β6 ∗ (t ∗ s)2+
β7 ∗ t3 + β8 ∗ s3 + β9 ∗ (t ∗ s)3

(9)

Each model is trained on the training data averages and its
performance measured against the training labels, following
the LOO Cross Validation protocol. Fig. 1 shows how the
different models behave with increasing levels of flexibility.
Based on these findings the best performing model for each
SON Function has been selected (see Tab. III).

Fig. 1: LOO Validation RMSE for increasingly flexible models

TABLE III: Best Performing Models for each SON Function

SON Function Best Model Training RMSE
CCO Quadratic with Interaction Squared 0.0137
MRO Cubed with Interaction Squared 0.0378
MLB Cubed with Interaction Squared 0.0104

3) Model Evaluation: Now that a model for each SON
Function has been selected and trained, the actual performance
is evaluated on the test data set. Since the focus is again on
predicting the performance of unknown SCV sets, the LOO
method is applied and the RMSE error calculated.

The CCO model has an RMSE of 0.013. Since the average
CQIs only have a maximum deviation of ~0.07 this is a
high error. For a qualitative evaluation: the model manages
to roughly follow the shape represented by the samples and
gives a valuable indication for untested configurations to the
MNO, but it can not predict each configuration reliably. The
MRO model has an RMSE of 0.040. In relation to a maximum
difference of ~0.34 this model appears to be a better fit than the
CCO model. Fig. 2 plots the average PiPo depending on step-
size and threshold. The black dots represent the average PiPo
of all testing samples. The blue dots show the predictions of
the models for this configuration which were trained through
the LOO method on all other configurations. For an easier
visual understanding of the model behaviour, the blue dots
are connected through the semi-transparent surface. The MLB
model has an RMSE of 0.010 which is again quite high in
relation to the maximum difference of average Load of ~0.05.
As before, the model reflects the distribution of the average
Load pretty well, but does not manage to predict the actual
averages reliably in all cases. To sum up, it can be said that
each of the models manages to describe the behaviour of the
SON Function for different SCV sets. However, the error rates
of the models need some improvement, before they can be
considered as trustworthy enough to be used in praxis.

Fig. 2: Results of the MRO model

B. k-Means Clustering on Network Cells

In [16] an approach is presented where cells are classified
based on mobile network context information. However, in
this approach the MNO has to do the classification manually
by inspection. Q3 now refers to whether it is possible to auto-
matically divide the group of 35 cells into reasonable groups
of similarly behaving cells. The assumption is that those

smaller groups might show a more homogeneous behaviour
in regard to the relationship between threshold, step-size and
the respective KPI. Additionally, clusters might support an
MNO to find descriptive features of cells and hence, configure
newly deployed cells in a suitable way. On a technical level,
Clustering should characterise cells based on their average
KPI under various SCV sets and group cells with similar
characteristics into the same group, allowing for more tailored
LR Models per group.

The cells are split into two groups per SON Function: A
cluster of default cells and one for outlier cells. Therefore,
one k-Means Classifier with k = 2 is fitted to the dataset of
each SON Function. As explained in Subsec. IV-B there is
no correct way to determine the fit or quality of a Clustering
algorithm due to the unlabelled data. Instead it is up to the
user to decide on the utility of the Clustering result. While
classifying the cells according to their CQI yields a very
clear result (all the turned off cells belong to one class), this
offers very little new information. Additionally, the other two
SON Functions do not deliver any helpful results either. For
both MRO and MLB, one cluster contains cells close to the
highway, with the other cluster containing the rest of the cells.
But marking each cell based on its classes in the MRO- as well
as the MLB-Clustering shows a pattern which offers itself for
an easy interpretation: One cluster refers to areas with a high
amount of fast moving User Equipments (UEs) (white in Tab.
IV), a second one to areas with high amount of foot traffic
(blue), a third one is characterised through a low Load and
a low PiPo which refers to turned off cells as well as one
more cell (green). Finally, the rest of the cells (unmarked)
belong to the cluster with a lower Load and higher PiPo, the
default classification in this scenario. Instead of creating four
classes through the merging of two separate classifications,
it is also possible to fit a single k-Means Classifier to the
complete dataset of MRO, MLB and CCO simulation results:
Each cell is now characterised by all SCV to KPI mappings
at once. To get a comparable result to the previous merging,
k is set to 4 for this 1-Step Classifier, the results of which
can be seen in Fig. 3. The results differ in a few notable
places: The 1-Step Clustering process singles out the passive
cells perfectly, compared to the merged classifier, which puts
cell 8 into the same cluster. Cells close to the highway are
put into the same cluster by both classifiers, except for cell
28. Instead, cell 9 is added in case of the 2-Step Classifier.
Additionally, the remaining cells are split into two groups,
although they appear to be non-distinguishable in their main
characteristics, compared to the obvious default cluster created
by the 1-Step Classifier. Overall, it appears to be easier to
interpret an explanation into the four clusters created by the
2-Step Classifier. Whether it is actually the better classifier
depends on whether the MNO can use these classifications
for network configuration.

C. Regression Learning on Clusters

Whilst Clustering provided useful information regarding the
similarity of KPI response on different SCV sets, it might also

Fig. 3: 1-Step Clustering

TABLE IV: Comparing Un-clustered to Clustered RMSEs

SON Un- 2-Step Clusters
function clustered unmarked white blue green

CCO 0.01321 0.0071 0.0154 0.0139 0.0050
MRO 0.04048 0.0463 0.0228 0.0551 0.0115
MLB 0.01038 0.0064 0.0228 0.0310 0.0030

1-Step Clusters
blue white green unmarked

CCO 0.01321 0.0063 0.0093 0.0150 0.0
MRO 0.04048 0.0473 0.0487 0.0263 0.0
MLB 0.01038 0.0038 0.0093 0.0129 0.0

help to improve the Regression Models built in Subsec. IV-A.
In this section the best performing models from Par. IV-A2
are fitted onto data from clusters created with the 1-Step and
2-Step Classifiers. For each SON Functions and each cluster
a model is trained and evaluated via the LOO method. The
resulting RMSEs are presented in Tab. IV. When comparing
the un-clustered RMSEs of the SON Functions to the RMSEs
of each of the four clusters, it can be observed that, while
some clusters have a significantly lower RMSE, there is no
case in either Clustering method where all clusters have a
lower RMSE compared to the un-clustered scenario. However,
looking at the RMSEs of the 1-Step Clusters compared to the
un-clustered RMSEs reveals that the RMSEs only get slightly
worse for some of the clusters and models but at the same
time significantly improves some other RMSEs.

V. CONCLUSIONS AND OUTLOOK

At the beginning of this paper Q1-Q3 about the relationship
between SCV sets and KPIs have been posed. To answer Q1
and Q2, the best fitting LR Model for each SON Function was
determined by evaluation with a separate testing dataset. The
results show that the behaviour can be predicted for each of the
SON Functions and most of the SCV sets. In order to achieve
even more trustworthy predictions on untested SCV sets, other
Supervised Learning methods should be evaluated, since it is
possible that the underlying relationship between the SCVs
and the KPI values is not a linear combination but follows a
more chaotic pattern. Non-Parametric Regression or Decision
Trees might be able to capture those characteristics even more

accurately and provide a better performance. Q3 motivated
the search for subgroups of cells showing a similar behaviour
when it comes to KPI effects. The 35 cells have been classified
into 4 similarly behaving clusters. The best performing models
for each SON Function were trained on data from each of the
clusters. Thereby, the 1-Step Classifier taking all KPIs into
account, provided the best results. A bigger scenario with
a more heterogeneous network including, e.g., rural areas,
might lead to stronger contrasts among the different cells and
hence, absolute improvements when fitting models onto the
subgroups. Also choosing a higher number of clusters and
using more clustering parameters, e.g., the average number of
users or the throughput per user, is a step worth evaluating.
Beyond that, throughout this paper predictions only have been
made on the behaviour of single SON Functions. The next
promising step is to analyse the behaviour of combined SFMs.
Finally the learned SFM as well as the learned clusters must
be integrated into the SON Management.

REFERENCES

[1] S. Hämäläinen et al., ”LTE Self-Organising Networks (SON) - Network
Management Automation for Operational Efficiency”, John Wiley &
Sons, 2012

[2] C. Frenzel, ”Objective-driven Operations of Self-Organizing Networks”,
Dissertation, 2016

[3] K. Tsagkaris et al., ”SON Coordination in a Unified Management Frame-
work”, in IEEE 77th Vehicular Technology Conference (VTC), 2013

[4] Kostas Tsagkaris et al., ”Unified Management Framework (UMF) Spec-
ifications Release 3,” UniverSelf Project, Deliverable D2.4, 2013

[5] EU FP7 Project SEMAFOUR, ”Deliverable 6.6 ’Final report on a unified
self-management system for heterogeneous radio access networks’”,
2015, [Online]

[6] C. Frenzel et al., ”Dynamic, Context-Specific SON Management Driven
by Operator Objectives”, in 2014 IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2014

[7] C. Frenzel et al., ”SON Management based on Weighted Objectives
and Combined SON Function Models”, in ISWCS 2014 - Fourth
International Workshop on Self-Organising Networks (IWSON), 2014

[8] S. Lohmüller et al., ”Adaptive SON Management Using KPI Mea-
surements”, in 2016 IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2016

[9] S. Hahn et al., ”Managing and altering mobile radio networks by using
SON function performance models”, in 11th International Symposium
on Wireless Communications Systems (ISWCS), 2014

[10] O. Iacoboaiea et al., ”SON Coordination in Heterogeneous Networks: A
Reinforcement Learning Framework”, in IEEE Transactions on Wireless
Communications 15.9, 2016

[11] Stephen S. Mwanje et al., ”A Q-Learning Strategy for LTE Mobility
Load Balancing”, in 2013 IEEE 24th International Symposium an
Personal, Indoor and Mobile Radio Communications (PIMRC), 2013

[12] G. James et al., ”An Introduction to Statistical Learning”, Springer, 2013
[13] C. J. Willmott et al., ”Advantages of the mean absolute error (MAE)

over the root mean square error (RMSE) in assessing average model
performance”, in Climate Research, 2005

[14] Z. Wang et al., ”Mean Squared error: Love it or leave it? A new look at
Signal Fidelity Measures”, in IEEE Signal Processing Magazine, 2009

[15] Nokia Siemens Networks, ”Self-Organizing Network (SON) Introducing
the Nokia Siemens Networks SON Suite - an efficient, future-proof
platform for SON”, in Nokia Siemens Networks White Paper, 2009

[16] S. Hahn et al., ”Classification of Cells Based on Mobile Network
Context Information for the Management of SON Systems”, in IEEE
81st Vehicular Technology Conference (VTC), 2015

