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ABSTRACT
In this work, we present a new view on automatic speaker diarisa-

tion, i. e., assessing “who speaks when”, based on the recognition of

speaker traits such as age, gender, voice likability, and personality.

Traditionally, speaker diarisation is accomplished using low-level

audio descriptors (e. g., cepstral or spectral features), neglecting

the fact that speakers can be well discriminated by humans ac-

cording to various perceived characteristics. �us, we advocate a

novel paralinguistic approach that combines speaker diarisation

with speaker characterisation by automatically identifying the spea-

kers according to their individual traits. In a three-tier processing

�ow, speaker segmentation by voice activity detection (VAD) is

initially performed to detect speaker turns. Next, speaker a�ributes

are predicted using pre-trained paralinguistic models. To tag the

speakers, clustering algorithms are applied to the predicted traits.

We evaluate our methods against state-of-the-art open source and

commercial systems on a corpus of realistic, spontaneous dyadic

conversations recorded in the wild from three di�erent cultures

(Chinese, English, German). Our results provide clear evidence that

using paralinguistic features for speaker diarisation is a promising

avenue of research.
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1 INTRODUCTION
�e most intelligible factor in language is not the word itself,

but the music behind the words, the passions behind the music,

the person behind these passions: everything, in other words,

that cannot be wri�en.

— Friedrich Nietzsche

Speaker diarisation is the task of determining “who speaks when”

in an audio stream [2]. �e research �eld has initially emerged

within the realm of speech processing technology, where speaker

diarisation serves as an upstream processing step for automatic

speech recognition (ASR). Along with the grown maturity of this

�eld over the last decade, the research topic has gained increasing

a�ention due to its broad application spectrum including multi-

media information retrieval (e. g., video tagging), human-machine

interaction, and rich transcription (RT), as well as speaker recog-

nition in phone call conversations, broadcast news, and meeting

recordings [32, 41]. In standard systems, speaker diarisation is

performed using clustering techniques based on hidden Markov

models (HMMs), where each state, corresponding to a speaker, is

represented by a Gaussian mixture model (GMM). Recent e�orts

to improve the diarisation performance head into the directions of

using time-decay [3, 7], prosodic [11, 21], and multi-modal, audio-

visual features [12, 27]. Moreover, many studies [4, 15, 18, 28, 43]

have tackled the problem of overlapping speech, which needs to be

assigned to multiple speakers, or else would considerably deterio-

rate diarisation performance.

Despite the manifold work done in this �eld, it has been disre-

garded in current research that humans are naturally able to dis-

criminate their dialogue partners according to a variety of speaker

a�ributes as carried over the voice. Intuitively, the voice timbre,

conveying rich demographic information, naturally forms the voice

identity of a speaker. Hence, we posit that speaker analysis is of

crucial importance to identify the active speaker. Within the �eld of

Computational Paralinguistics [35], research has been carried out

on automatically recognising a plethora of speaker characteristics,

including transient speaker states such as a�ect, health condition,

and long-term speaker traits like personality and biological prim-

itives, as well as speaking styles. Exemplary recognition tasks

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

387



that have been featured in the INTERSPEECH Computational Para-

linguistic ChallengE (ComParE) series [34] include emotion (2009),

interest, age, and gender (2010), sleepiness and alcohol intoxication

(2011), the OCEAN �ve personality traits (openness, conscientious-

ness, extraversion, agreeableness, neuroticism), voice pathology,

and likeability (2012), social signals, con�ict, and autism (2013),

physical and cognitive load (2014), the degree of nativeness, Parkin-

son’s condition, and Eating condition (2015), deception, sincerity,

and native language (2016), cold and addressee (2017).

All these paralinguistic characteristics – in particular those re-

veling speaker traits – can be considered highly relevant to identify

the speakers according to their individual sound pro�les. A�empts

to make use of speaker information beyond basic acoustic features

for speaker diarisation include the usage of a priori information on

the speaker identity [25], gender speci�c background models [16],

and speaker role n-gram models [42]. However, to the authors’

best knowledge, speaker characterisation using a rich variety of

paralinguistic trait information has never been applied to speaker

diarisation before. In this work, we introduce a novel paralinguis-

tic approach based on a three-tier system: speaker segmentation,

characterisation, and clustering.

In the remainder of this work, we describe the speaker diarisation

systems in Section 2. �e performance evaluation on a corpus of

spontaneous human-to-human conversationsdetailed in Section 3.

Concluding remarks and impulses for future research are given in

Section 4.

2 SPEAKER DIARISATION SYSTEMS
In general, prototypical speaker diarisation systems are constituted

from several processing stages as depicted in Figure 2. At the front-

end, voice activity detection (VAD) serves to split the audio stream

into speech and non-speech segments, where the speech part can

be further re�ned to include speaker homogeneous and overlapping

speech [4]. Subsequently, cepstral features are extracted to perform

clustering. To this end, hierarchical bo�om-up (o�-line only) or top-

down (also suitable for on-line diarisation) approaches are applied

to merge or divide the formed clusters based on the de�ned distance

metrics and stopping criterion [22]. Typically, clustering is done

by estimation of hidden Markov models (HMMs), of which each

state corresponds to a speaker, whose feature distribution is, in

turn, modelled by a Gaussian mixture model (GMM) [2].

Alternatively, segmentation and clustering are o�en performed

in one step by employing Viterbi decoding between iterations [1, 14]

and Bayesian adaption of a universal background model (UBM)

[31]. Finally, on the output side, the (re-)segmented and clustered

segments are assigned to relative speaker labels (e. g., speaker 1) or

true identities (e. g., speaker name) [31, 40]. It is noted that speech

overlap detection is a challenging task in itself as will be addressed

in Section 2.2.

2.1 LIUM SpkDiarization
For comparison with standard open-source systems, we evaluated

the LIUM framework (version 8.4.1) [23], which achieved the best

performance for the task of speaker diarisation of broadcast news

in the French Ester 2 evaluation campaign 2009 [13]. Although

it is possible to adapt the system to process telephone data, the

Figure 1: Audio diarisation by the sensAI system applied to
an exemplary dyadic conversation. Waveform view (voice
segments are highlighted – red waveform = female, blue
waveform = male)

toolbox is primarily developed for radio or TV shows, thus one

cannot expect the same level of performance on voice over IP phone

conversation.

2.2 sensAI Voice Analytics Tools
�e sensAI audio analysis engine is a commercial product provided

by audEERING GmbH
1
. Its speaker diarisation unit makes use of a

robust VAD technology based on Long Short-Term Memory Recur-

rent Neural Network (LSTM) [20] that locates voice signals even

in highly noisy environments, such as background music or street

noise (cf. Figure 1). Its algorithm is based on GMMs combined with

UBMs and maximum a-posteriori (MAP) adaptation [16]. Starting

with one background model each for male, female, and garbage,

models for individual speakers are successively created based on the

likelihood ratios. A major drawback of standard speaker diarisation

systems is that speech segments are assigned to only one speaker,

thus incurring missed speech errors and false alarms in regions

where multiple speakers are active [4]. �e problem of speech

overlap detection was recently tackled in the work [15] with LSTM-

RNN. Building upon this work, it has been shown in [18] that the

performance of overlap detection can be largely improved by bidi-

rectional LSTM (BLSTM) RNNs with four outputs (voice activity,

speech overlap, male and female speaker recognition), trained with

the CURRENNT library [44]. �e sensAI so�ware makes use of this

algorithm for its VAD by segmenting the audio stream accordingly.

2.3 Paralinguistic Approach
�e paralinguistic recogniser is integrated in the training module

running parallel to the cepstral feature extractor in the standard

processing chain (cf. Figure 2). �e aim is to train discrimina-

tive classi�ers to automatically determine speaker characteristics,

thereby generating a paralinguistic trait vector as input for speaker

clustering. Here, the paralinguistic informations bits are considered

auxiliary and complementary to the acoustic features, and are not

meant to replace these. �us, we propose a hybrid approach by

jointly using acoustic and paralinguistic features. In this section,

the design and implementation of the paralinguistic diarisation

framework are described in detail.

2.3.1 Voice Activity Detection and Segmentation. At �rst in a

fundamental step, the VAD senses audio segments in which only

one speaker is active. By that, accurate timestamps delineating the

speaker change points can be provided for segmentation. For the

purpose of this study, we adopt sensAI’s output segments.

1
h�p://audeering.com/technology/sensai/
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Figure 2: Process �ow chart in paralinguistic (solid line) and standard (dashed line) speaker diarisation system.

2.3.2 Paralinguistic Speech Analysis. For the paralinguistic recog-

niser, we consider the biological primitives (age, gender), the OCEAN

personality traits (openness, conscientiousness, extraversion, agree-

ableness, neuroticism), and the voice likability, as featured in the

INTERSPEECH 2010 Paralinguistics Challenge [36, 37] and the IN-

TERSPEECH 2012 Speaker Trait Challenge [38, 39]. �ese traits

were chosen due to their quasi time-invariance during the recording

sessions, unlike the rapidly changing states, for instance, emotion.

Altogether, they constitute an 8-dimensional paralinguistic trait

vector, comprising seven binary class labels (OCEAN, likability

and gender) and one numeric a�ribute (age). �e rationale to treat

age as a regression task is that the interlocutors are likely in the

same age group (young, adult, old) in our scenario, however, for

diarisation, it is important that their speech parts are associated

with di�erent prediction values.

Feature Extraction. �e paralinguistic recogniser operates on

suprasegmental acoustic features. �ese are obtained by using

the openSMILE (Speech and Music Interpretation by Large audio-

Space Extraction) toolkit [9, 10]. �e ComParE set is a well-evolved

feature set for automatic recognition of paralinguistic speech phe-

nomena, serving as a standard reference in the speech community.

It contains 6 373 static a�ributes resulting from the computation of

various functionals over low-level descriptor (LLD) contours. �e

con�guration �les for openSMILE are provided with the openSMILE

2.1 public release. Important subgroups of the ComParE feature

set comprise prosodic (PROS), Mel Frequency Cepstral Coe�cients

(MFCC), spectral (SPEC), and voice quality (VQ) features. Due to

their relevance for speaker identi�cation [26], the MFCC features

are concatenated with the paralinguistic traits into one input vector

for the clustering algorithm in the early fusion approach. A full

description of the the acoustic features can be found in [8, 45].

Databases. �e training of the trait predictors is carried out on

the INTERSPEECH Challenge datasets. �e German aGender cor-

pus [5] contains 47 hours of telephone speech of 954 speakers. For

the purpose of this study, the instances belonging to the ‘Child’

group (7-14 years old) were removed from the training and vali-

dation set. �e age distribution of the remaining speakers ranges

from 15 to 80 years, with a mean age of 43.6 and a standard de-

viation of 19.7. �e labels of the test set are not provided. �e

Speaker Likability Database (SLD) [6] is a subset of the aGender

database, including 800 speakers and one u�erance each. Likability

ratings on a seven point Likert scale were established by presenting

the recordings to 32 participants (17 male, 15 female, aged 20-42,

mean=28.6, standard deviation=5.4). To establish a consensus from

the individual likability ratings, the evaluator weighted estimator

(EWE) [17] was used. For the Challenge, the EWE value was discre-

tised into the ‘likable’ (L) and ‘non-likable’ (NL) classes based on the

median EWE rating of all stimuli in the SLD. �e French Speaker

Personality Corpus (SPC) [24] comprises 640 clips of 322 speakers

in 1.7 hours of speech. �e personality traits were assessed by 11

annotators according to the Big-Five personality dimensions [30].

�e ratings were centered to zero mean on a per rater basis in order

to eliminate individual biases. Each clip was labelled to be ‘above

average’ (X) for a given trait X ∈ { O, C, E, A, N } if the majority of

the judges assign a score higher than the arithmetic mean of their

ratings for the speci�c trait; or else it is labelled as NX. Both the

SLD and the SPC are age and gender balanced. Table 1 shows the

partitioning of the databases into speaker-disjunct and strati�ed

training, development, and test set.

Model Training. Model training is carried out on the training

and development set, where each feature is standardised to zero

mean and unit variance. Standardisation is done separately on the
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Table 1: Partitioning into training, development, and test
set for paralinguistic speech analysis. Binary classi�cation:
Speaker Likability Database by L: likable / NL: non-likable;
Speaker Personality Corpus by X: high on trait X / NX: low
on trait X, X ∈ { O, C, E, A, N }; aGender corpus (gender) by
f: female and m: male. Regression: aGender corpus (age).

Trait Class Train Devel Test Σ

Likability L 189 92 119 400

NL 205 86 109 400

Openness O 97 70 80 247

NO 159 113 121 393

Conscientious. C 110 81 99 290

NC 146 102 102 350

Extraversion E 121 92 107 320

NE 135 91 94 320

Agreeableness A 139 79 105 323

NA 117 104 96 317

Neuroticism N 140 88 90 318

NN 116 95 111 322

Gender f 14 135 9 644 – 23 779

m 13 985 8 508 – 22 493

Age numeric 28 120 18 152 – 46 272

database to which diarisation is applied, in order to to alleviate

cross-corpus e�ects. To foster reproducible research, we employ

the open-source data mining toolkit WEKA (version 3.8.1) [19].

In particular, we use Support Vector Machines (SVM) with linear

kernels for the classi�cation tasks, and for age estimation Support

Vector Regression (SVR; also with linear kernels) with epsilon-

insensitive loss, which are generally robust to over-��ing in high

dimensional feature spaces. To train the classi�ers, the Sequen-

tial Minimal Optimisation (SMO; [29]) is applied, for which the

complexity parameter C ∈ {10
−5, 10

−4, · · · , 10
−2} is optimised on

the development set. For consistency, we use the same evaluation

measures as in the Challenges, i. e., Unweighted Average Recall

(UAR) for classi�cation and Spearman’s Correlation Coe�cient (ρ)

for regression. �e obtained performances are 60.6 % (likability;

C = 10
−2

), 64.0 % (openness, C = 10
−5

), 73.6 % (conscientiousness,

C = 10
−2

), 83.6 % (extraversion, C = 10
−4

), 65.8 % (agreeableness,

C = 10
−5

), 70.2 % (neuroticism,C = 10
−4

), 95.3 % (gender,C = 10
−4

),

and .482 (age, C = 10
−3

). Deviations from the Challenge baseline

can be explained by the usage of the ComParE feature set and the

latest openSMILE version.

2.3.3 Speaker Clustering. Whereas the segmentation step aims

at separating adjacent windows which belong to di�erent speakers,

clustering operates globally on the audio stream, trying to iden-

tify and group together segments for each speaker [2]. Ideally,

there should be one cluster for each speaker. As in most standard

diarisation systems, the unsupervised agglomerative (bo�om-up)

clustering mechanism is applied in the proposed framework to

identify and grouping together the segments of the same speaker.

To this end, a suitable distance metric and a stopping criterion

need to be de�ned to form the optimal number of clusters. Given

the fact that a majority of the paralinguistic traits contains binary

Table 2: Statistics (gender and age distribution and duration)
of the SEWA sessions used in the evaluation.

Culture # Subjects Duration

Female Male Age (mean ± stddev) [min]

British 33 33 33.4 ± 14.4 100.7

Chinese 34 36 30.4 ± 9.8 89.1

German 25 39 31.6 ± 12.6 91.4

labels, we decide on the Manha�an distance and the Elbow method.

As implementation, we choose the hierarchical clustering package

from the open-source so�ware SciPy (version 0.13.3).

3 PERFORMANCE EVALUATION
In this section, we investigate the performance level of the pro-

posed approach in comparison with the state-of-the-art diarisation

systems as described in Section 2. For this purpose, the evaluation

procedure is described, followed by a discussion of results.

3.1 Evaluation Measure
�e diarisation output is processed in the RTTM (Rich Transcription

Time Marked) format. �e standard evaluation measure is the

Diarisation Error Rate (DER) as used by the National Institute of

Standards and Technology (NIST) in the RT evaluations
2
. �e DER

corresponds to the ratio of incorrectly detected speaker time to

total speaker time, where the system output speaker segment sets

are mapped to reference speaker segment sets so as to minimise the

total error. It is de�ned as the sum of the miss (speaker in reference

but not in hypothesis), false alarm (speaker in hypothesis but not

in reference), and speaker error (correctly detected speech but not

assigned to the right speaker) rates, divided by the total speech

time in reference (time-weighted).

3.2 Database
In order to compare the diarisation systems in a real-life scenario,

the Sentiment Analysis in the Wild (SEWA) database
3

is used. It

contains video calls between subjects from six di�erent cultures

with a broad distribution in age (from 18 to over 60). For the purpose

of this study, we use a subset of the database comprising all video

chat recordings of the three cultures British, Chinese, and German.

In the data collection, the subjects were �rst asked to watch a

90 seconds long commercial presented in their native language.

�en, in each recording session, two subjects who were acquainted

with each other exchanged their views on the commercial in a

three minutes long video chat via a online recording platform. �e

subjects’ demographics and the total duration of the recordings

are shown in Table 2. Manual transcription of all conversations

were completed by a native speaker of the respective language. In

detail, the transcript marks every u�erance’s start and end time (in

seconds), the speaker’s subject ID, and the verbal content. Some

non-verbal u�erances, such as laughter, coughing and breathing

sound, were annotated as well.

2
h�ps://www.nist.gov/itl/iad/mig/rich-transcription-evaluation

3
h�p://db.sewaproject.eu/
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Table 3: Comparison of the speaker diarisation systems
(LIUM, sensAI, paralinguistic approach) in terms of miss,
false alarm, speaker error (spkr err), and diarisation error
rate (DER) [%].

Culture Miss False Alarm Spkr Err DER

LIUM
CHN 6.48 10.00 35.05 51.52

ENG 4.56 14.89 35.87 55.32

GER 4.08 3.51 39.81 47.40

sensAI
CHN 7.20 1.89 6.48 15.58

ENG 6.71 5.03 11.01 22.76

GER 11.43 0.32 7.14 18.89

Paralinguistic
CHN 7.20 1.89 38.16 47.26

ENG 6.71 5.03 37.05 48.79

GER 11.44 0.32 35.57 47.32

MFCC
CHN 7.20 1.89 37.30 46.40

ENG 6.71 5.03 35.90 47.65

GER 11.44 0.32 35.37 47.13

Paralinguistic + MFCC
CHN 7.20 1.89 37.27 46.36

ENG 6.71 5.03 35.89 47.63

GER 11.44 0.32 35.35 47.11

3.3 Results
Table 3 depicts a quantitative comparison of the diarisation sys-

tems (cf. Section 2). �e LIUM tool achieves the lowest miss rate

(6.48 %) at the expense of higher false alarm rate up to 15 %, while

the sensAI system is more prone to missed speech. Conceivably,

tuning of the VAD operating points could alleviate these di�erences.

Furthermore, the LIUM and the proposed paralinguistic system pro-

vide similar performance levels regarding the speaker error rate,

whereas the sensAI engine outpaces them in this metric. In the end

result, sensAI yields the lowest DER, followed by the paralinguistic

approach, and – slightly behind – the LIUM system. No signi�cant

di�erence is observed regarding the di�erent cultural backgrounds.

To further investigate the performance di�erence between the

proposed paralinguistic approach and the classical cepstral fea-

ture based systems, we exchange the paralinguistic trait features

by the cepstral feature subset of the ComParE feature set (1 400

suprasegmental features), while keeping the simple clustering al-

gorithm. �e results (denoted as ‘MFCC’ in Table 3) indicate that

the proposed approach is competitive despite using two orders of

magnitude less features, suggesting that the paralinguistic features

yield a particularly compact representation of the voice timbres.

Finally, we also considered early fusion of the paralinguistic trait

features with the suprasegmental MFCC features. However, the

results do not improve over either of the single feature sets. �is

is somewhat surprising as we would expect these feature sets to

carry complementary information. We speculate that a late fusion

approach (system combination) could be more bene�cial than early

fusion due to the vastly di�erent size of the feature sets.

Generally, it needs to be taken into account that the real-world

data recorded “in the wild” comprise background and environ-

mental noise as well as transmission characteristics, which would

explain the general high level of error rates. It is therefore all the

more important to improve the segmentation correctness in order

to provide accurate and clean data for the downstream steps. Above

all, it is highly notable that our purely paralinguisic approach is

competitive against the baseline approaches which exploit cepstral

features for speaker clustering – the la�er can be considered highly

e�ective on the studied data set of video calls where the transfer

function di�ers between the interlocutors.

4 CONCLUSION AND OUTLOOK
In this work, we proposed a novel paralinguistic approach to speaker

diarisation based on speaker characterisation. Taking humans as an

example, our system is able to automatically assess various speaker

traits for each speech segment using pre-trained models. In this

way, a multi-dimensional trait vector containing the predicted age,

gender, voice likability, and personality label is obtained to describe

the speaker in each segment. Using these paralinguistic features,

the segments are then clustered to identify unique speakers. Our

results show the potential of our approach in comparison with

benchmark open-source and commercial systems.

For future research, we aim to include more speaker states, traits,

and speaking styles, but also linguistic features such as Bag-of-

Words [33] into the paralinguistic diarisation framework. Due to the

modular composition, the system components can be easily adapted

and exchanged. In particular, we can also consider paralinguistic

trait regression instead of binary classi�cation, which is expected

to help clustering. Furthermore, we can combine paralinguistic

trait features with the GMM clustering approach as used by the

best performing sensAI system. �e crux is to �nd an appropriate

fusion strategy of frame-level MFCCs with suprasegmental trait

predictions. Finally, prediction uncertainty of paralinguistic trait

models can be exploited to improve speech overlap detection.
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