Accelerating Biomedical Signal Processing Using GPU: A Case
Study of Snore Sound Feature Extraction

Jian Guo' - Kun Qian’ - Gongxuan Zhang' - Huijie Xu® - Bjorn Schuller®

Abstract The advent of ‘Big Data’ and ‘Deep Learning’
offers both, a great challenge and a huge opportunity for
personalised health-care. In machine learning-based
biomedical data analysis, feature extraction is a key step
for ‘feeding’ the subsequent classifiers. With increasing
numbers of biomedical data, extracting features from these
‘big’ data is an intensive and time-consuming task. In this
case study, we employ a Graphics Processing Unit (GPU)
via Python to extract features from a large corpus of snore
sound data. Those features can subsequently be imported
into many well-known deep learning training frameworks
without any format processing. The snore sound data were
collected from several hospitals (20 subjects, with
770-990 MB  per subject — in total 17.20 GB).
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Experimental results show that our GPU-based processing
significantly speeds up the feature extraction phase, by up
to seven times, as compared to the previous CPU system.

1 Introduction

Biomedical engineering is gaining more attention from
researchers in both life sciences and computer science. The
mass size of currently available biomedical data and its
high rate of growth has great influence on the current
research related to its mining [1, 2]. In fact, the exponen-
tially increasing amount of biomedical data turns mining
such data into a ‘big data’ problem [3]. Thus, High-Per-
formance Computing (HPC) will be the core infrastructure
enabling doctors, biologists, and engineers to manage and
analyze the data collected [4]. To name but three examples,
Bastrakov et al. presented an HPC-based biomedical
computing system to analyze the performance and improve
the efficiency within a large-scale biomedical information
simulation on cluster systems [4]. Qian et al. studied how
to use a private cloud computing system to process longer
durations of snore-related signals [5], which considerably
speeds up the snore sound processing, than compared with
single CPU systems. loana Dogaru and Radu Dogaru
implemented some natural computing complexity algo-
rithms with Python-based high-performance platforms, and
achieved better speeds than Matlab/Octave environments,
using the same hardware configurations [6].

In our study, we further the works in [5], and present a
Graphics Processing Unit (GPU)-based method to rapidly
extract acoustic features from large amounts of snore sound



(SnS) data via Python programming. The SnS data were
collected from 20 subjects suffering from Obstructive Sleep
Apnea (OSA) [7], a serious chronic breathing condition.
Numerous researchers and scholars focused on acoustic
features analysis of SnS generated by patients over the past
decade or 2 [8, 9]. It is essential for doctors to understand the
obstruction site and collapse degree of the upper airway (UA)
by utilizing non-invasive measurement approaches like
acoustic analysis of SnS [10-13]. First, we would like to give
a brief description on the feature extraction, and how to
utilize GPU-based Python programming to speed up this
process; then, we describe our experiment settings and dis-
cuss the results before giving our conclusion.

2 Acoustic Features

In this case study, we extract 20 acoustic features from a
large amount of SnS data, based on Fast Fourier Transform
(FFT), which can be visualized to help doctors and spe-
cialists to diagnose, research, and remedy the diseases
efficiently. An energy threshold was set to detect the short-
time energy of each frame segmented from SnS data. From
frames exceeding an energy threshold, we extract 20
acoustic features which reflect the frequency and spectrum
distribution. We extracted the center, peak, and mean
points of the spectrum (feenter, fpeak» fmean) in Egs. 1 and 2,
where Sj; is the absolute amplitude of SnS spectrum at the
frequency of f; Hz calculated by Fast Fourier Transform
(FFT). f. is the cut-off frequency of the SnS spectrum,
which is 8 kHz in our study. Then, we propose Eq. 3 to
define finean, Which is a good indicator to reflect the struc-
ture of an SnS spectrum. For comparing and analysing
performance between CPU and GPU, we set those three
features (feenters fpeak> Smean) as feature group 1:

fCenter ﬁ
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s.t.Sp, = max{S;.fi =0, f.} (2)
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Furthermore, in Eq. 4, eight additional spectral features,
i. €., fmean(1)s fmean(2)» +» fmean(s), in €ach 1000 Hz band are
extracted for revealing the detailed information about the
spectrum structure in each sub-band of SnS. We set
JSimean(1...8) as feature group 2:

1000+k
Zf,-:lOOO*(k—l)fi * Sf,
1000+k
Ef,-:lOOO*(k—l) St

fmean(k) = k=1,2,...,8. (4)
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The power ratio at a frequency of 800 Hz is known to be
efficient to distinguish SnS generated by different
obstruction sites in UA [14]. We define this feature as
feature group 3 with Eq. 5:
> pe S
=) (5)

PRgy =1g —/———

800 = 18 Z;f;goo S%
Similar to PRggg, sub-band energy ratios (SER) are a good
indicator to reflect the spectrum distribution of SnS [15]. In
our study, each SER in the 1000 Hz band is calculated;
thus, we obtain eight SERs as our full 8000 Hz SnS
spectrum. From SER(j to SER gy, there are 8 features to be
calculated and defined in Eq. 6 as feature group 4:

1000k
S - Z =1000%(k—1) S%
BRy) = S G
fi=0*f;

All extracted feature data could be reviewed according to
the physicians preference; meanwhile, these data could also
be processed by other data mining or machine learning
algorithms, including: [16].

k=1,2,...8. (6)

GPU based SnS data processing

z .y

Acoustic features of OSA from SnS data

g =
NQe==P7
Subjects Doctors

Fig. 1 GPU-based system for processing SnS data collected in
hospitals
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3 System Framework

Figure 1 shows our GPU-based system for processing the
large SnS data. The data were collected by a high-quality
microphone setup. This system was hung at roughly 0.5 m
above the subjects mouth (moving range between 0.4 and
0.8 m according to the movements of subjects). Sampling
rate is 16 kHz, and 16-bit resolution was selected to make
recording an entire night (8 h) of snoring possible, from 20
subjects. Considering the hardware, the GPU can achieve
better performance for linear algebra-based acoustic anal-
ysis tasks.

As to the software-side matters, owing to recent toolkits
such as Numpy [17], Scipy [18], and alike, Python’s effi-
ciency in scientific computing has vastly improved in
recent years [19]. We select Python as our programming
language due to its high programming efficiency. For
example, during algorithm debugging, researchers prefer to
program with interpretative languages like MathWorks
Matlab and Python, because of their high programming
efficiency and their saving of lots of time on coding. As
well as code release, with assistance from specialists of
high-performance computing, algorithms can be optimized
into compiled languages such as C or C++, even paral-
lelization by CPUs or GPUs for high running performance
is possible. However, coding and optimization of high-
performance parallelization programs are not only time-
consuming but too advanced for most bioinformation
researchers. Our Python-based method is both program-
ming efficient and high running performance. Besides,
most of the mainstream deep learning frameworks such as
Caffe [20], MXNet [21], Tensorflow [22], Theano [23],

etc. and alike interfaces are implemented via Python or are
even coded directly into Python natively. With feature
extraction in Python, programmers have an easier time
linking up the feature extractor with Python-based machine
learning packages such as scikit-learn [24] or the deep
learning training frameworks mentioned above. For GPU
programming, the Anaconda Python distribution with
Numba/NumbaPro [25] supporting NVIDIA’s CUDA-
based GPU programming is chosen by us for speeding up
our feature extraction. Numba offers an elegant way to
accelerate computation with some minor changes in the
original Python code. Likewise, equivalent performance of
C++ and the like can be reached. This effect is due to just-
in-time (JIT) code compilation. In addition, NumbaPro
provides a CUDA-based API for calling CUDA libraries
including CUDA BLAS Library (cuBLAS), Fast Fourier
Transform library (cuFFT), CUDA Sparse (cuSPARSE),
and CUDA Random Number Generation library (cuR-
AND) [25]. In our work, first, we import NumbaPro to call
cuFFT for accelerating FFT computation in our feature
extraction algorithms. Then, we import Numba, and mod-
ify the original Python codes by adding ‘@jit’ decoration
before defining functions to accelerate most of the
remaining feature extraction programs; furthermore, we
can achieve a better acceleration if we declare variables
types for ’@jit’ labeled functions. The example codes in
Listing 1 show those accelerate methods which we men-
tioned above. Except for adding some decorations like
‘@jit’ into original Python code, we can see that there are
almost no large-scale modifications on our original Python
code.

Listing 1 Accelerating Python with Numba and NumbaPro

import numpy as np

from numba.decorators import

from numbapro import cuda

jit

from numbapro.cudalib import cufft

@jit ('f8[:],14’, nopython=True )
def feature_g(r,fs):
nf = len(r)
ap = np.sum(r[:nf/2 — 1])
result = []
def main():

threadperblock = 32, 16

blockpergrid = best_grid_size(
tuple (reversed (frames)), threadperblock)

cufft .FFTPlan(frames, itype=np.float32

,otype=np. float32)

fftplanl = cufft.FFTPlan(frames,
itype=np. float32 ,otype=np.float32)




Table 1 Configuration of the experimental setup

Configuration
CPU Intel Xeon Processor E5-2650 v3 @ 2.30 GHz
GPU NVIDIA GTX 980Ti with 6 GB GDDRS5
Memory 256 GB DDR3 1600
Storage HDD 1.5 TB 7200 rpm
oS CentOS 7.2 with CUDA 7.5
Python Anaconda Python 2.7 with numpy 1.10.4

scipy 0.17, Numba/Numbapro 0.23.1

4 Experiments and Results

The SnS data in this work are provided by the Department
of Otolaryngology, Beijing Hospital, P.R. China. Overall,
the above described 20 acoustic features (cf. Sect. 2) from
frames which passed a defined energy threshold are
extracted from audio recordings of 20 subjects’ entire night
of sleep (8 h). The system configuration of our experi-
mental environment is given in detail in Table 1.

As can be seen in Fig. 2, our proposed GPU-based
system considerably accelerates the SnS data processing as
compared to the CPU platform (sorted by processed
numbers of frames per subject from small to large). Table 2
gives details on the SnS data as used in the experiments.
From Fig. 2, we find that, for the subject that has the
smallest number of frames processed (subject 18, 1021
frames), a comparably smaller speed-up is reached: 13.17 s
are required by the CPU, and 11.36 s by the GPU (only
speed up by 1.15x). In contrast, feature extraction for the
data of the subject with the highest number of processed
frames (subject 7, 119 756 frames) demands for 240.13 s
by the CPU, but only 33.95 s when computed by the GPU
(resembling a speed up by 7.0x). Note that among the 20
subjects’ SnS data, even within a similar data size of audio
recordings, the speed-up rate can differ. This is simply
caused due to potentially different frames numbers needing
to be processed. Even if the audio data are of almost the
same size owing to the pre-selection of frames to be pro-
cessed by the snore-activity detection. Independent of this
trivial fact, one can summarize that, the more frames from
the need processing in the audio data, the higher and more
significant our methods acceleration effect will be.

Furthermore, we did a deeper performance analysis of
the feature groups that we defined previously in Sect. 2 for
understanding why we achieved different speed-up from
different subjects, with the possibility to achieve better
speed-up with a GPU. As we defined in Sect. 2, we divide
20 acoustic features into 4 feature groups. We record the
execution times of these feature groups and file I/O times
of subject data (including slight system overhead) sepa-
rately using profile functions. As shown in part (a) of

553

CPU mmmm GPU e===Speced Up

Nw
[ =Y
S S

IS}
=}
S

15}
S

Execution Time (Seconds)
W G
(=] (=]
S = N W R WL N ®
Speed Up

o o mn dn Bn Do do B b B b do o b B o b be o B0 I

D WD g® D (@ P 2P O O PP D O
NIAE A O RGOS SERAF O *Fb«"’%q\\\\“'\

Number of Frames
Fig. 2 Execution time of the CPU and the GPU, accordingly speed

up for processing SnS data by individual subjects (these are given by
the numbers of frames)

Table 2 SnS data as employed during testing

Subject index 1 2 3 4 5

Data size (MB) 770 990 880 880 770
Frames processed 54,982 49,835 10,387 2773 4883
Subject index 6 7 8 9 10
Data size (MB) 770 880 770 770 770
Frames processed 48,218 119,756 38,978 56,617 18,153
Subject index 11 12 13 14 15
Data size (MB) 770 880 880 880 880
Frames processed 7041 75,845 13,078 15,299 24,300
Subject index 16 17 18 19 20
Data size (MB) 880 770 880 880 880
Frames processed 43,862 14,780 1021 42,859 91,199

Fig. 3. First, according to the different complexity feature
extraction algorithms, we describe, in Sect 2, feature
groups cost differing percentages of total execution time
with each subject. Let us take the most time-consuming
one (subject who has 119756 frames) as an example, fea-
ture group 1-4 costs 53.66, 18.55, 75.14, and 69.48 s,
respectively (22.83, 7.89, 31.97 and 29.57% of total exe-
cution time); in addition, I/O and system overheads cost
18.13 s (7.71% of total execution time at that subject).
Besides this, subject with only 1021 frames also costs
10.93 s for I/0O operation, 83.88% of total execution time
(13.03 s). From this, we can see clearly that, no matter the
data size of audio recordings, and despite the amount of
frames need for computation, the I/O operation always
costs around 11-14 s (770-990 MB per subject). There-
fore, we can confirm that, for CPU-based feature extrac-
tions, different feature extraction algorithms have different
time costs due to there being different complexities, and as
previously shown, the more processing need for frames in
the audio data, the more time needed. However, the I/0
operation is not affected by total amount of frames to
process, every subject costs around 11-14 s for I/O over-
head in processing.
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Fig. 3 Execution time of feature groups, 1I/0, and system overhead

Table 3 Mean value and

L. . Mean Std..dev.
standard deviation of execution
tlme betweeq CPU and GPU CPU 1.6361 +8.1055
with ten replicates
GPU 0.3662 +2.2523

In part (b) of Fig. 3, of the GPU-based accelerate pro-
cessing. We can see that feature group 1-4 have been
accelerated and the execution times of feature groups are
reduced significantly. However, just like CPU-based pro-
cessing, each subject still costs around 11-14 s on subject
data I/O operations with GPU-based processing. Let us
consider the most time-consuming example, subject who has
119756 frames, in GPU-based processing, feature group 1-4
costs 3.59, 1.24, 5.03, and 4.65 s, respectively (10.45, 3.60,
14.64 and 13.53% of total execution time); meanwhile, I/O
and system overhead costs 19.82 5 (57.70% of total execution
time at that subject). I/O operation costs more than half of the
total execution time in this case. And in the case subjects with
1021 frames, the I/O operation reached the proportion of
96.07% of total execution time (11.01 seconds at I/O and
11.46 in total). Although we have accelerated feature
extractions in SnS data processing with our methods, we
cannot accelerate I/O operation in this way, which signifi-
cantly reduces the speed-up ratio when comparing CPU and
GPU. Replacing the storage from hard disk to SSD may

theoretically reduce the I/O operation time costs, at the same
time, to achieve better speed-up values.

The mean value and stand deviation of execution time
compared CPU to GPU with ten replicated experimental
results, as shown in Table 3. We can see that the GPU-
based method has not only better computational ability but
also better performance stability compared with the CPU-
based processing.

5 Conclusion

In this work, we proposed a GPU-based system for processing
snore sound data, which considerably outperforms the tradi-
tional CPU-based computing platforms. We utilized Python
programming to provide a direct interface for fast GPU
implementation of our signal processing algorithms. We
found it highly efficient to accelerate the processing given the
suited hardware. The experimental results showed that the
more frames needed to be processed, the higher the system’s
speed-up. We also analysed and revealed deeply the affect
between computation (both CPU and GPU based) and 1/0
operation for speed-up. Finally, we propose that I/O operation
is an important factor which cannot be ignored when trying to
accelerate big biomedical signal processing. Despite the
programming languages or strategy used, the results should be
consistent between algorithms. Moreover, after the compu-
tation time is optimized to a certain extent, I/O operation and
unparalleled parts become the main obstacle to limit the
running performance of the whole program.

In our future work, we would like to upgrade our storage
from hard disk to SSD and to introduce cache policies into
experiments as we suggest that this will achieve better
speed-up. We will further advance related biomedical
signal processing via MPI-based multiple CPUs, and
multiple GPU clusters, to handle the increasing ‘big’ data
collected within health-care and well-being field. As well
as this, some more sophisticated signal processing algo-
rithms like the most recent work of [26], will also be
implemented along with GPUs for acceleration purposes.
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