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Abstract—Automatic Speaker Analysis has largely focused on
single aspects of a speaker such as her ID, gender, emotion, per-
sonality, or health state. This broadly ignores the interdependency
of all the different states and traits impacting on the one single
voice production mechanism available to a human speaker. In
other words, sometimes we may sound depressed, but we simply
have a flu, and hardly find the energy to put more vocal effort
into our articulation and sound production. Recently, this lack
gave rise to an increasingly holistic speaker analysis - assessing
the ‘larger picture’ in one pass such as by multi-target learning.
However, for a robust assessment, this requires large amount of
speech and language resources labelled in rich ways to train such
interdependency, and architectures able to cope with multi-target
learning of massive amounts of speech data. In this light, this
contribution will discuss efficient mechanisms such as large social-
media pre-scanning with dynamic cooperative crowd-sourcing
for rapid data collection, cross-task-labelling of these data in
a wider range of attributes to reach ‘big & rich’ speech data,
and efficient multi-target end-to-end and end-to-evolution deep
learning paradigms to learn an accordingly rich representation of
diverse target tasks in efficient ways. The ultimate goal behind is
to enable machines to hear the ‘entire’ person and her condition
and whereabouts behind the voice and words - rather than aiming
at a single aspect blind to the overall individual and its state, thus
leading to the next level of Automatic Speaker Analysis.

I. INTRODUCTION

The automatic analysis of speech aiming at a rich charac-

terisation of the speaker behind the sound of the voice and

choice of her words has come to age by now. It offers an

ever growing richness in speaker states and traits that can

be assessed with increasing accuracy reaching from emotion,

cognitive and physical load to eating condition, heart rate,

deception and sincerity to sleepiness, intoxication, health state,

age, gender, height, personality, pathologies, and whatnots as,

for example, featured annually in the Interspeech Computational

Paralinguistics Challenge (ComParE) competition series [1]1.

Reaching adulthood these days, it is increasingly used in a

1cf. also http://www.compare.openaudio.eu

range of commercial and everyday applications. This often

happens unnoticed by the larger public, such as in call centres

for monitoring of quality or customer analysis, as results

are – depending on the speaker characterisation task – still

often not sufficiently robust to be used directly in an end-user

application. However, when processing larger amounts of data,

the automatic recognition of speaker states and traits such as

emotional arousal, gender, or age group provides sufficiently

meaningful results to be used for trend analyses and alikes.

A particular hope to increase robustness currently lies in the

combined assessment of multiple speaker characteristics – the

so called ‘holistic’ speaker or speech analysis. The idea is to

become utmost independent of the co-influence of concurrent

speaker states and traits – ultimately all impacting on the same

voice production mechanism or the same cognitive processes

responsible for the wording of one’s phrases and grammar

behind. In other words, we may sound depressed, but in fact

perhaps simply are tired and exhausted or suffer from a flu.

However, the more a technical system analyses not one state or

trait of a speaker at a time in ‘blind’ isolation, but ‘hears the

larger picture’ of what is going on in a speaker and what she

is all about, the lower the risk of such confusions will likely

be. Likewise, even if only interested in one aspect such as the

speaker’s emotion, it seems wise to grasp the overall state and

traits of the speaker [2], [3], [4], [5]. This requires assessing a

‘rich’ variety of speaker characteristics simultaneously – ideally

exploiting mutual dependencies between these.

On a related note in the domain of speech-to-text technology,

NIST announced in 2002 the first Rich Transcription Evalu-

ation (RT-02). The idea was to not only transcribe speech

automatically, but include meta information on the speakers

– at first mainly by diarisation of these. Later, this idea of

targeting multiple aspects in the data was further extended, and

off-springs organised such as in further “rich” transcription

challenges. In [6], [7], for example, the task was alongside

                                              

                                                                                                                                               



Fig. 1. Rich multiple-target speech analysis by an evolving learner that learns
confidences per tasks alongside the tasks. These are iteratively fed back as
input to refine the model. Further explanations are given in the text.

automatic orthographic transcription of speech to provide event

detection and tracking such as for example speech vs music, and

“speaker tracking” as well as “information extraction”, namely

named entity detection. One motivation behind is similar: the

more a system understands what is overall ongoing in the data,

the more likely it will assess the parts of interest correctly.

II. AUTOMATIC SPEAKER ANALYSIS 2.0 –

WHAT IS MISSING?

In the following, let us first broadly consider where we

stand at in Computational Paralinguistics, or Automatic Speaker

Analysis, and what is missing when doing a coarse comparison

with human speaker analysis abilities.

A. Superhuman, yet?
The “first encounter phone test”

An interesting way of looking at how good humans – i. e.,

we – are at ‘speaker analysis’ is a setting in everyday life,

where we hear an unknown voice for the first time without

seeing the person. Such a setting is given, for example,

when hearing a conversational partner on a conventional (i. e.,

non-video enhanced) phone. We quickly assess the gender,

age, likability, personality [8], social status, emotion and

many further characteristics and refine our impression as the

conversation goes. In other words, we do not focus on one

aspect, but in fact draw the ‘larger picture’. When it comes to

the ‘tone of the voice’ we relate it carefully to single words

or phrases as is needed in the context of the conversation.

For example, when hearing a sequence of names uttered by a

superior or someone we are interested in, we carefully relate

her or his voice exactly to our name to sense their appreciation

or sentiments towards us.

So where is Automatic Speaker Analysis in relation to these

human skills? Above, it was already mentioned that most

current technical systems are usually only targeting one aspect

at a time or a very few at best. In addition, the temporal

resolution is often somewhat arbitrary either related to the

database (when processing of pre-chunked material) or to the

framing or windowing of a technical process, but hardly to the

word or semantic level.

As to reliability of the assessment, looking again at the

related field of automatic speech recognition, first papers there

claim human-level [9] or even ‘superhuman’ levels in accuracy.

In other words, the computer has – according to these claims

– exceeded human perceptive and cognitive ability in certain

tasks such as speech-to-text transcriptions in particular test

conditions such as adverse acoustic settings. Other examples

exist, such as in image processing, where such claims are

similarly made in nowadays deep learning era [10]. But where

is Automatic Speaker Analysis in such terms?

Most certainly, the computer has exceeded human ability

of laymen when considering the domain of health state or

pathology assessment from the voice and words such as when

automatically diagnosing Autism Spectrum Condition [11],

Alzheimer’s [12] or Parkinson’s disease [13]. Other examples

exist such as predicting height [14] or heart rate [15] from voice

acoustics down to some centimetres or beats per minute, where

automatic approaches are likely a nodge ahead, albeit human

perception tests for comparison are largely missing. Mostly in

the psychological and phonetic literature, some do exist such

as for excemptions for human age perception in speech such as

[16], [17]) or speaker height such as [?]. However, these studies

are mostly executed on other data than the studies working on

machine ‘perception’. One exemplary task where both human

[18] and machine perception studies exist on the same data

set, and there also exists a solid ground truth rather than a

subjective fuzzy point of relation such as in the case of emotion

is the recognition of alcohol intoxication at comparably lower

level (0.5 per mill blood alochol concentration): In a perception

study [19], the participants seemed to have a tendency of lower

accuracy than the top systems of the Interspeech 2011 Speaker

State Challenge [20].

B. Paralinguistic granularity

From the above discussion, it seems obvious that humans

are better at assessing a common analysis of a speaker, but

in fact, they are also doing this in much more nuanced ways

than today’s technical systems do: in [21], a dozen taxonomies

were taken as basis to extend the analysis beyond coarse states

such as a speaker’s degree of pain as perceived by others, by

adding aspects such as the (degree of) acting of the felt pain (as

perceived by others), the (degree of) intentionality of this acting

(as perceived by others), and the (degree of) prototypicality

of this acting (as perceived by others). It becomes clear that

likewise, a certain depth can be established as related to each

speaker characteristic by considering suited taxonomies such

as degree of acting, etc. This in combination with extending

the width results in a sheer endless richness – potentially also

                                                                                                                                               



Fig. 2. Seamless learning from the audio data ‘end-to-end’. Rather than
dealing with pre-processing and feature extraction individually before-hand
learning of a decision model, one model learns ‘through’ from the raw signal
(i. e., at ‘signal’s edge’) to the final label. To learn the accordingly higher
number of free parameters needed to not only learn separation functions in
non-linear space, but also feature representations and pre-processing, large(r)
amounts of learning data are usually required. To provide such, ‘cooperative
learning’ putting together active and semi-supervised learning [23] shall help
to efficiently label the ‘big’ available unlabelled speech data such as on the
Internet, on the radio, in television, etc. Further explanations are given in the
text.

in tree structures – which is certainly not at all times followed

upon by humans who rather focus depth if related to a certain

purpose or interest. However, humans are capable of assessing

such nuances, and the technical systems would yet have to

follow.

C. Confidence

Furthermore, we as humans do usually have a somewhat

reliable feeling for the reliability of our assessments: For

example, when negotiating for a raise in salary, we listen

carefully to the reaction, and not only analyse whether “let

me think about it” is more likely positive or negative, but

also are able to attach a confidence such as “I am quite

sure it was positive” to the assessment. In Automatic Speaker

Analysis, comparably little effort has been spent on provision of

independent confidence measures, such as based on automatic

estimation of human agreement on a paralinguistic phenomenon

[22]. However, in an application context, such information is

particularly useful, and more efforts have thus to follow into

this direction.

III. AUTOMATIC SPEAKER ANALYSIS 2.0 –

GETTING THERE

The above discussion makes it obvious that next generation

speaker analysis systems should assess multiple tasks in one

pass – potentially in a broad and deep fine-grained manner and

relating to semantically meaningful units such as words.

A. Holism by multi-target evolving learning

Catering the concept of holism, an according technical

scheme is shown in Figure 1. There, one can see multiple

targets on the output side of a (machine) learning algorithm

such as a neural network. Each target thereby has its own

confidence information provided. This could be an additional

output per target. An example would be co-learning of the

labeller agreement level alongside the target task as additional

output [22]. This information can be fed back to the input

side as ‘posteriors’. In principle, frontiers between features and

target label could be washing away in such an architecture,

which could be fed on the input side in the first place by the

raw signal (cf. also below). Likewise, such an approach could

consider co-learning of features and target labels alongside

confidence measures for each of these attributes. As an example,

consider co-learning of pitch – a psycho-acoustically highly

complex perceptual phenomenon [24] – with speaker emotion.

The learner could likewise simultaneously refine its modelling

of pitch and emotion – two clearly correlated phenomena. In

such way, pitch as perceived by humans could be approached

more closely rather than in todays’ engines which mostly

use the physical fundamental frequency and some rule-based

approaches towards human perception modelling such as based

on frequency-dependant scaling. In fact, this can be also of

particular use to aim towards better understanding of such

interdependencies if the learning algorithm allows for sufficient

according interpretation. This can be of particular help in

coaching applications such as when giving feedback on acoustic

features in relation to paralinguistic phenomena. As an example,

consider the case of automatic recognition of atypical emotion

such as by individuals on the Autism spectrum. A system

that co-learnt feature relations alongside atypical and typical

emotion could potentially give richer feedback on how to

change one’s vocalisations to change the perception of a certain

state – as an example, pitch in order to convey emotion in

less atypical manners. Similar coaching could target apps for

likability, etc.

Coming back to Figure 1, on the input side, one further finds

(optional) knowledge on priors. Optimal decisions usually ex-

ploit such knowledge on the a-priori distribution or expectancy

of phenomena such as in (optimal) Bayesian decisions. These

priors could obviously also be learnt as more data is seen

gradually.

The learner as such is described as ‘evolving’ learner in

the figure. This lends space to the idea of having the learning

algorithm change itself over time if either receiving more and

more data thus increasing the number of free parameters for

learning, or by evolving over the output layer such as when

identifying novel features or target tasks to add during seeing

novel data. In simple forms, this could also be simply evolving

over self-learnt feature representations such as in [25].

B. End-to-end learning

In order to cope with a huge variety of speaker analysis

target tasks, self-learning of feature representations from the

raw (speech signal) data has recently appeared as convenient

alternative option such as by convolutional neural networks

(CNNs) [26], [27], [28]. This principle is shown in Figure 2.

There, one can see the raw signal as captured by a microphone

                                                                                                                                               



as input to further processing. Traditionally, these would

be different individually tweaked blocks of processing often

operating with quite diverse and heterogeneous approaches for

pre-processing (depicted as source separation of speech and

noise components – e. g., by non-negative matrix factorisation

or other suited means), and feature extraction (shown as a series

of feature vectors over time given the time series character

of an audio stream). In fact, one could find many more

according individual building blocks in a real system such

as for hierarchical feature extraction from low-level descriptors

to functional level or even histogram level in the case of

bags-of-(audio)-words, or feature space optimisation, etc. Then

follows the actual learning for decision making. In end-to-end

learning, however, the idea would be to learn as seaminglessly

as possible in order to avoid ‘quantisation’-based information

loss along the chain of information reduction from a several

kbit/sec speech signal to a few bits of label information after

the decision process.

Below the signal capture, one sees in the figure the label

that is needed in order to learn (unless, of course, unsupervised

clustering would be sufficient). In fact, this would rather be

a vector of rich label information following the principles de-

scribed above to target not one task at a time, but multiple such.

Speech data for learning is usually available, yet unfortunately

mostly without the needed label information. This leads to

the ‘big data vs little labels’ paradox requiring efficient ways

of labelling with low involvement of (cost-intensive) human

labelling efforts. This will be considered next.

C. Data – the final frontier?

Advances in machine learning – in particular ‘deep learning’

recently increasingly changed the challenges of this field which

just recently had been massively pre-occupied with the choice

of ideal features. Nowadays, this can increasingly be tackled

by learning feature representations directly from the data –

even learning ‘end-to-end’ from the raw audio signal – as

outlined above. While this solves problems, it emphasises

another ever present bottleneck in the field: data scarcity.

To cater the sheer endless hunger for data that comes with

learning representations and models of a rich variety of speaker

characteristics in parallel, one has little labelled resources at

hand these days. This holds in particular for such that are

labelled with a multitude of speaker characteristics rather than

just one. While even some of the very early speech databases

such as the ‘classic’ TIMIT database [29] already provide

a range of speaker attributes in one database, such as age,

gender, being a native speaker or not, eight “major dialects of

American English”, race, and even height and education level

of the speaker, this information was not included for the sake

of multi-target ‘holistic’ speaker analysis in the first place, but

rather as rich information on the subjects of a corpus mainly

intended for speech recognition. Such data is unfortunately

also mostly based on lab recordings – potentially of prompted

speech – rather than conversational speech recorded ‘in the

wild’ such as in [30], which is much more desirable to train

with in order to prepare an application for real-world conditions.

Fig. 3. In order to quickly obtain sufficient amounts of (labelled) speech data
to train models for a rich variety of speaker characteristics, novel approaches
of ‘cooperative learning’ appear as an option. In an initial step, suited (speech)
data is pre-filtered from sources of ‘big’ (speech) data such as social media
(e. g., YouTube). Suited means of pre-selection can base on social media
network analyses via links across media and content descriptions, etc. Content-
based potentially unsupervised verification mechanisms can be added (not
shown as extra block). Then, one can optionally transfer learn from related
data to produce an initial amount of labelled data. From this, a first model
is learnt on assessing the target task (the ‘target model’). With this model, a
decision is made on novel unlabelled data. Decisions on whether a machine
label (in case of high machine confidence in its decision) or human label (in
case the machine cannot label itself, but the data point seems informative,
i. e., relevant) is added or the data is discarded (the machine cannot label with
sufficient certainty, but deems the data not of sufficient interest to ask for
human aid) is chosen. In addition, the trust in the individual human annotators
(the crowd) is learnt (i. e., ‘whom to trust when’) to further increase efficiency
by asking the right annotator or optimal combination of annotators at the
‘right time’. After adding the newly added data – potentially in batches – an
iterative re-training and further processing of data is executed (following the
red arrow). Further explanations are given in the text.

However, one is not faced with a lack of speech data, as

the Internet, television, radio, and many other resources are

loaded with endless amounts of data. Likewise, the real task

is to cope with sparsely labelled or unlabelled data. A rich

variety of solutions exists to transfer knowledge across tasks

if similar tasks have been labelled previously, to label data by

the machine itself, or together with the human, albeit utmost

efficiently pre-selecting such data points of highest information

to the machine rather than having the human label all data. For

a comprehensive survey on these options and further such as

using synthesised speech suiting target speaker characteristics,

the reader is referred to [31].

Here, rather than giving details on transfer, active, semi-

supervised, cooperative learning, and alike, I want to highlight

a particularly promising avenue for increasing efficiency when

aiming to ‘get that data in’ and most importantly, to ‘get that

richly labelled data in’. This is shown in Figure 3. Starting

                                                                                                                                               



with large-data social-media pre-scanning by suited means

(bottom left in the figure) such as by network analysis (e. g., by

small world models) and/or based on semantic tag information,

one pre-selects a set of likely suited, yet unlabelled data. If

related labelled data is at hand, transfer learning, e. .g, by neural

network-based approaches [32] or ‘cross-task-labelling’ [33]

where databases with different partially overlapping labels are

used to label each other with all available labels in a semi-

supervised iterative manner can follow to provide an initial

model for decision making. This model needs to produce above

chance level decisions – ideally of course comparably higher

ones already.

Then, based on the initial model, decisions on the pre-

selected unlabelled data are made. Dynamic cooperative

learning sharing labelling efforts among machine and human

while learning trust in human raters – potentially with crowd-

sourcing – can then follow. Indeed, this has already been

successfully shown to be efficient in real data annotation tasks

for Computational Paralinguistics [34]. The idea is thereby to

reduce the human labelling effort to a minimum by letting

the machine annotate the data whenever it is sufficiently

confident it can do so, and ask for human help only in other

cases when at the same time there seems to be sufficient

interest in knowing the label of the current data. According

measures of informativeness can base on (high expected)

novelty, scarceness of the data, or expected (significant) change

of model parameters if the machine would know the label.

Ideally, one also learns the trust in the raters per task and label

and while obtaining labels, and their optimal combination.

As an example, consider the machine being uncertain, but

believing the data point is of sufficient interest. Based on its

own assumption, it forwards the data to the rater who is best

suited in this particular case. If his label deviates from the

expected, the machine can decide to ask another rater who

in this case might be best suited to ask next, etc. Note that

the cooperative learning process is iterative, as the models

can be retrained to increase the amount of machine annotated

data with usually gradually improving models and likewise

increasing confidence of the machine in its predictions.

IV. AUTOMATIC SPEAKER ANALYSIS 2.0 –

A BRIEF ON RESPONSIBILITY

Clearly, with growing richness and fine-granularity or depth

of automatically assessed speaker characteristics at increasing

robustness comes an increasing ethical responsibility. This ob-

viously holds especially in areas of ‘super-human’ assessment

performance, as the machine may reveal aspects that humans

would not notice. Likewise, once such systems start to be used

on a broad scale in decision support or decision making such

as in automated phone-based job interviews, computational

tele-diagnosis of health state, or machine monitoring of drivers’

or pilots’ states (such as in case of insurance cases) to name

but three delicate examples, a range of aspects need to be

carefully addressed by a responsible empowering technology.

These mainly include data privacy, honest and transparent

communication of confidence levels and reliability to the user

of such technology, but also to society at large. In other

words, the limitations of such systems need to be clearly

outlined in order to avoid over-expectancy. To this end, research

competitions with well-defined test-beds such as the Interspeech

Computational Paralinguistics Challenge mentioned above form

a basis. Yet, further efforts will need to address the broader

society such as a current effort by the World Economic Forum’s

Young Scientists’2 recommendation on best ethical practices on

a more general note. Also, with increasing big data exploitation,

further ethical challenges may arise due to potential cross-

correlation and connection of data points [35], [36].

V. CONCLUSION

In this contribution, a holistic view on Automatic Speaker

Analysis was suggested that aims at assessment of fine-grained

speaker characteristics in a maximal width and depth alongside

confidence levels for each aspect. As a learning approach to

this end, data-driven learning directly from the raw signal was

suggested as one solution. The advantage being is that likewise

no expert knowledge about peculiarities of each nuance of

speaker characteristics are needed. Obviously, however, more

‘traditional’ feature brute-forcing such as by the openSMILE

toolkit is an alternative. To cater the increased data requirement

that arises I) from seamlessly learning from signal’s edge

thus largely increasing the number of free parameters to be

learnt and II) the opening up towards a rich multitude of

fine-grained speaker characteristics, avenues based on efficient

big data exploitation were further suggested. These base on

pre-filtering the large amount of available speech data such

as by semantic content descriptions or network features on

social media platforms before training an initial model, such as

by transfer learning. Then, an iterative loop is entered where

efficiency optimisation is in the foreground of efforts. The

human is reasonably kept in the loop – such as by gamified

crowd-sourcing, e. g., via the iHEARu-PLAY platform, but

dynamic active learning helps to minimise human efforts as

the machine labels itself whenever sufficiently confident.

In future architectures, an evolving element was further

suggested. This may I) change the learner configuration as more

data comes in. Likewise, with more data gradually available,

the number of free parameters in the learner could be self-

adapted. As an example, more layers may be added in a deep

neural network, or more neurons in a broad neural network.

In addition, future speaker analysis engines could identify

novelty to self-broaden up on the diversity of speaker char-

acteristics or increase depth such as by known or even novel

taxonomies.

In the longer run with further evolving Automatic Speaker

Analysis systems, one will notice increasing impact on society

once our technical systems understand our state and ad-hoc

make meaningful assessments of new speakers – may these

be used for the best such as in health care and wellbeing,

human-machine interaction, entertainment, coaching, and many

more exciting applications to be soon expected.

2The author of this contribution is a member.
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