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Abstract—Machine learning algorithms for the analysis of time-series often depend on the assumption that utilised data are temporally

aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly

capture properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of

applications. Nevertheless, the vast majority of algorithms oriented towards temporal alignment are either applied directly on the

observation space or simply utilise linear projections-thus failing to capture complex, hierarchical non-linear representations that may

prove beneficial, especially when dealing with multi-modal data (e.g., visual and acoustic information). To this end, we present Deep

Canonical Time Warping (DCTW), a method that automatically learns non-linear representations of multiple time-series that are (i)

maximally correlated in a shared subspace, and (ii) temporally aligned. Furthermore, we extend DCTW to a supervised setting, where

during training, available labels can be utilised towards enhancing the alignment process. By means of experiments on four datasets,

we show that the representations learnt significantly outperform state-of-the-art methods in temporal alignment, elegantly handling

scenarios with heterogeneous feature sets, such as the temporal alignment of acoustic and visual information.

Index Terms—Time warping, CCA, LDA, DCCA, DDA, deep learning, shared representations, DCTW

 

1 INTRODUCTION

THE alignment of multiple data sequences is a com-
monly arising problem, raised in multiple fields

related to machine learning, such as signal, speech and
audio analysis [1], computer vision [2], graphics [3] and
bio-informatics [4]. Example applications range from the
temporal alignment of facial expressions and motion cap-
ture data [5], [6], to the alignment for human action recog-
nition [7], and speech [8].

The most prominent temporal alignment method is
Dynamic Time Warping (DTW) [1], which identifies the
optimal warping path that minimises the euclidean dis-
tance between two time-series. While DTW has found
wide application over the past decades, the application is
limited mainly due to the inherent inability of DTW to
handle observations of different or high dimensionality

since it directly operates on the observation space. Moti-
vated by this limitation while recognising that this sce-
nario is commonly encountered in real-world applications
(e.g., capturing data from multiple sensors), in [5] an
extension to DTW is proposed. Coined Canonical Time
Warping (CTW), the method combines Canonical Correla-
tion Analysis (CCA) and DTW by aligning the two
sequences in a common, latent subspace of reduced
dimensionality whereon the two sequences are maximally
correlated. Other extensions of DTW include the integra-
tion of manifold learning, thus facilitating the alignment
of sequences lying on different manifolds [7], [9] while
in [6], [10] constraints are introduced in order to guarantee
monotonicity and adaptively constrain the temporal
warping. It should be noted that in [6], a multi-set variant
of CCA is utilised [11] thus enabling the temporal align-
ment of multiple sequences, while a Gauss-Newton tem-
poral warping method is proposed.

While methods aimed at solving the problem of tempo-
ral alignment have been successful in a wide spectrum of
applications, most of the aforementioned techniques find a
single linear projection for each sequence. While this may
suffice for certain problem classes, in many real world
applications the data are likely to be embedded with more
complex, possibly hierarchical and non-linear structures.
A prominent example lies in the alignment of non-linear
acoustic features with raw pixels extracted from a video
stream (for instance, in the audiovisual analysis of speech,
where the temporal misalignment is a common problem).
The mapping between these modalities is deemed highly
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nonlinear, and in order to appropriately align them in time
this needs to be taken into account. An approach towards
extracting such complex non-linear transformations is via
adopting the principles associated with the recent revival
of deep neural network architectural models. Such archi-
tectures have been successfully applied in a multitude of
problems, including feature extraction and dimensionality
reduction [12], feature extraction for object recognition
and detection [13], [14], feature extraction for face recogni-
tion [15], acoustic modelling in speech recognition [16], as
well as for extracting non-linear correlated features [17].

Of interest to us is also work that has evolved around
multimodal learning. Specifically, deep architectures
deemed very promising in several areas, often overcoming
by a large margin traditionally used methods in various
emotion and speech recognition tasks [18], [19], and on
robotics applications with visual and depth data [20].

In this light, we propose Deep Canonical Time Warping
(DCTW), a novel method aimed towards the alignment of
multiple sequences that discovers complex, hierarchical
representations which are both maximally correlated and
temporally aligned. To the best of our knowledge, this work
presents the first deep approach towards solving the prob-
lem of temporal alignment,1 which in addition offers very
good scaling when dealing with large amounts of data. In
more detail, this paper carries the following contributions:
(i) we extend DTW-based temporal alignment methods to
handle heterogeneous collections of features that may be
connected via non-linear hierarchical mappings, (ii) in the
process, we extend DCCA to (a) handle arbitrary temporal
discrepancies in the observations and (b) cope with multiple
(more than two) sequences, while (iii) we extend DCCA and
DCTW in order to extract hierarchical, non-linear features in
the presence of labelled data, thus enriched with discrimina-
tive properties. In order to do so, we exploit the optimisation
problem of DCCA in order to provide a deep counterpart of
Linear Discriminant Analysis (LDA), that is subsequently
extend with time-warpings. We evaluate the proposed
methods on a multitude of real data sets, where the perfor-
mance gain in contrast to other state-of-the-art methods
becomes clear.

The remainder of this paper is organised as follows. We
first introduce related work in Section 2, while the proposed
Deep Canonical Time Warping is presented in Section 3. In
Section 4, we introduce supervision by presenting the
Deep Discriminant Analysis (DDA) variant, along with the
extension an extension that incorporates time warpings
(DDATW). Finally, experimental results on several real
datasets are presented in Section 5.

2 RELATED WORK

2.1 Canonical Correlation Analysis

Canonical Correlation Analysis is a shared-space compo-
nent analysis method, that given two data matrices X1;X2

where Xi 2 Rdi�T recovers the loadings W1 2 Rd1�d,
W2 2 Rd2�d that linearly project the data on a subspace
where the linear correlation is maximised. This can be inter-
preted as discovering the shared information conveyed by

all the datasets (or views). The correlation r ¼ corrðY1;Y2Þ
in the projected space Yi ¼ W>

i Xi can be written as

rr ¼ E½Y1Y
>
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Y1Y
>
1 Y2Y

>
2 �

q (1)

¼ W>
1 E½X1X

>
2 �W2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W>
1 E½X1X

>
1 �W1W

>
2 E½X2X

>
2 �W2

q (2)

¼ W>
1 SS12W2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W>
1 SS11W1W

>
2 SS22W2

q ; (3)

where SSij denotes the empirical covariance between data
matrices Xi and Xj.

2 There are multiple equivalent optimisa-
tion problems for discovering the optimal loadings Wi

which maximise Equation (3) [22]. For instance, CCA can be
formulated as a least-squares problem,

argmin
W1 ;W2

kW>
1 X1 �W>

2 X2k2F

subject to: W>
1 X1X

>
1 W1 ¼ I;

W>
2 X2X

>
2 W2 ¼ I;

(4)

and as

argmin
W1 ;W2

kW>
1 X1 �W>

2 X2k2F

¼ argmin
W1 ;W2

tr W>
1 SS1W1 � 2W>

1 SS12W2 þW>
2 SS2W2

� �
;

we can reformulate this as a trace optimisation problem as
the projected covariance terms W>

1 SS1W1 and W>
2 SS2W2 are

substituted due to the orthogonality constraints with an
identity matrix

argmax
W1 ;W2

tr W>
1 X1X

>
2 W2

� �

subject to W>
1 X1X

>
1 W1 ¼ I;

W>
2 X2X

>
2 W2 ¼ I;

(5)

where in both cases we exploit the scale invariance of the
correlation coefficient with respect to the loadings in the
constraints. The solution in both cases is given by the eigen-
vectors corresponding to the d largest eigenvalues of the
generalised eigenvalue problem

0 SS�1
11 SS12

SS
�1
22 SS21 0

� �
V1

V2

� �
¼ V1

V2

� �
LL: (6)

The eigenvalue problem can be also made symmetric by

introducingW1 ¼ SS
�1
2

11V1 andW2 ¼ SS
�1
2

22V2

0 SS
�1
2

11SS12SS
�1
2

22

SS
�1
2

22SS21SS
�1
2

11 0

!
W1

W2

� �
¼ W1

W2

� �
LL: (7)

Note that an equivalent solution is obtained by resorting to

Singular Value Decomposition (SVD) on the matrix

1. A preliminary version of our work has appeared in [21].
2. Note that we assume zero-mean data to avoid cluttering the

notation.
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K ¼ SS
�1=2
11 SS12SS

�1=2
22 [23], [24]. The optimal objective value of

Equation (5) is then the sum of the largest d singular values

of K, while the optimal loadings are found by setting

W1 ¼ SS
�1=2
11 Ud and W2 ¼ SS

�1=2
22 Vd, with Ud and Vd being the

left and right singular vectors ofK. Note that this interpreta-

tion is completely analogous to solving the corresponding

generalised eigenvalue problem arising in Equation (7) and

keeping the top d eigenvectors corresponding to the largest

eigenvalues.

In the case of multiple sets of datasets, Multi-set CCA
(MCCA) has been proposed [11], [25]. As expected the opti-
misation goal in this case then becomes to maximise the
pairwise correlation scores of the m different data sets, sub-
ject to the orthogonality constraints

argmin
W1;...;Wm

Xm
i;j¼1

kW>
i Xi �W>

j Xjk2F

subject to: W>
1 X1X

>
1 W1 ¼ I;

W>
2 X2X

>
2 W2 ¼ I;

..

.

W>
mXmX

>
mWm ¼ I:

(8)

Recently, in order to facilitate the extraction of non-linear
correlated transformations, a methodology inspired by
CCA called Deep CCA (DCCA) [17] was proposed. In more
detail, motivated by the recent success of deep architectures,
DCCA assumes a network of multiple stacked layers con-
sisting of nonlinear transformations for each data set i, with
parameters ui ¼ fu1i ; . . . ; ulig, where l is the number of layers.
Assuming the transformation applied by the network corre-
sponding to data set i is represented as fiðXi; uiÞ, the optimal
parameters are found by solving

argmax
u1;u2

corrðf1ðX1; u1Þ; f2ðX2; u2ÞÞ: (9)

Let us assume that in each of the networks, the final layer
has d maximally correlated units in an analogous fashion
to the classical CCA Equation (3). In particular, we
consider that ~Xi denotes the transformed input data sets,
~Xi ¼ fiðXi; uiÞ and that the covariances ~S~Sij are now esti-

mated on ~X, i.e., ~S~Sii ¼ 1
T�1

~XiðI� 1
T 1111

>Þ~X>
i , where T is the

length of the sequence Xi. As described above for classical

CCA (Equation (5)), the optimal objective value is the sum

of the k largest singular values of K ¼ ~S~S
�1=2

11
~S~S12

~S~S
�1=2

22 , which

is exactly the nuclear norm of K, kKk� ¼ traceð
ffiffiffiffiffiffiffiffiffiffiffi
KK>

p
Þ.

Problem (9) now becomes

argmax
u1;u2

kKk� : (10)

and this is precisely the loss function that is backpropagated

through the network3 [17]. Put simply, the networks are

optimised towards producing features which exhibit high

canonical correlation coefficients.

2.2 Time Warping

Given two data matrices X1 2 Rd�T1 , X2 2 Rd�T2 Dynamic
Time Warping aims to eliminate temporal discrepancies
arising in the data by optimising

argmin
DD1 ;DD2

kX1DD1 � X2DD2k2F

subject to: DD1 2 f0; 1gT1�T ;

DD2 2 f0; 1gT2�T ;

(11)

whereDD1 andDD2 are binary selectionmatrices [5] that encode
the alignment path, effectively remapping the the samples of
each sequence to a common temporal scale. Although the
number of plausible alignment paths is exponential with
respect to T1T2, by employing dynamic programming, DTW
infers the optimal alignment path (in terms of Equation (11))
inOðT1T2Þ. Finally, the DTW solution satisfies the boundary,
continuity, andmonotonicity constraints [1].

The main limitation of DTW lies in the inherent inability
to handle sequences of varying feature dimensionality,
which is commonly the case when examining data acquired
from multiple sensors. Furthermore, DTW is prone to fail-
ure when one or more sequences are perturbed by arbitrary
affine transformations. To this end, the Canonical Time
Warping [5] elegantly combines the least-squares formula-
tions of DTW (Equation (11)) and CCA (Equation (4)), thus
facilitating the utilisation of sequences with varying dimen-
sionalities, while simultaneously performing feature selec-
tion and temporal alignment. In more detail, given
X1 2 Rd1�T1 , X2 2 Rd2�T2 , the CTW problem is posed as

argmin
W1 ;W2;DD1;DD2

kW>
1 X1DD1 �W>

2 X2DD2k2F

subject to: W>
1 X1DD1DD

>
1 X

>
1 W1 ¼ I;

W>
2 X2DD2DD

>
2 X

>
2 W2 ¼ I;

W>
1 X1DD1DD

>
2 X

>
2 W2 ¼ D;

X1DD111 ¼ X2DD211 ¼ 00

DD1 2 f0; 1gT1�T ;DD2 2 f0; 1gT2�T ;

(12)

where the loadings W1 2 Rd�T1 and W2 2 Rd�T2 project the
observations onto a reduced dimensionality subspace where
they are maximally linearly correlated,D is a diagonal matrix
and 11 is a vector of all 1’s of appropriate dimensions. The con-
straints in Equation (12), mostly inherited by CCA, deem the
CTW solution translation, rotation, and scaling invariant. We
note that the final solution is obtained by alternating between
solving CCA (by fixingXiDDi) andDTW (by fixingW>

i Xi).

3 DEEP CANONICAL TIME WARPING

The goal of Deep Canonical Time Warping is to discover a
hierarchical non-linear representation of the data sets
Xi; i ¼ f1; 2g where the transformed features are (i) tempo-
rally aligned with each other, and (ii) maximally correlated.
To this end, let us consider that fiðXi; uiÞ represents the final
layer activations of the corresponding network for dataset
Xi.

4 We propose to optimise the following objective,

3. The nuclear norm is non-differentiable, and therefore the subgra-
dient of the nuclear norm is utilized in gradient descent [26].

4. We denote the penultimate layer of the network as fpi ðXi; uiÞ
which is then followed by a linear layer.
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argmin
u1;u2;DD1;DD2

kf1ðX1; u1ÞDD1 � f2ðX2; u2ÞDD2k2F

subject to: f1ðX1; u1ÞDD1DD
>
1 f1ðX1; u1Þ> ¼ I;

f2ðX2; u2ÞDD2DD
>
2 f2ðX2; u2Þ> ¼ I;

f1ðX1; u1ÞDD1DD
>
2 f2ðX2; u2Þ ¼ D;

fp
1 ðX1; u1ÞDD111 ¼ fp2 ðX2; u2ÞDD211 ¼ 00;

DD1 2 f0; 1gT1�T ;DD2 2 f0; 1gT2�T

(13)

where as defined for Equation (12), D is a diagonal matrix
and 11 is an appropriate dimensionality vector of all 1’s.
Clearly, the objective can be solved via alternating optimisa-
tion. Given the activation of the output nodes of each net-
work i, DTW recovers the optimal warping matrices DDi

which temporally align them. Nevertheless, the inverse is
not so straight-forward, since we have no closed form solu-
tion for finding the optimal non-linear stacked transforma-
tion applied by the network. We therefore resort to finding
the optimal parameters of each network by utilising back-
propagation. Having discovered the warping matrices DDi,
the problem becomes equivalent to applying a variant of
DCCA in order to infer the maximally correlated non-linear
transformation on the temporally aligned input features.
This requires that the covariances are reformulated as

Ŝ̂Sij ¼ 1
T�1 fiðXi; uiÞDDiCTDD

>
j fjðXj; ujÞ>, where CT is the center-

ing matrix, CT ¼ I� 1
T 1111

>. By defining KDCTW ¼ Ŝ̂S
�1=2

11

Ŝ̂S12Ŝ̂S
�1=2

22 , we now have that

corrðf1ðX1; u1ÞDD1; f2ðX2; u2ÞDD2Þ ¼ kKDCTWk�: (14)

We optimise this quantity in a gradient-ascent fashion by
utilising the subgradient of Equation (14) [26], since the gra-
dient can not be computed analytically. By assuming that
Yi ¼ fiðXi; uiÞ for each of network i and USV> ¼ KDCTW is
the singular value decomposition ofKDCTW , then the subgra-
dient for the last layer is defined as

FðposÞ ¼ Ŝ̂S
�1=2

11 UV>Ŝ̂S
�1=2

22 Y2DD2CT

FðnegÞ ¼ Ŝ̂S
�1=2

11 USU>Ŝ̂S
�1=2

11 Y1DD1CT

@ KDCTWk k�
@Y1

¼ 1

T � 1
FðposÞ � FðnegÞ
� �

:

(15)

At this point, it is clear that CTW is a special case of DCTW.
In fact, we arrive at CTW (Section 2.2) by simply consider-
ing a network with one layer. In this case, by setting
fiðXi; uiÞ ¼ W>

i Xi, Equation (13) becomes equivalent to

Equation (12), while solving Equation (14) by means of Sin-
gular Value Decomposition (SVD) on KDCTW provides
equivalent loadings to the ones obtained by CTW via
eigenanalysis.

Finally, we note that we can easily extend DCTW to han-
dle multiple (more than 2) data sets, by incorporating a sim-
ilar objective to the Multi-set Canonical Correlation
Analysis (MCCA) [11], [25]. In more detail, instead of Equa-
tion (14) we now optimise

Xm
i;j¼1

corrðfiðXi; uiÞDDi; fjðXj; ujÞDDjÞ

¼
Xm
i;j

Kij
DCTW

		 		
�;

(16)

where m is the number of sequences and Kij
DCTW ¼ Ŝ̂S

�1=2

ii

Ŝ̂SijŜ̂S
�1=2

jj . This leads to the following optimisation problem,

argmin
8k:uk;DDk

Xm
i;j¼1

kfiðXi; uiÞDDi � fjðXj; ujÞDDjk2F

subject to: 8k:fkðXk; ukÞDDkDD
>
k fkðXk; ukÞ> ¼ I;

8i; j:fiðXi; uiÞDDiDD
>
j fjðXj; ujÞ ¼ D;

8k:fpk ðXk; ukÞDDk11 ¼ 00;

8k:DDk 2 f0; 1gTk�T

(17)

The subgradient of Equation (16) then becomes

@
Pm

i;j Kij
DCTW

		 		
�

@Yi

¼
Xm
j

@ Kij
DCTW

		 		
�

@Yi
þ
Xm
j

@ Kji
DCTW

		 		
�

@Yi

¼ 2
Xm
j

@ Kij
DCTW

		 		
�

@Yi
:

(18)

Note that by setting DDi ¼ I, Equation (16) becomes an
objective for learning transformations formultiple sequences
via DCCA [17]. Finally, we note that any warping method
can be used in place of DTW for inferring the warpingmatri-
cesDDi (e.g., [6]), while DCTW is further illustrated in Fig. 1.

3.1 Topology

At this point we should clarify that our model is topology-
agnostic; our cost-function is optimised regardless of the

Fig. 1. Illustration of the DCTW architecture with two networks, one for each temporal sequence. The model is trained end-to-end, first performing a
spatial transformation of the data samples and then a temporal transformation such as the temporal sequences are maximally correlated.
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number of layers or neuron type. Although we experimen-
tally show later on that a three-layer network can be suffi-
cient, more elaborated topologies can be used that better
suit the task-at-hand. An obvious example for this would be
the problem of learning the optimal alignment and time-
invariant representations of visual modalities such as vid-
eos. In this case, to reduce the free parameters of the model,
convolutional neurons can be employed, and moreover the
parameters for each network fi for 0 < i < m can be tied
(see Siamese networks [27]).

4 SUPERVISED DEEP TIME WARPING

The deep time-warping approach described in Section 3
recovers the appropriate non-linear transformations for
temporally aligning a set of arbitrary sequences (e.g., tem-
porally aligning videos of subjects performing the same, or
similar, facial expression). This is done by optimizing an
appropriate loss function (Equation (13)). Nevertheless, in
many similar problem settings, a set of labels characterising
the temporal information contained in the sequences is
readily available (e.g., labels containing the temporal phase
of facial Action Units activated in the video). Although such
labels can be readily utilised in order to evaluate the result-
ing alignment, this information remains unexploited in
DCTW, as well as in other state-of-the-art time-warping
methods such as [5], [7], [28].

In this section, we exploit the flexibility of the optimisa-
tion problem proposed for DCTW in order to exploit
labelled information with the goal of enhancing perfor-
mance on unseen, unlabelled data. By considering the set-
ting where the sequences at-hand are annotated with
discrete labels corresponding to particular temporal events,
we first show that by appropriately modifying the objective
for DCCA, we arrive at a numerically stable, non-linear var-
iant of the traditionally used Linear Discriminant Analysis
(LDA), which we call Deep Discriminant Analysis (DDA).
While DDA can be straightforwardly applied within a gen-
eral supervised learning context in order to learn non-linear
discriminative transformations, we subsequently extend the
proposed optimisation problem for DCTW (Equation (13))
by incorporating time-warping in the objective function.
This leads to the Deep Discriminant Analysis with Time
Warping (DDATW) method, that can be utilised towards
temporally aligning multiple sequences while exploiting
label information.

4.1 Deep Discriminant Analysis

Let us assume a set of T samples xi is given, with a label
yi 2 f1; ; Cg corresponding to each sample. The classical
Linear Discriminant Analysis (LDA) [29] computes a linear

transformation of W that maximises the dispersion of class
means while minimising the within-class variance. A stan-
dard formulation of LDA is given by the following a trace
optimisation problem,

argmax
W

trðW>SbWÞ

s.t. W>StW ¼ I;
(19)

where Sb ¼
P

i¼C nimim
>
i , ni are the number of samples in

ith class and mi ¼ 1
ni

P
yk¼i xk the corresponding mean. Fur-

thermore, St ¼ XX> is the total scatter matrix.
In matrix notation the between class scatter matrix can be

constructed as follows,

Sb ¼ XGðG>GÞ�1G>X>;

where G 2 Rn�c is an indicator matrix in which
P

j gij ¼ 1;
gij 2 f0; 1g, and gij is 1 iff data sample i belongs to class j,
and 0 otherwise. Thus XG is a matrix of the group sums,
and XGðG>GÞ�1 is a matrix which weights the sums with
the respective number of data samples of each class.

The theory developed in [30] showed that there is an
equivalence between least-square and trace optimisation
problems. In particular, the problem of finding the optimal
W that maps the data to labels can be written as

argmin
W

kðG>GÞ�
1
2ðG> �W>XÞk2F :

The above is equivalent to finding the optimal W from the
following trace optimisation problem

argmax
W

tr½W>XGðG>GÞ�1G>X>W�

s.t. W>XX>W ¼ I;
(20)

which is precisely the problem formulation for LDA
(Equation (19)).

As the connection between CCA (Equation (5)) and
LDA (Equation (20)) is now established, we can easily
extend LDA to a non-linear, hierarchical discriminant coun-
terpart by taking advantage of the DCCA problem formula-
tion in Equation (10). In more detail, the optimisation
problem for Deep Discriminant Analysis (DDA) can be for-
mulated as

argmin
u

kf ðX; uÞ � ðG>GÞ�
1
2G>k2F

subject to: f ðX; uÞf ðX; uÞ> ¼ I;

fpðX; uÞ11 ¼ 00;

or equivalently by using the trace norm formulation as

argmax
u

kKLDAk� ; (21)

where KLDA ¼ ~S~S
LDA�1=2

11
~S~S
LDA

12
~S~S
LDA�1=2

22 , ~S~S
LDA

12 ¼ 1
T�1

~XiCTGðG>GÞ�
1
2,

~S~S
LDA

22 ¼ GðG>GÞ�1G>, ~S~S
LDA

11 ¼ 1
T�1

~XiCT
~Xi

>
with ~Xi ¼ fiðXi; uiÞ,

while CT ¼ I� 1
T 1111

> denotes the centring matrix. We note
that a Deep Linear Discriminant Analysis method has been

recently proposed in [31], using a direct application of the

LDA optimisation problem based on covariance diagonal-

isation, an approach that the authors found to be quite

Fig. 2. The ground-truth temporal segments ( ) and the corresponding
predicted temporal phases ( ) for each of the frames of a video display-
ing AU12 using DDATW.
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numerically unstable. On the contrary, the proposed DDA
transformations based on (Equation (21)) are found in a sim-

ilar manner as DCCA, that is by using the sub-gradients of

the nuclear norm, a process that involves computing the

SVD. This approach can be more stable since the SVD

decomposition exists for any matrix, not just for matrices

that can be diagonalised.

4.2 Deep Discriminant Analysis with Time Warpings

The Deep Discriminant Analysis (DDA) method proposed
in the previous section involves the optimisation of a trace
norm in a similar manner to DCCA. DDA can thus be
extended to incorporate time warpings, resulting in the pro-
posed Deep Discriminant Analysis with Time Warpings
(DDATW). That is, we can incorporate warpings by simply
replacing ~Xi with ~XiDDi and ðG>GÞ�

1
2G> with ðG>GÞ�

1
2G>DDg

in Equation (21). In essence, we are solving an equivalent
problem to the one described in Equation (14), namely

argmin
8k:uk;DDk

Xm
i;j¼1

kfiðXi; uiÞDDi � ðG>GÞ�
1
2G>DDjk2F

subject to: 8k:fkðXk; ukÞDDkDD
>
k fkðXk; ukÞ> ¼ I;

8i; j:fiðXi; uiÞDDiDD
>
j fjðXj; ujÞ ¼ D;

8k:fpk ðXk; ukÞDDk11 ¼ 00;

8k:DDk 2 f0; 1gTk�T :

(22)

This formulation becomes particularly useful when dealing
with tasks where discrete, temporal labels are available, for
example, in case of annotating the temporal segments of the
activations of facial Action Units (AUs). In particular, since
in the vast majority of cases such labels are obtained byman-
ually annotating the videos at hand, it is likely that artifacts
such as lags and misalignments between labels and features
may arise (e.g., an annotation that indicates that a particular
AU has reached the apex phase after the actual phase has
been actually reached in the video). In this case, the problem
described in Equation (22) finds the appropriate non-linear
transformation that maps the input features to the aligned
temporal labels. Furthermore, another example of utilising
the proposed DDATW formulation lies in settings where the
alignment of multiple sequences is required while at the
same time, discrete temporal labels are readily available. In
this scenario, we can obtain the appropriate non-linear, dis-
criminative transformation during training, by utilising the
provided labels.5 Given an out-of-sample sequence during
testing, we can then extract the non-linear transformations
(learned while utilising labels available during training by
solving Equation (22)) and subsequently estimate the opti-
mal time-warpings (DDi) that align the out-of-sample sequen-
ces to the learnt discriminative subspace.

5 EXPERIMENTS

In order to assess the performance of DCTW, we perform
detailed experiments against both linear and non-linear

state-of-the-art temporal alignment algorithms. In more
detail we compare against:

State of the art methods for time warping without a fea-
ture extraction step:

� Dynamic Time Warping [1] which finds the optimal
alignment path given that the sequences reside in
the same manifold (as explained in Section 2.2).

� Iterative Motion Warping (IMW) [32] alternates
between time warping and spatial transformation to
align two sequences.

State-of-the art methods with a linear feature extractor:

� Canonical Time Warping [5] as posed in Section 2.2,
CTW finds the optimal reduced dimensionality sub-
space such that the sequences are maximally linearly
correlated.

� Generalized Time Warping (GTW) [6] which uses a
combination of CTW and a Gauss-Newton temporal
warping method that parametrises the warping path
as a combination of monotonic functions.

State-of-the-art methods with non-linear feature extrac-
tion process.

� Manifold Time Warping [7] that employs a variation
of Laplacian Eigenmaps to non-linearly transform
the original sequences.

We evaluate the aforementioned techniques on four dif-
ferent real-world datasets, namely (i) the Weizmann data-
base Section 5.2, where multiple feature sets are aligned,
(ii) the MMI Facial Expression database Section 5.3, where
we apply DCTW on the alignment of facial Action Units,
(iii) the XRMB database Section 5.4 where we align acoustic
and articulatory recordings, and finally (iv) the CUAVE
database Section 5.5, where we align visual and auditory
utterances.

Evaluation. For all experiments, unless stated otherwise,
we assess the performance of DCTW utilising the the align-
ment error introduced in [6]. Assuming we have m sequen-
ces, each algorithm infers a set of warping paths
Palg ¼ ½palg

1 ;palg
2 ; . . . ;palg

m �, where pi 2 fx 2 Nlalg j1 � x � nmg
is the alignment path for the ith sequence with a length lalg.
The error is then defined as

Err ¼ distðPalg;PgroundÞ þ distðPground;PalgÞ
lalg þ lground

;

dist P1;P2
� �

¼
Xl1
i¼1

min
l2
j¼1 p1

ðiÞ � p2
ðjÞ

			
			
2
:

5.1 Experimental Setup

In each experiment, we perform unsupervised pretraining
of the deep architecture for each of the available sequences
in order to speed up the convergence of the optimisation
procedure. In particular, we initialise the parameters of
each of the layers using a denoising autoencoder [33]. We
utilise full-batch optimisation with AdaGrad [34] for train-
ing, although similar results are obtained by utilising mini-
batch stochastic gradient descent optimisation with a large
mini-batch size. In contrast to [17], we utilise a leaky recti-
fied linear unit with a ¼ 0:03 (LReLU) [35], where

5. If the labels for any subset K of available sequences are consid-
ered to be aligned with the corresponding features, then we can simply
set 8i:DDi ¼ Iwhere i 2 K.
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fðxÞ ¼ maxðax; xÞ and a is a small positive value. In our
experiments, this function converged faster and produced
better results than the suggested modified cube-root sig-
moid activation function. For all the experiments (excluding
Section 5.2 where a smaller network was sufficient) we uti-
lised a fixed three layer 200–100–100 fully connected topol-
ogy, thus reducing the number of free hyperparameters of
the architecture. This both facilitates the straight-forward
reproducibility of experimental results, as well as helps
towards avoiding overfitting (particularly since training is
unsupervised).

5.2 Real Data I: Alignment of Human Actions under
Multiple Feature Sets

In this experiment, we utilise the Weizmann database [36],
containing videos of nine subjects performing one of ten
actions (e.g., walking). We adopt the experimental protocol
described in [6], where three different shape features are
computed for each sequence, namely (1) a binary mask, (2)
euclidean distance transform [37], and (3) the solution of the
Poisson equation [6], [38]. Subsequently, we reduce the
dimensionality of the frames to 70–by–35 pixels, while we
keep the top 123 principle components. For all algorithms,
the same hyperparameters as [6] are used. Following [5],
[6], 90 percent of the total correlation is kept, while we used
a topology of two layers carrying 50 neurons each. Triplets
of videos where subjects are performing the same action
where selected, and each alignment algorithm was evalu-
ated on aligning the three videos based on the features
described above.

The ground truth of the data was approximated by run-
ning DTW on the binary mask images. Thus, the reasoning
behind this experiment is to evaluate whether the methods
manage to find a correlation between the three computed

features, in which case they would find the alignment path
produced by DTW.

In Fig. 3 we show the alignment error for ten randomly
generated sets of videos. As DTW, DDATW, IMW, and
CTW are only formulated for performing alignment
between two sequences we use their multi-sequence exten-
sion as formulated in [28] and we use the prefix p to denote
the multisequence variant.

We observe that DTW and DDTW fail to align the videos
correctly, while CTW, GTW, and DCTW perform quite bet-
ter. This can be justified by considering that DTW and
DDTW are applied directly on the observation space, while
CTW, GTW and DCTW infer a common subspace of the
three input sequences. The best performing methods are
clearly GTW and DCTW.

5.3 Real Data II: Alignment of Facial Action Units

Next, we evaluate the performance of DCTW on the task of
temporal alignment of facial expressions. We utilise the
MMI Facial Expression Dataset [39] which contains more
than 2,900 videos of 75 different subjects, each performing a
particular combination of Action Units (i.e., facial muscle
activations). We have selected a subset of the original data-
set which contains videos of subjects which manifest the
same action unit (namely, AU12 which corresponds to a
smile), and for which we have ground truth annotations.
We preprocessed all the images by converting to greyscale
and utilised an off-the-shelf face detector along with a face
alignment procedure [40] in order to crop a bounding box
around the face of each subject. Subsequently, we reduce
the dimensionality of the feature space to 400 components
using whitening PCA, preserving 99 percent of the energy.
We clarify that the annotations are given for each frame,
and describe the temporal phase of the particular AU at that
frame. Four possible temporal phases of facial action units
are defined: neutral when the corresponding facial muscles
are inactive, onset where the muscle is activated, apex when
facial muscle intensity reaches its peak, and offset when
the facial muscle begins to relax, moving towards the
neutral state. Utilising raw pixels, the goal of this experi-
ment lies in temporally aligning each pair of videos. In the
context of this experiment, this means that the subjects in
both videos exhibit the same temporal phase at the same
time. E.g., for smiles, when subject 1 in video 1 reaches the
apex of the smile, the subject in video 2 does so as well. In
order to quantitatively evaluate the results, we utilise the
ratio of correctly aligned frames within each temporal phase
to the total duration of the temporal phase across the
aligned videos. This can be formulated as jF1\F2j

jF1[F2j, where F1;2

is the set of aligned frame indices after warping the initial
vector of annotations using the alignment matrices DDi found
via a temporal warping technique.

Results are presented in Fig. 4, where we illustrate the
alignment error on 45 pairs of videos across all methods
and action unit temporal phases. Clearly, DTW overper-
forms MW, while CCA based methods such as CTW and
GTW perform better than DTW. It can be seen that the best
performance in all cases is obtained by DCTW, and using a
t-test with the next best method we find that the result is sta-
tistically significant (p < 0:05). This can be justified by the
fact that the non-linear hierarchical structure of DCTW

Fig. 3. Aligning sequences of subjects performing similar actions from
the Weizmann database. (left) the three computed features for each
of the sequences (1) binary (2) Euclidean (3) Poisson solution. (middle)
The aligned sequences using DCTW. (right) Alignment errors for each of
the six techniques.
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facilitates the modelling of the complex dynamics straight
from the low-level pixel intensities.

Furthermore, in Fig. 5 we illustrate the alignment results
from a pair of videos of the dataset. The first row depicts
the first sequence in the experiment, where for each tempo-
ral phase with duration ½ts; te� we plot the frame tc ¼ dtsþte

2 e.
The second row illustrates the ground truth of the second
video, while the following rows compare the alignment
paths obtained by DCTW, CTW and GTW respectively. By
observing the corresponding images as well as the temporal
phase overlap, it is clear that DCTW achieves the best align-
ment. At last we repeat the experiment using a convolu-
tional network topology which operates directly on the raw
image pixel intensities. We opted for a simple architecture
similar to LeNet [41], consisting of 2 convolutional layers
of 32 filters each (kernel size 3) followed by a 2 � 2 max-
pooling operation and finally a linear projection to 10
dimensions. Although this architecture attains the same
performance in terms of accuracy, we found that (i) the opti-
misation converged quicker, and (ii) we obtained interpret-
able features which show the inner-workings of the
network shown in Fig. 6.

5.4 Real Data III: Alignment of Acoustic and
Articulatory Recordings

The third set of experiments involves aligning simultaneous
acoustic and articulatory recordings from the Wisconsin X-
ray Microbeam Database (XRMB) [42]. The articulatory data
consist of horizontal and vertical displacements of eight
pellets on the speaker’s lips, tongue, and jaws, yielding a
16-dimensional vector at each time point. We utilise the
features provided by [17]. The baseline acoustic features
consist of standard 13-dimensional mel-frequency cepstral
coefficients (MFCCs) [43] and their first and second deriva-
tives computed every 10 ms over a 25 ms window. For the
articulatory measurements to match the MFCC rate, we con-
catenate them over a seven-frame window, thus obtaining
Xart 2 R273 and XMFCC 2 R112.

As the two views were recorded simultaneously and
then manually synchronised [42], we use this correspon-
dence as the ground truth and then we produce a synthetic
misalignment to the sequences, producing 10 sequences of
5,000 samples. We warp the auditory features using the
alignment path produced by PmisðiÞ ¼ i1:1l0:1MFCC for
1 � i � lMFCC where lMFCC is the number of MFCC samples.

Fig. 4. Temporal phase detection accuracy as defined by the ratio of correctly aligned frames with respect to the total duration for each temporal
phase—the higher the better.

Fig. 5. Facial expression alignment of videos S002–005 and S014–009 from MMI dataset (Section 5.3). Depicted frames for each temporal phase
with duration ½ts; te� correspond to the middle of each of the temporal phase, tc ¼ dtsþte

2 e. We also plot the temporal phases ( neutral, onset,
apex, and offset) corresponding to (i) the ground truth alignment and (ii) compared methods (DCTW, CTWand GTW).
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Results are presented in Table 1. Note that DCTW out-
performs compared methods by a much larger margin than
other experiments here. Nevertheless, this is quite expected:
the features for this experiment are highly heterogeneous
and, e.g., in case of MFCCs, non-linear. The multi-layered
non-linear transformations applied by DCTW are indeed
much more suitable for modelling the mapping between
such varying feature sets.

5.5 Real Data IV: Alignment of Audio and Visual
Streams

In arguably, our most challenging experimental setting, we
aim to align the subject’s visual and auditory utterances. To
this end, we use the CUAVE [44] database which contains
36 videos of individuals pronouncing the digits 0 to 9. In
particular, we use the portion of videos containing only
frontal facing speakers pronouncing each digit five times,
and use the same approach as in Section 5.4 in order to
introduce misalignments between the audio and video
streams. In order to learn the hyperparameters of all
employed alignment techniques, we leave out 6 videos.

Regarding pre-processing, from each video frame we
extract the region-of-interest (ROI) containing the mouth of
the subject using the landmarks produced via [40]. Each ROI
was then resized to 60 � 80 pixels, while we keep the top 100
principal components of the original signal. Subsequently, we
utilise temporal derivatives over the reduced vector space.
Regarding the audio signal, we compute the Mel-frequency
cepstral coefficients (MFCC) features using a 25 ms window
adopting a step size of 10ms between successive windows.
Finally, we compute the temporal derivatives over the acous-
tic features (and video frames). Tomatch the video frame rate,
3 continuous audio frames are concatenated in a vector. The
results in Fig. 7 show that DCTW outperforms the rest of
the temporal alignment methods by a large margin. Again,

the justification is similar to Section 5.4: the highly heteroge-
neous nature of the acoustic and video features highlights the
significance of deep non-linear architectures for the task-at-
hand. It should be noted that the best results obtained for
GTW utilise a combination of hyperbolic and polynomial
basis, which biases the results in favour of GTW due to the
misalignmentwe introduce. Still, it is clear thatDCTWobtains
much better results in terms of alignment error.

5.6 Deep Discriminant Analysis with Time Warpings
(DDATW)

We perform two additional experiments in order to evalu-
ate the proposed Deep Discriminant Analysis (Section 4),
where in this case our data will also consist of a set of labels
corresponding to the samples at-hand. In our first experi-
ment, we utilise set of videos described in Section 5.3 from
the MMI database, that display facial expressions. In more
detail, we exploit the fact that the action units have been
labelled with regards to the temporal phases of facial behav-
iour (similarly to the setting for the experiment described in
Section 5.3.) Since each frame of the video has been assigned
to a temporal phase, we utilise these labels in order to evalu-
ate the proposed DDA. In particular, during training we uti-
lise the available labels in order to learn the discriminant
transformation. Subsequently, the learnt transformation can
be applied to testing data in order to predict the labels. An
example of the temporal segment annotations and the corre-
sponding prediction for AU12 (Lip Corner Puller) can be
found in Fig. 2.

For our second experiment, we utilise the temporal labels
available for the CUAVE dataset (as described in Section 5.5).
Since in each video a subject is uttering the digits 1 to 10, each
framed is labelled with respect to whether the subject is utter-
ing a digit or not. If the subject is uttering a digit, then the cor-
responding class corresponds to the particular digit being
uttered. If not, then the frame is classified separately. This
leads to 11 classes in total. For this experiment, we utilise half
the data for training/validation and the other half for testing.
The results are summarised in Table 2, where we compare
between the unsupervised CTW and DCTW, as well as the
proposed Deep Discriminant Analysis with Time Warpings
(DDATW), aswell as the linear version of DDATW,whichwe

Fig. 6. Depicted are the last convolutional features (bottom row) using a
three-layer architecture showing frames from a video (top row) contain-
ing AU12 (Lip Corner Puller). The features seem to activate on the pres-
ence of smile and squinting of the eyes.

TABLE 1
Alignment Errors Obtained on the Wisconsin

X-Ray Microbeam Database

DTW MTW IMW

63:52� 27:06 94:42� 13:20 83:23� 0:11

CTW GTW DCTW

58:92� 28:8 64:06� 5:01 7:19� 1:79

Fig. 7. Alignment errors on the task of audio-visual temporal alignment.

TABLE 2
Classification Accuracy Using the Available Temporal Phase

Labels for MMI (3 Labels) and the Digit Annotations
for CUAVE (11 Labels)

CTW DATW DCTW DDATW

MMI 49.2 53.5 59.1 65.1
CUAVE 35.7 43.6 68.7 83.7
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term DATW. Note that by introducing supervision, we are
able to further improve results.

6 COMPUTATIONAL DETAILS AND DISCUSSION

The computational complexity of aligning a set of m
sequences each of length Ti is Oð

Pm
i;j TiTj þ

Pm
i¼1 d

3
i Þ per

iteration of the algorithm, which is the complexity of DTW
plus the cost of the SVD in the computation of the deriva-
tives in Equation (15). As the SVD is performed on the last
layer of the network, which is of reduced dimensionality
(di ¼ 100 units in our case) it is relatively cheap. In contrast
other non-linear warping algorithms [7] require an expen-
sive k-nearest neighbour search accompanied by an eigen-
decomposition step or, in the case of CTW [5], an
eigendecomposition of the original covariance matrices
which becomes much more expensive when dealing with
data of high dimensionality. Nevertheless, the proposed
algorithm may require to perform more iterations in order
to converge than CTW. In particular, DCTW needed around
5 minutes to converge in our second experiment Section 5.3
of aligning facial action units, while for the same experi-
ment CTW required around 1 minute. A way to expedite
the procedure is to apply linear approximations of DTW
such as [6], [45] or optimise the alignment paths only on a
subset of iterations (this is an interesting line of further
research on the topic).

Finally, it is worthwhile to mention that although in this
work we explored simple network topologies, our cost
function can be optimised regardless of the number of
layers or neuron type (e.g., convolutional). Finally we also
note that DCTW is agnostic to the use of the method for
temporally warping the sequences and other relaxed var-
iants of DTW might be employed in practise when there is
a large number of observations in each sequence as for
example Fast DTW [45] or GTW [6] as long as it conforms
to the alignment constrains, i.e., it always minimises the
objective function.

7 CONCLUSIONS

In this paper, we study the problem of temporal alignment of
multiple sequences. To the best of our knowledge,we propose
the first temporal alignment method based on deep architec-
tures, which we dub Deep Canonical Time Warping. DCTW
discovers a hierarchical non-linear feature transformation for
multiple sequences, where (i) all transformed features are
temporally aligned, and (ii) are maximally correlated. Fur-
thermore, we consider the setting where temporal labels are
provided for the data-at-hand. By modifying the objective
function for the proposedmethod, we are able to provide dis-
criminant feature mappings that may be more suitable for
classification tasks. Finally, by means of various experiments
on several datasets, we highlight the significance of the pro-
posed methods on various applications, as the proposed
method outperforms compared state-of-the-artmethods.
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