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Abstract—Emotion has been exposed as a crucial component
of intelligent behaviour. Considerations in both neuroscience
and psychology have identified emotion as playing a central
role in various critical cognitive processes, such as attaining
salience from the environment in order to support decision
making, exploration-exploitation and broader adaptation. This
paper provides an overview of some of the corroborative
material in these fields, to then consider how emotion has
been translated into machine learning. We identify emotion as
being a promising endeavour for machine learning and expose
Emotion-augmented Machine Learning (EML) as a frontier
field in Artificial Intelligence and Affective Computing.

1. Introduction

The fascination of Artificial Intelligence (Al) is more than
a practical one; we express a deeper affiliation with emotional
Al, proclaimed by its portrayal in popular culture. In “Ex-
Machina” (2014), a clear capability that differentiates this
Al is her ability to use emotion as a means for manipulation
in a Turing test. Whether she ‘feels’ real emotion as a
manifestation of consciousness or simply analyses and simu-
lates emotion is a philosophical issue. However, a different
question could be asked — what is emotion to us humans? Is
it simply a nuisance feature which clouds and inhibits good,
rational, decision making, so that it becomes necessary for
computers to understand our potentially illogical quirks? Or
is it a necessity for our survival, playing a deeper role in
how we learn to navigate an uncertain world?

Within the realm of Affective Computing (AC) [1] and
its related fields (Social Signal Processing [2], multimodal
affective behaviour generation for social robotics and virtual
agents [3]-[5]), recognition and expression of emotions alone
would enable unemotional, but affective computers to provide
better performance in interacting with humans and decision-
making [1], [6]. In the foundation of AC, Picard stops at
a machine driven by its emotions. However, “driven by
emotion” does not necessarily imply having a consciousness
as being featured by strong Al, but it can also be referred
to motivation, ideation, and curiosity [7].

Scientists have maintained that emotion plays an essential
role in human perception, cognition, and action, as well as
bodily processes [7], [8]. In particular, emotion constitutes
a primary motivation engine [7] and is directly linked to
the mammalian memory and learning system [9], [10], thus
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influencing reasoning, association, abstraction, and intuition.
However, conventional machine learning algorithms are
targeted at minimising some form of error function, where
emotion as an incentive is completely absent. Conceivably,
important parts of human emotional intelligence have to date
remained understudied in AC, but can be exploited for various
goals of machine learning including learning efficiency (e. g.,
better convergence), computational cost, model confidence,
and accuracy.

In this paper, we provide an overview of recent trends in
the emerging field of Emotion-augmented Machine Learning
(EML). To this end, we provide a précis of the emotion theory
from a psychological and neuroscientific perspective and
examine how these have been translated into ML algorithms.

2. Mammalian Emotion

2.1. Psychological Basis of Emotion

Emotion representations serve as psychological constructs
for modelling, analysing, and recognising emotion, of which
the most prevalent ones are derived from categorical, dimen-
sional, and appraisal-based approaches [4]. The categorical
emotion theory construes the emotion system as a limited set
of discrete entities, such as the basic emotions [11]. On the
other hand, advocates of the dimensional concept have mod-
elled emotion as a multidimensional space continuum [12],
[13], which is spanned by the valence (pleasant—unpleasant)
and arousal (activation—deactivation) axes according to the
Circumplex model [14]. Within the context of Reinforcement
Learning [15], the appraisal paradigm, pioneered by Frijda
[16] and Lazarus [17], forms the fundamental basis for
various computational models [18].

Focusing on the aspect of emotion elicitation, contempo-
rary appraisal theories are constituted on the premise that
emotions are adaptive responses, which reflect evaluations of
significant features of the environment for well-being [19]—
[21]. Accordingly, emotion has been viewed as a reward-
punishment mechanism in brain function [22]. In each of
these considerations, emotion acts as a guidance system,
focusing attention to specifics within a complex environment
and weighting their importance accordingly. Effectively,
emotion can be categorised into two classes, primary and
secondary [23]. Primary emotions are intrinsic reactions to
environmental stimuli that are concerned with the needs of
a system, e.g., the smell of food which is related to the
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Figure 1. Schematic of amygdala interaction with other brain-systems. This
is not an exact representation but it is one that, in various forms, has
computational analogies (reviewed in Section 3) and aids in visualising
the interconnectedness of the amygdala. The orbitofrontal cortex (OFC)
is one constituent of the greater prefrontal cortex (PFC), but it should be
noted that there are also other components. The dashed line represents the
feedback effects of resultant emotional response. Adapted from [24]-[27].

need to eat. Secondary emotions arise from association with
primary stimuli and are therefore associative emotions that
are learned through, e. g., reinforcement. These associations
then become learned predictors for when primary emotional
response will occur [23].

2.2. Emotion in the Brain

To take inspiration from mammalian emotion, it is first
necessary to gain a functional understanding on how emotion
arises within the brain. Through neuroimaging studies, it
has been possible to uncover some of the brain structures
involved with emotion and shed light on how emotion fits into
cognition. That said, the roles of each structure in the brain
are not so easily separated. For this reason, emotion in the
brain is multifaceted, wherein emotional details result from
complex and intertwined activities between various brain-
systems. This review is by no means exhaustive nor deeply
focused on exact brain segments. The aim is to provide a
mechanistic understanding for the separate brain-functions
and how they intermingle to produce system-level behaviour.

It has long been thought that emotion is derived from
the limbic system, a vast arrangement with commonly in-
cluded areas such as the orbitofrontal cortex (OFC), which,
together with other parts of the prefrontal cortex (PFC),
is implicated in reinforcement and working memory; the
hypothalamus, related to involuntary activity; the thalamus,
junction for sensory information; the hippocampus, context
and declarative memory; the sensory cortex, handling sensory
information; parts of the basal ganglia, action control; and
amygdala, processing positive and negative affect [9], [10],
[23], [27]-[32]. However, the limbic system as a whole
has gradually become dereferenced from emotion [30] and
the responsibility of emotional function has shifted most
consistently to the amygdala [29]. For instance, it has been
shown that the amygdala is active in both positive and
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negative reward processing from stimuli [30], [31], [33]-
[35].

Structurally speaking, the amygdala is highly connected
within the brain, sharing inward and outward projection with
the aforementioned limbic system components [31] as well
as others through both direct and indirect affect [27]. Thus,
the amygdala (and therefore emotion) is involved in multiple
neuronal processes, such as the processing of raw (thalamus),
object level (cortex), and contextual (hippocampus) data [29].
Further, by outward afference with the basal ganglia, the
amygdala can also influence motor behaviour; and also is
implicated with automatic responses (e.g., endocrine) via
other systems [29], [33]. It should be noted that the amygdala
itself is a complex formation consisting of many conjoined
parts, with each giving rise to unclear but varied behaviour
[23], [31], [34], [36]. However, in this the paper the amygdala
shall be considered as a unitary structure.

The amygdala is thought to contribute to attentional
behaviour, able to obtain salience from the environment.
Models have approached the amygdala as an evaluator of
stimuli which can shift focus towards emotionally associated
features by way of indirect interaction with sensory systems,
through arousal networks [30] such as the locus coeruleus
(LC) [37], [38]; or through adjusting cognitive goals via
projection with prefrontal cortices [39], [40].

The formation of emotional associations is known as
emotional learning. Whereas the hippocampus and areas
of the cortex are involved with declarative memory, which
relates to memories that can be consciously remembered
(sometimes referred to as explicit memory), the amygdala
is likely responsible for storing stimuli-emotional response
patterns [9], [27], [29], [30]. That said, the amygdala has also
been shown to be participant in the formation of declarative
memory. Firstly, it is understood to provide ‘“emotional
colouration” to declarative memories [29]. Secondly, emo-
tional arousal provokes the secretion of the neuromodulator
norepineprine (NE), via activation of the LC (sometimes
referred to as the LC-NE system [37]), which induces
plasticity in neurons and enhances memory and learning
[34], [41]-[43]. Thus, emotional arousal coincides with
enhanced vividness of declarative memory [27], [43], [44],
which is confirmed by lesion and inhibitory studies of the
amygdala that result in the obstruction of this process [30].
The evidence of the amygdala’s (and by extension emotion’s)
role in attention and memory depicts emotion as being crucial
in acquiring salience from the environment, picking out the
most important stimuli with regards to survival [34], [35],
[39], [45]-[47].

Studies analysing how the brain is able to traverse through
exploration-exploitation modes have exposed two separate
neuronal mechanisms that give rise to exploitation and
exploration [48]-[54]. There are three important aspects
to consider in this dilemma, the first is attention during
exploration wherein the brain is seen to perform switching
between options via attentional control, mediated perhaps
by the LC-NE systems and prefrontal cortices [37], [38],
[48]. The amygdala’s influence on attention via the LC
and prefrontal cortices therefore associates it with this



system. On the other hand, reinforcement (both reward and
punishment) processing is necessary during exploitation [48].
Reinforcement processing seems to occur in a number of
regions: in the amygdala, establishing positive and negative
associations from/with stimuli [29], [31], [34], [35], storing
the variations in magnitude of reinforcement [36], [42], [55],
encoding reinforcement associations [34], [56], processing re-
inforcement to learn reward-predicting cues and subsequently
controlling arousal and response [31], [57]; in the OFC (and
more generally the PFC), performing stimulus-reinforcement
learning, correcting associations and controlling behaviours
related to the reinforcement [28], [58] in relation to internal
goals [54], also in preserving reinforcement information in
working memory such as that which the amygdala generates
[55], [59], representing the magnitude of reward [60] and
in related cognitive action planning/selection [50], [51]; in
the basal ganglia, where the likelihood of reinforcement
is encoded [55]; in the striatal systems, on related habitual
action-selection [50], [51] based on dopaminergic projections
in response to expected reward-prediction [42], [53]. The
amygdala-PFC interaction is notably interesting, since the
amygdala responds to changes in outcome value and the PFC
in action-planning/selection [36]; and potentially negative
prediction error as well [61]. It is possible that this interaction
is what allows generalisation and abstraction in humans
[24]. Moreover, the amygdala might capture “state” value,
where state refers to both internal concerns (e.g., needs
such as thirst) and external stimuli or contexts; and that the
understanding of valence via the amygdala is synonymous
with that of value [62].

The importance of neuromodulators, such as NE, in
reinforcement and, thereby, learning has been touched upon
lightly. However, there are other neuromodulators that should
also be given consideration, as the duties of neuromodulators
are manifold and manifest themselves in many ways. By
drawing from theoretical models and experimental data,
Doya [63] sought to assimilate the different roles of the
various neuromodulation systems on reinforcement learning,
and describe them through associations with parameters
used in computational Reinforcement Learning (RL) [63],
[64]. In his model, dopamine signals reward prediction error,
serotonin acts as a reward expectancy modulator, NE affects
action-selection randomness and acetylcholine is associated
with memory update speed. A discussion of each of these
neuromodulators is not possible here, due to spatial restric-
tions, but in Doya’s paper only acetylcholine is identified as a
“major” projector to the amygdala. Contrarily, separate work
has shown the amygdala to be notably afferent with dopamine,
where, when tasked with cognitive exercises, the amount of
dopamine in the human amygdala increased. Moreover, the
levels observed correlated with learning performance [56].
As discussed, the amygdala has been connected with learning
reward-prediction cues and identified as being sensitive to
reinforcement variations, so it would seem that the dopamine
model of Doya fits in with the amygdala profile depicted here.
In any case, there is ample evidence that affirms the amygdala
(and with it, emotion) as a centrepiece in neuroeconomic
decision [62].
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3. Emotion-augmented Machine Learning

Can the basis of the amygdala and emotion be forwarded
into Al with positive consequence? Many of the leaps
forward in Al have been drawn from associations with
biology: Artificial Neural Networks (ANNs) themselves
have been inspired by the biological neural network; and
the Convolutional Neural Network (CNN) modelled after
the visual cortex [65]. What about emotion? Emotion has,
conceptually at least, begun to manifest itself in the realm
of machines. As mentioned, AC has opened the door to
analysis and synthesis, but the work of e.g., Morén [23]
has lead to promising computer models which incorporate
emotion concepts into the learning process. In this section,
the different ways in which artificial emotion has been used
in AI will be discussed, covering novel examples where
emotion is intrinsic to the machine.

3.1. Emotion for Optimisation Tasks

In addition to analysing and synthesising emotions,
emotion has been applied at a deeper level, where emotional
concepts are adapted at the infrastructure level. Khashman
[66] augmented a multilayer perception (MLP) with a some-
what psychological conceptualisation of “confidence” and
“anxiety”. The emotional backpropagation (EmBP) learning
algorithm consists of an extra emotional bias that is applied
to hidden and output layers. In a facial recognition task, its
input is the global input pattern average value, Yp 47, which
aims to capture the global detail of each image (see [66]
for its mathematical definition). During backpropagation, the
emotional bias weight W | for hidden layer j projecting

em?

to forward layer i, is updated with
AWH = Aepy - Ypar + k- [JW (0ld)),

where p and k are the anxiety coefficient and confidence
coefficient, respectively and vary between 1 and 0; A, is
the backpropagated error from i to j and W is the previous
weight change for weights between layer ¢ and j. The anxiety
coefficient is increased when new patterns are presented and
in relation to output vs expected error in recognition (see
[66]); the confidence coefficient is simply 1 — u. The effect
of anxiety is therefore to enhance the inclusion of the latest
error, as opposed to confidence which places dominance onto
the previous updates. On two facial recognition experiments
Khashman found that, compared with an MLP, the inclusion
of these emotional parameters improved both recognition rate
and execution time after training [66], [67]. The inclusion of
anxiety, whereby it effectively slows learning on new tasks,
can be seen as a sort of attentional feature, focusing learning
on new and ‘interesting’ data.

In later work by Khashman on EmBP [68], impression
was included GEmBP). Conceptualised as a visual cue of a
target object, which could either enhance or suppress anxiety
depending on whether the impression was good or bad. The
impressions were deduced through average image grey levels,
such that a darker image is associated with a bad impression.
iIEmBP produced a higher recognition rate than both EmBP



and MLP, in a blood cell type identification task, however,
some other changes were also included such as attempting
to capture ‘memory’ of patterns by using accumulated input
patterns during each epoch [68].

In a separate model named DuoNN, Khashman intro-
duced a new type of neuron. These “DuoNeurons” consist
of a cognitive neuron, which processes local features, and
an emotional neuron, which only considers global patterns
[69]. This model was inspired by the visual cortex, splitting
the data pathways into dorsal/cognitive and ventral/affective
streams. Compared to EmBP, DuoNN produced higher
recognition rates.

Furthering work on an optimisation algorithm inspired by
chaos theory [70], which was found to converge onto local
minima in an optimisation task, Yang et al. [71] showed
that the injection of artificial emotion can aid in avoiding
optima traps. This model is interesting as it portrays the
role of emotion in exploration-exploitation and its artificial
emotion generator included sensations, feelings, emotions
and also a hormone system which would feed back into the
activations of feelings [72]. Here, emotions are more abstract,
where Khashman called them emotions they are here noted as
‘sensations’. Included are: anxiety, triggered by diminishing
reward; confidence, which, as with Khashman [66], responds
oppositely to anxiety; fear, increases with anxiety and is
implicated with strategy control; and warmth, whose function
is to signal when to end the algorithm depending on fear and
the iteration count. By modelling these sensations, a dominant
emotion is generated, which is then applied as an executive
affect, whereby it influences the algorithm parameters and can
instigate strategy/behaviour change. Yang et al. [71] found
that the use of artificial emotion increased convergence speed
and outperformed competing methods.

Another model, EMotional Artificial Neural Networks
(EMANN), augmented an MLP by adding neuromodulation
by way of ‘hormonal’ glands [73]. These glands are managed
by the neural network and are in fact nodes within the
network. Therefore, nodes are both receptors and emitters
of hormones. The hormones impact the neural network by
editing the activation threshold, the summation process for
adding up weights and also the output of a given node. In
this model, weights are calculated with

Wi (H) =0;; + Z Gi,nHp,
h

where W; ; is the weight on node ¢, from the jth node
in the previous layer, which constitutes the normal weight,
6;,;, in addition to a hormonal element. This element is the
summation of responsiveness, ¢; ; n, on hormone level, Hp,
where H is the set of hormone levels and h is a specific
hormone. Further, to allow for hormonal influence on output,
a proposed ‘Hill-function” was used to calculate output. In
testing, both the MLP and EMANN were evolved using a
genetic algorithm and overall the EMANN was shown to
be significantly more effective, whereby both would initially
increase in performance but as the MLP would flat-line,
the EMANN would continue to increase performance. This

308

work suggests that the hormonal effects of emotion are an
important consideration for Al [73].

3.2. Anatomical Models in Al

Whilst some models approach specific aspects of emo-
tions, identifiable with how a person’s feelings might change
how they act, there has been work on holistic models which
replicate brain systems [74], such as the limbic system.
Morén & Balkenius devised computational models, with
modules representing the hippocampus, OFC, amygdala,
thalamus and sensory cortex, as a means to produce emotional
conditioning via the interdependencies of the components
[23], [23], [75], [76]. The amygdala learns emotional as-
sociations, whilst the OFC acts as contextual inhibitor.
Context is provided as an injection to the OFC from the
hippocampus module, where it is generated by matching
stimuli to locations. These pairings create an expectation for
stimuli, which if unmet causes a shift in context [75].

The work of Morén and Balkenius laid down a framework
for computation systems which leverage the amygdala and
related brain systems; and has since been pioneered. Lucas et
al. [77] created a limbic system inspired algorithm, BELBIC,
which was used as a controller in control engineering
tasks. Compared to a proportional-integral-derivative (PID)
controller and optimised non-linear controllers, BELBIC was
found to exhibit generalisation and flexibility, wherein the
algorithm could appropriately adapt to parameter changes
and disturbances. Incorporating the idea of short and long
paths of stimuli to the amygdala [23], [25], [26], where the
short path bridges the sensory thalamus—amygdala but the
long path communicates via the frontal cortex (see Fig. 1),
Babaie et al. [25] developed Brain Emotional Learning, BEL.
By comparing amygdala output with input rewards the OFC
either aligns the amygdala output to the reward if a reward
is present, or inhibits the amygdala output if there is no
reward. BEL outperformed both MLP and ANFIS — Adaptive
Network based Fuzzy Inference System [78].

Lotfi & Akbarzadeh-T [79] recently adapted the insights
of Morén & Balkenius in order to create their own, model-
free, Al algorithm. The Brain Emotional Learning-based
Pattern Recogniser, BELPR, was found to outperform an
MLP in both multi-input multi-output classification and
chaotic time series prediction (see also [80] for a later version
of BELPR, designed for online visual data processing). In
another model, Lotfi & Akbarzadeh-T introduced a forgetting
process for the amygdala [26]. The model, Adaptive Decayed
Brain Emotional Learning (ADBEL), uses a decay rate which,
if fast, causes the amygdala weights to contain a lesser
amount of their previous value on each update. This work
was motivated by the need for a system to adapt to a changing
environment and it was found that the model produced higher
accuracy than its competitors, including ANFIS and MLP,
and showed adaptability in an online prediction task. In
another permutation, Lotfi & Akbarzadeh-T added fuzzy
logic to their ADBEL model [81], wherein the inputs and
outputs of the amygdala and OFC were converted to fuzzy
variables and evaluation was done with fuzzy operators. In
this work, it was demonstrated that ‘fuzziness’ can boost the



performance of learning, as in this case the convergence was
faster than that of MLP and ADBEL; and that an emotional
model can perform as a fuzzy learning algorithm.

Lotfi & Akbarzadeh-T [82] then proposed LiAENN, the
Limbic-Based Artificial Emotion Neural Network, which as
the name suggests was modelled after the limbic system.
In this approach, anxiety and confidence as emotions were
used, together with short and long paths (see Figure 1),
forgetting processes of the amygdala and emotion suppression
via the OFC-amygdala interaction. This algorithm is a
consolidation of EmBP, wherein anxiety and confidence
and their attentional effects were used in learning; together
with the brain interaction systems inspired models of Morén
& Balkenius [23], Lucas et al. [77], Babaie et al. [25]. and
the previous models of Lotfi & Akbarzadeh-T. LIEANN
was able to outperform the amygdala-OFC model of Morén
& Balkenius, as well as BELBIC, EmBP, DuoNN and
BELPR. This work exemplifies the notion that emotionally
derived concepts in Al can produce positive results, such
that, seemingly, the inclusion of more emotional concepts
leads to more positive results.

3.3. Emotion
Learning

in Computational Reinforcement

Emotion has begun to arise in computational Reinforce-
ment Learning (RL) as a means to achieve more sophisticated
behaviour than traditional RL, examples of which are sur-
veyed thoroughly in [18]. In this overview, we remark on
some of the key themes and relevant work, outlined by [18].

There have been a variety of approaches to fusing
emotion and computational Reinforcement Learning [72],
[83]-[85], wherein an agent must learn an optimal state-
action mapping policy such that the greatest reward is
achieved [15]. One such approach is derived from Appraisal
Theory, where appraisals are performed on the state and
rewards are accordingly modified. A key adaptation for
these methods is the conception of both intrinsic motivation
(associated with internal or emotionally derived reward) and
extrinsic motivation (externally applied reward as is common
in standard RL), in the reinforcement reward [86], [87]. One
example, by Marinier & Laird [88], showed that with the
incorporation of appraisal-induced emotion, it is possible
to speed up learning compared to a standard RL agent.
This was attributed to the fact that, in this case, emotion
provides constant reward whereas in the standard RL agent,
reward is only received at the end of each run. Further, by
adding in ‘Mood’, wherein emotion was sustained during
each run, learning became faster yet. This was because
some necessary actions would cause states to receive no
emotional response. Without the ‘Mood’ effect, these states
might become undervalued but by persisting the emotional
reward, state values would be better approximated. Other
appraisal theory-based emotional methods have also shown
similarly superior results compared to non-emotional RL
[89], [90].

Alternatively, some models of emotional RL include the
notion of homeostasis and drive, that is, the attraction towards

309

an equilibrium state of an agent. In these models, homeostasis
describes an equilibrium state for the agent with respect to
homeostatic (or salient) variables, e. g., hunger and thirst (cf.
primary emotions). The agent will experience drives, which
produce actions that alter the agent’s state in homeostatic
space, towards the equilibrium; these changes can then be
translated into rewards [91]-[93], note that ‘Hullian’ drive
has also been used, which is similar but adopts a different
approach to drive-induced behaviour [94].

Furthermore, emotion and other neuro-inspired principles
have been incorporated in action-selection [95]—-[97]. For
example, valence has been used to influence exploration-
exploitation, where negative or positive valence promotes
more or less considered evaluation in action-selection, re-
spectively [98]. In another example, frustration was used
to dictate which strategy or drive should be considered
when deciding on an action (e. g., switching between using
odometry navigation and visual navigation or prioritising a
thirst vs hunger drive), in a robotics foraging experiment
[99]. In a similar fashion, employing frustration as part
of an amygdala model in Q-learning (see [64]) was seen
to improve the navigation performance of an agent [100],
whereby emotion would accordingly alter the weights of
different value functions for selecting actions. For a more
extensive survey on these topics see [18].

3.4. Cognition and Abstraction in Learning

In a (simulated) robotics application Parisi & Petrosino
[101] found that the addition of an ‘emotional circuit’ to a
neural network-controlled agent allowed it to embody moti-
vational decision-making. The neural network architecture
was created with a genetic algorithm and it was found that
robots that included emotion would achieve higher fitness
when tested in a number of environments and with differing
motivators. For example, some would have to look for both
food and water, and the environment would provide varying
amounts of each. In one case, food provisions would be
five times greater than water. This lead to the robots placing
a higher motivational priority on water, only seeking food
when close to it or very hungry. In what Velasquez called
Emotion-Based Control, a novel approach to action selection
was developed, wherein emotional associations in learning
would guide later decisions via bias signals. By using the
Cathexis model, which comprises a set of systems, including
an ‘Emotion Generator’, ‘Behaviour Systems’ and ‘Motor
Systems’ [102]-[104], Veldsquez was able to demonstrate
emotional conditioning within a robotic agent called ‘Yuppy’.
Velasquez coupled a learning capability alongside some
primary rules for emotional elicitation, and found that Yuppy
would build emotional associations overtime. In one example,
where Yuppy would already associate being ‘disciplined’ as
a fear elicitor and where its cower would prompt Yuppy to
make a sound, a connection would form between the sound
and fear, where the two initially had no cognitive association.
In a different case, Yuppy would, by primary rule, become
happy upon finding a pink bone. However, if a person was
carrying the bone and disciplined the robot, Yuppy would
become wary of humans in later tests. In another, termed,



cognitive architecture, the learning intelligence distribution
agent (LIDA) also sought to produce cognitive behaviour, by
incorporating attention, action-selection and motivation with
emotion. Emotions are generated as the result of appraisals
on events (producing emotional association), which then
motivate different actions. In LIDA, emotion also enhances
learning through arousal, but if arousal gets too great it
will instead cause interferences [105]. One cannot help but
envision these ground-breaking approaches as an abstractive
reinforcement model, wherein initial primitive rules can
be abstracted such that new behaviours are generated; and
the understanding of good vs bad behaviour is much more
sophisticated. This would have obvious connotations with
both Appraisal Theory and also the notion that emotion
works as to facilitate the satisfaction of an organism’s core
needs, producing new goals as fits those needs.

4. Closing Remarks — What Comes Next?

The brain shows us that reinforcement is not a unitary
concept, and is more complex than simply knowing the
actual reward associated with an action and then choosing
actions accordingly. Instead elements such as expected
reinforcement, reinforcement type (reward or punishment)
and reinforcement prediction error are all separate entities
with separate brain-systems dedicated to them. Lotfi and
others showed us that promoting emotion from its role in
Affective Computing, wherein it serves the human-computer
interaction, to a construct with deeper affinity to Al can
produce promising results. Innovative applications of emotion
and related theories in RL demonstrate the broad range of new
emotion-inspired algorithms and their potential with respect
to the current state-of-the-art. In a similar fashion, Veldsquez
has shown us that allowing for emotional association, which
could be synonymous with learning to understand and predict
reinforcement, coupled with some primary emotion inducers,
can produce adaptive and unplanned behaviour; LIDA has in
turn showed us that other, cognitive, salient behaviour can
indeed be captured with the application of emotion. All of
this illustrates the effectiveness of emotionally augmented
machine learning, wherein emotion acts as the guidance
system for machines to traverse through a complex world in
order to perform proportionally complex tasks.
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