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Abstract—Bird sounds have been studied in recent years due
to their significance in helping ornithologists, and ecologists to
monitor birds activities, which reflect climate changes, biodiver-
sity, and reserves local protection status. Within the increasingly
collected large amount of bird sound data from experts and
amateurs, how to handle, and employ the state-of-the-art deep
learning methods to mining such large amount of data, is bringing
a huge challenge, and opportunity for the research community. In
this work, we propose a framework using the GPU to accelerate
autoencoders training for a large amount of bird sound data.
Experimental results show that the GPU can considerably speed
up the training process of bird sounds when fed within different
scales of data, or feature numbers, compared with CPU-based
learning.

I. INTRODUCTION

Bird sounds, regarded as the ‘speech of birds’, are signif-

icant not only for ornithologists in studying birds’ species,

mate, activities, etc. [1], but also for the measurement of cli-

mate changes, and biodiversity of a reserve by ecologists [2].

With the increasingly collected amount of bird sound data by

experts and amateurs, researchers in the recently highly active

areas of ‘deep learning’, can contribute by digging such large

amount of bird sound data efficiently. Among the structures

of deep networks, ‘autoencoders’ are essential elements in

designing stacked autoencoders deep networks [3], which are

also useful for unsupervised learning [4]. However, training

autoencoders on large amounts of data is a time-consuming

task for traditional CPU-based computing, which makes it

difficult to handle the large amount of bird sound data. In

this work, we start exploring the potential in performance

employing the latest GPUs in training autoencoders to the

named end. We compare the computing performance of a

single CPU, and single GPU based system, respectively, within

different scales of data numbers, and acoustic feature numbers

derived from the bird sounds.

II. DATABASE AND FRAMEWORK

As Fig. 1 shows, the audio recordings of the bird sounds are

processed by signal processing techniques to extract acoustic

features, which represent the salient characteristics of the

birds’ sounds. These features act as the ‘input’ of autoencoders

for the subsequent training in our consideration. The autoen-

coders and their ‘output’ can be further used as supervised,

unsupervised, or semi-supervised learning elements, which

contribute to the bird sounds study.
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Fig. 1. Training Autoencoders from a Large Amount of Bird Sound Data.

A. ‘LifeCLEF Bird task’

Since 2014, ‘LifeCLEF’1 [5] launched its first bird sounds

classification task, which focused on bird identification by

training 9 688 audio recordings from over 501 species from

South America. Until recently in 2015, and 2016, 24 607 audio

recordings (2015 and 2016 share the same training data) were

used in the training phase for the recognition of 999 species

of birds. Here, we use the training sets from ‘LifeCLEF 2014’

and ‘LifeCLEF 2015’ as Table I shows.

TABLE I
BIRD SOUND DATA.

species recordings size
‘LifeCLEF 2014’ 501 9 688 23.0 GB
‘LifeCLEF 2015’ 999 24 607 70.2 GB

TABLE II
OPENSMILE FEATURE SETS.

dimensions
‘eGeMAPS’ 88
‘IS09 emotion’ 384
‘IS13 ComParE’ 6 373

B. Using openSMILE to Extract Audio Features

Here we use our toolkit, openSMILE [6], to extract a

large scale of audio features from bird sound data, which

was proved to be efficient in bird sound recognition [7],

[8]. Features base on Low Level Descriptors (LLDs) with

1http://www.imageclef.org/2014/lifeclef/bird.
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functionals form the input for training the autoencoders. We

select three different kinds of feature sets from openSMILE,

namely ‘eGeMAPS’, ‘IS09 emotion’ and ‘IS13 ComParE’

(refer to [6], [9]); the feature number per audio instance are

given in Table II. These features were designed by audio

experts, including pitch, formants, Mel-Frequency Cepstral

Coefficients (MFCCs), spectral parameters, energy/amplitude

related parameters, to name but a few. The sets represent

different feature dimensions scaling at 10, 102, and 103,

respectively.

III. EXPERIMENTS AND DISCUSSION

We set up our experiments on training a stacked autoen-

coders’ network [3] (256-256-256-501/999) with a learning

rate of 0.1, and a batch size of 256. Autoencoders are

feedforward neural networks, which aim at minimizing the

reconstruction errors between the inputs X , to the outputs ˜X
as:

J(X, ˜X) = ||X − ˜X||2, (1)

where X , ˜X represents the inputs, and outputs of the autoen-

coders respectively. In a simplest case, when feeding X into

a one-hidden-layer autoencoder, a new map will be generated

as:

Y = σ1(WX + b), (2)

where W is the weight vector, and b is the bias. σ is the

activation function. ˜X is reconstructed as:

˜X = σ2(˜WY + ˜b). (3)

Thus, ‘autoencoders’ can learn some higher level features from

the original inputs, i. e. lower level features.

TABLE III
HARDWARE CONFIGURATION

Hardware Configuration
CPU Intel Core i7-6700K @4.0 GHz
GPU 1 Tesla K20Xm 6 GB GDDR5 with CUDA 8.0
GPU 2 Tesla P100 PCIE 16 GB HBM2 with CUDA 8.0

We conduct our experiments with hardware configurations

shown as Table III. Results are shown in Fig. 2. We can see

that, the GPU 1 (a K20) can achieve around 7-8 times and

the newer GPU 2 (a P100) can achieve even almost 10 times

the speedup vs the CPU Intel Core i7-6700K (4 Cores, 8

threads) when training with smaller feature numbers. In our

experiments, the number of features has a more important

impact on the time costs in training autoenocoers, rather

than the number of data needed to be processed. It appears

reasonable that, within the more complicated data features, the

GPU will be one’s first choice in future autoencoder training.

IV. CONCLUSION

In this work, we quantitatively compared the performance of

CPU, and GPU on training autoencoders for a large amount

of bird sound data. Our experimental results show that the

GPU outperformed the CPU considerably, specifically, when

the feature dimension, or data number is increased. Future
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Fig. 2. Performance of CPU and GPU Training of Autoencoders.

work includes implementing deep learning solutions for big

bird sound data processing on multiple GPUs, and multiple

nodes of GPUs.
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