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ABSTRACT Whispered speech, as an alternative speaking style for normal phonated (non-whispered)
speech, has received little attention in speech emotion recognition. Currently, speech emotion recognition
systems are exclusively designed to process normal phonated speech and can result in significantly degraded
performance on whispered speech because of the fundamental differences between normal phonated speech
and whispered speech in vocal excitation and vocal tract function. This study, motivated by the recent
successes of feature transfer learning, sheds some light on this topic by proposing three feature transfer
learning methods based on denoising autoencoders, shared-hidden-layer autoencoders, and extreme learning
machines autoencoders. Without the availability of labeled whispered speech data in the training phase,
in turn, the three proposed methods can help modern emotion recognition models trained on normal
phonated speech to reliably handle also whispered speech. Throughout extensive experiments on the Geneva
Whispered Emotion Corpus and the Berlin Emotional Speech Database, we compare our methods to
alternative methods reported to perform well for a wide range of speech emotion recognition tasks and find
that the proposed methods provide significant superior performance on both normal phonated and whispered
speech.

INDEX TERMS Speech emotion recognition, whispered speech, feature transfer learning, autoencoders,
extreme learning machines.

I. INTRODUCTION
Speech emotion recognition has grown into a major research
topic in speech processing, human-computer interaction,
and computer-mediated human communication over the last
decades (see [1]–[4]). In general, it focuses on using machine
learningmethods to automatically predict ‘correct’ emotional
states from speech. Apart from normal phonated speech
at which current studies mainly have made considerable
efforts to date, in fact, whispered speech is another com-
mon form of speaking to communicate, which is produced
by speaking with high breathiness and no periodic excita-
tion. With the absence of periodic vibration of the vocal

folds during the production, whispered speech structure is
significantly altered which results in reduced perceptibly
and a significant reduction in intelligibility. In the mean-
time, it was already found that whispered speech can encode
prosodic information, and thereby still convey clues car-
rying emotion information [5], [6]. Naturally, whispered
speech plays an important role in our daily life in order
to intentionally confine the hearing of speech to listeners
who are nearby. For example, we whisper to the user inter-
face over the cellphone when offering privacy information
in terms of date of birth, credit card information, billing
address to make hotel, flight, and table reservations. Another
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area of interest are patients with speech disabilities who
are affected by a temporary or long-term in the vocal fold
structure or disease of the vocal system such as functional
aphonia or laryngeal disorders [7] and therefore can only
produce whisper-like sounds. For speech emotion recogni-
tion, however, only a handful of efforts have been devoted
to recognizing whispered speech by now (i. e., [8], [9]).
Especially, the issue of how to build a practically feasible
emotion recognition system for whispered speech has not
been addressed yet, as past work mainly analyzed the differ-
ences of the prosodic features in emotions of Chinese whis-
pered speech [8], [9]. Hence, to be more useful in practice it
would be highly desirable to enable an emotion recognition
system to process whispered speech as well with promising
accuracy.
In the speech community, there has been a consider-

able amount of the related work on whispered speech
[7], [10]–[17]. In [14], Janke et al. addressed the F0 modeling
in whisper-to-audible speech conversion and then proposed a
hybrid unit selection approach for whisper-to-speech conver-
sion based on the finding that F0 contours can be derived from
the mapped spectral vectors. Furthermore, to improve the
intelligibility of whispered speech in various noise contexts,
an unsupervised learning of phonemes was proposed based
on convolutive non-negative matrix factorization [12]. For the
task of acoustic voice analysis in computer laryngeal diag-
nostic, Mitev and Hadjitodorov [7] developed three methods
for fundamental frequency determination of voice of patients
with laryngeal disorders, including autocorrelation method,
spectral method, and cepstral method. Moreover, these meth-
ods were combined in a system for acoustic analysis and
screening of the pathological voices in the everyday clinical
practice.

Rather than tediously collecting and labeling whispered
speech and designing a dedicated system from scratch, past
studies also have shown that a workable scheme in an attempt
to deal with whispered speech is to explore normal phonated
speech data to create and develop systems that would bemuch
more robust against variability and shifts in speech modes
(e. g., normal phonated and whispered modes) [10], [18]. For
example, Fan and Hansen [10] recently considered a feature
transformation estimation method in the training phase which
results in a more robust speaker model for speaker identifi-
cation on whispered speech. Three estimation methods are
proposed to model the transformation from normal phonated
speech to whispered speech. This solution seems also reason-
ably feasible and worthwhile in speech emotion recognition,
because it allows for one single recognition system to process
both normal phonated and whispered speech simultaneously.
Another important reason is that massively available normal
phonated speech is a potential benefit of the recognition
system in the era of big data considering that real whispered
emotional data is scarce. For these reasons, such strategy,
i. e., deploying normal phonated speech data for whispered
speech-based tasks, is adopted in this study for creating a
whispered speech emotion recognition system.

Another major concern of a whispered speech emotion
recognition system is: normal phonated speech fundamen-
tally differs from whispered speech in their use of the spec-
trum both perceptually and for speech production. Specif-
ically, the absence of periodic vibration of the vocal folds
during production of whispered speech leads to the lack of
voiced excitation, the lack of harmonic structure, and acoustic
cues signaling the fundamental frequency (F0) in speech,
shifted formant locations, as well as changes in formant
band width (see [10], [19]–[23]). Speech emotion systems
built with normal phonated speech signals are challenged,
and can deliver significantly degraded performance, when
they encounter whispered speech that differs from the limited
conditions under which they were originally developed and
‘trained’. Hence, such differences between the test data and
training data make whispered speech emotion recognition a
very challenging task.
Motivated by feature transfer learning, this study will show

that such concept considerably benefits a emotion recognition
system for whispered speech when it uses normal phonated
speech data for training as well. Specifically, this work tends
to result in the transformation from the normal phonated
speech domain to the whispered speech domain despite its
ignorance of whispered data labels. This resulting transfor-
mation can alleviate the disparity between them and then
support effective supervised learning in building a whispered
speech emotion recognition system. Accordingly, the focus
of the present work is placed on exploring standard but pow-
erful feature transfer learning techniques based on autoen-
coders including denoising autoencoders (DAE) [24] , its
more recent variant, i. e., shared-hidden-layer autoencoders
(SHLA) [25], and extreme learning machine autoencoders
(ELM-AE) [26]. As a result, the proposed feature trans-
fer learning methods successfully endow a speech emotion
model that can adapt to a range of speech modalities, i. e.,
normal phonated speech and whispered speech.

In addition to the motivation provided above, the core
contributions of this paper can be summarized as follows:
1) To the best of our knowledge, this is the first

work focusing transfer learning on whispered speech
emotion.

2) Technically, we propose the autoencoder-based fea-
ture transfer learning framework, allowing us to use
efficient normal phonated data to reliably recognize
emotions from whispered speech.

3) For the first time, acoustic feature analysis is conducted
on a whispered speech database to showwhich features
derived from different speech modes are important for
the task of interest.

4) We compare our transfer learning method with
other prominent methods for whispered speech emo-
tion recognition. We subject this method to thor-
ough evaluation two emotional databases. Extensive
experimental results show our proposed method is
feasible and effective on whispered speech emotion
recognition.
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The remainder of this paper is organized as follows.
In Section III, we first present the feature transfer learning
methods based on DAE, SHLA, and ELM-AE. Section IV
introduces the selected corpora for evaluation. Next, we
describe the empirical evaluation in Section V, including
acoustic features and the experimental setup. Experimen-
tal results on the selected databases are demonstrated in
Section VI before concluding this paper in Section VII.

II. RELATED WORK
There has been a considerable amount of the relate work
to overcome the problem of training/test feature distribu-
tion mismatch in the field of speech emotion recognition
[27], [28]. Busso et al. [27] proposed an iterative feature nor-
malization scheme designed to reduce the speaker variability,
while preserving the signal information critical to discrim-
inate between emotional states. Furthermore, the work [28]
analyzed how speaker variability affects the feature distribu-
tion in detail and further a speaker normalization approach
based on joint factor analysis to compensate for some of
the effects identified. Recently, transfer non-negative matrix
factorization with the maximum mean discrepancy algorithm
was proposed to address the discrepancies between the train-
ing and test data [29].
In addition, one generic approach for reducing the mis-

match problem in speech emotion recognition is known as
importance weights methods. Their essential idea is to assign
more weight to those training examples that are most similar
to the test data, and less weight to those that poorly reflect
the distribution of the test data. With this idea, Kanamori
et al. proposed unconstrained least-squares importance fit-
ting (uLSIF) to estimate the importance weights by a linear
model [30]. Additionally, Sugiyama et al. modeled the impor-
tance function by a linear (or kernel) model, which resulted in
a convex optimization problem with a sparse solution, called
the Kullback-Leibler importance estimation procedure, or
KLIEP [31]. Kernel mean matching (KMM) was proposed to
directly estimate the resamplingweights bymatching training
and test distribution feature means in a reproducing kernel
Hilbert space [32]. The three methods have recently been
shown to lead to significant improvement in speech emotion
recognition when Hassan et al. first considered to explicitly
compensate for acoustic and speaker differences between
training and test databases [33].
Another possible solution to address the problem of these

differences is to deploy feature learning (or representation
learning). Feature learning, i. e., learning some transforma-
tions of the data that make it easier to extract useful infor-
mation when building classifiers or other predictors, has
been considered from many perspectives within the realm
of machine learning [25], [34]–[36]. The key idea of feature
learning is to make use of deep architectures, resulting in
abstract representation. Generally, more abstract concepts
are invariant to most local changes of the input. Follow-
ing the concept of feature learning, feature transfer learn-
ing has been proposed to deal with the problem of how to

reuse the knowledge learned previously from ‘other’ data
or features [37]. This rather essential characteristic suggests
that feature transfer learning would be well suited for the
scenarios where the data distribution in the test domain is
different from the one in the training domain but the task
remains the same [25], [35]. For example, Deng et al. pro-
posed feature transfer learning based on a sparse autoencoder
method for discovering knowledge in acoustic features from
small labeled target data to improve performance of speech
emotion recognition when applying the knowledge to source
data [35]. More recently, Mao et al. proposed a transfer
learning method called sharing priors between related source
and target classes based on a two-layer neural network [38].
Huang et al. proposed a novel feature transfer approach with
PCANet (a deep network), which extracts both the domain-
shared and the domain-specific latent features to facilitate
performance improvement [39].

III. METHODS
This paper devises a system of recognizing emotional states
from whispered speech mainly inspired by feature learning.
Those methods take an advantage of the composition of
multiple non-linear transformations of the data to generate
more abstract and more useful representations, which lead
to compensating for the mismatch between the training (nor-
mal phonated) and test (whispered) data. It was empirically
observed that feature learning often yielded better represen-
tations, e. g., in terms of classification accuracy, quality of
the samples generated by a probabilistic model or in terms
of the invariant properties of the learned features [26], [34].
For example, deep neural networks, a typical approach in
feature leaning, has shown to outperform traditional Gaussian
mixture models (GMMs) on a variety of speech recognition
benchmarks, sometimes by a large margin [40].
For feature learning, it is common to employ autoen-

coders to learn a new transformation at the higher level from
the previously learned transformation in an unsupervised
way. Autoencoders are principally developed as multi-layer-
perceptrons (MLPs) with only one hidden layer predicting
their inputs [41]–[43]. The autoencoder structure aims to
explicitly define a direct feature encoding function in a spe-
cific parametrized closed form. This function, denoted as f ,
allows the simple but efficient computation of a new repre-
sentation from its input. Given an example x, we define

h = f (x), (1)

where h is the representation computed from the input x.
In light of the idea of yielding abstract representations,

this section introduces in detail a whispered speech emotion
system equipped with unsupervised feature learning tech-
niques based on autoencoders. To give a comprehensive and
full discussion of autoencoder-based feature transfer learn-
ing, this study covers two different methods of training an
autoencoder. We first introduce DAE and SHLA trained
as neural networks with back propagation (BP), and fur-
ther, according to extreme learning machine (ELM) theory,
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FIGURE 1. An autoencoder architecture.

present ELM-AE with a fast learning speed and good
generalization capability [26]. The aim of using the three
autoencoders for the creation of whispered speech emotion
recognition systems is to yield robust features in undoing
the effects of the mismatch between training data (normal
phonated speech) and test data (whispered speech). It is
then straightforward to use the resulting features as input
to a ‘standard’ supervised classifier, such as support vector
machines (SVMs).

A. AUTOENCODERS
Autoencoders, aka single-hidden layer feedforward neural
networks, are illustrated in FIGURE 1. Formally, in response
to an input example x ∈ Rn, the hidden representation
h(x) ∈ Rm is

h(x) = f W(1)
· x+ b(1)

)
, (2)

where f (·) is specified as an activation function (typically a
logistic sigmoid function or hyperbolic tangent non-linearity
function applied component-wise),W(1)

∈ Rm×n is a weight
matrix, and b(1) ∈ Rm is a bias vector. It is easily found that
the topology structure of the autoencoder completely relies
on the size of the input layer n and the number of hidden
units m.

The network output maps the hidden representation h back
to a reconstruction y ∈ Rn:

y = g W(2)
· h(x)+ b(2)

)
, (3)

where g(·) is specified as an activation function, and
W(2)

∈ Rn×m is a weight matrix, and b(2) ∈ Rn is a bias
vector.
Given a set of input examples X, the AE training consists

of finding parameters θAE =
{
W(1),W(2),b(1),b(2)

}
which

minimize the reconstruction error. This corresponds to mini-
mizing the following objective function:

JAE(θAE) =
∑
x∈X

x− y
∥∥2. (4)

The minimization is usually realized either by BP with
stochastic gradient descent or more advanced optimization
techniques such as the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) or conjugate gradient method, or
by ELM methods.

B. DENOISING AUTOENCODERS (DAE)
A DAE is trained to reconstruct a clean ‘repaired’ input
from an artificially corrupted version [24]. In doing so, the
learner must capture the structure of the input distribution in
order to optimally reduce the effect of the corruption process,
with the reconstruction essentially being a nearby but higher
density point than the corrupted input [34]. Consequently,
more robust features are learned in this way as compared
to a basic autoencoder. Due to the useful characteristic, the
DAE has been broadly considered to efficiently help speech
emotion recognition [25], [36], [44].

C. SHARED-HIDDEN-LAYER AUTOENCODERS (SHLA)
The idea behind transfer learning is to exploit commonalities
between different learning tasks in order to share statistical
strength, and transfer knowledge across tasks [34], [45].
Based on themotivation of the ‘sharing idea’ in transfer learn-
ing, an alternative structure of an autoencoder that attempts
to minimize the reconstruction error on both the training set
and the test set was recently proposed [25]. The ‘shared-
hidden-layer autoencoder’ (SHLA for short) shares the same
parameters for the mapping from the input layer to the hidden
layer, but uses independent parameters for the reconstruction
process.

Given a training set of examples Xtr, and a test set of
examples Xte, the two objective functions, analogous to the
basic autoencoder’s objective, are formed as follows:

Jtr(θtr) =
∑
x∈Xtr

x− y
∥∥2, (5)

Jte(θte) =
∑
x∈Xte

x− y
∥∥2, (6)

where the parameters θtr =
{
W(1),W(2)

tr ,b
(1),b(2)tr

}
, and

θte =
{
W(1),W(2)

te ,b
(1),b(2)te

}
share the same parameters

W(1),b(1)
}
.

Further, we optimize the joined distance for the two sets,
which leads to the following overall objective function:

JSHLA(θSHLA) = Jtr(θtr)+
λtr

2
W(1)∥∥2

F +
∥∥W(2)

tr

∥∥2
F

+ γ Jte(θte)+
λte

2
W(2)

te
2
F , (7)
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where θSHLA =
{
W(1),W(2)

tr ,W
(2)
te ,b

(1),b(2)tr ,b
(2)
te
}
are the

parameters to be optimized during training, and the hyper-
parameter γ controls the strength of the regularization. Here,
‖A‖F =

√∑
i
∑

j |aij|
2 is the Frobenius norm defined as the

square root of the sum of the absolute squares of a given
matrix’s elements. To avoid overfitting, we also include a
weight-decay regularization term with its hyper-parameter λ
to the objective function above.

The SHLA model can be regarded as an instance of mul-
titask learning [46]. By explicitly adding the regularization
term from the target (test) set, the SHLA is equipped with
extensive flexibility to directly incorporate the knowledge
of the interest task. Hence, during minimizing the objective
function, the shared hidden layer is biased to make the distri-
bution induced by the training set as similar as possible to the
distribution induced by the target set. This helps to regularize
the functional behavior of the autoencoder. Ultimately, it
lessens the effects of the difference in the training and target
sets.

D. EXTREME LEARNING MACHINES
AUTOENCODERS (ELM-AE)
Recently, extreme learning machine (ELM) has been pro-
posed since traditional BP algorithms for neural networks
always converge to local optima and suffer from slow con-
vergence. In ELM, the hidden nodes are randomly initi-
ated and then fixed without iteratively tuning. The only
trainable parameters are the weights between the hidden
layer and the output layer. In this way, ELM is treated as
a linear-in-the-parameter model which turns out to solve
a linear system. The advantages of ELM in efficiency
and generalization performance over traditional BP algo-
rithms have been demonstrated on a wide range of prob-
lems from different fields [47]. Extreme learning machines
autoencoders (ELM-AE) are a special case of ELM, where
the input is equal to the output. In [26], Kasun et al. showed
empirically that ELM-AE is comparable to DAE and other
DNN frameworks for a handwritten digit recognition task on
the MNIST data.
In contrast to DAE and SHLA, ELM-AE randomly gen-

erates the hidden nodes W(1) and b(1), and only tunes the
weights of the output layer W(2) in the training phase.
With (2), the input data is mapped to ELM random feature
space. Given L training samples of X, the outputs of ELM-
AE turn to be as follows:

W(2)H = X, (8)

whereX = [x1, . . . , xL] are the input data,H = [h1, . . . ,hL]
are the hidden representations. The output weights are calcu-
lated by

W(2)
= XH†, (9)

where H† is the Moore-Penrose generalized inverse of
matrix H.

To improve the generalization capability and further obtain
the solution faster, we can add a regularization term C as
suggested in [48]

W(2)
= XHT I

C
+HHT

−1

, (10)

where I is an identity matrix. Note that if the size of the input
layer is not equal to the number of hidden units (i. e., n 6= m)
we use (10) to compute the output weights, otherwise we
use (9).
In the sense of ELM-AE, hidden nodes are important to

learning but do not need to be tuned and can be independent
of training data, but output weights corresponds to building
the transformation from the feature space to input data. It
turns out that the representations H̃, which are learned by
ELM-AE, are defined via the weights W(2) by

H̃ =
(
W(2)

)T
X. (11)

E. RECOGNITION WITH AUTOENCODER-BASED FEATURE
TRANSFER LEARNING
In forming a whispered speech emotion system with normal
phonated speech data, as discussed in Section I, we are faced
with a scenario where the normal phonated speech data used
to train a classifier has some properties that are different from
thewhispered speech data seen in the testing phase. Naturally,
the difficulty of this system comes down to addressing this
‘data bias’ issue. There have been a small number of attempts
at this issue. For instance, recent studies proposed various
transfer learning methods to alleviate the data bias issue for
speech emotion recognition [25], [33], [35], [49]. In these
studies, the data bias issue is mainly caused by a change
in acoustic signal conditions, or different speakers, and the
type of different languages. However, the profound mismatch
between different speech modes has not been considered yet.
Most importantly, this work enables a speech emotion system
working for whispered speech by deploying autoencoder-
based feature transfer learning. Hence, this study continues
to extend the autoencoder-based feature learning framework,
and further, includes ELM-AE into such framework for the
first time.

In detail, this work proposes three feature transfer learn-
ing methods with the integration of a DAE, an SHLA, and
an ELM-AE. A central idea is to look for a transforma-
tion which would not only automatically capture useful fea-
tures hidden in data, but also transfer the knowledge from
the target domain (test) to the source domain (training).
Algorithm 1 presents the autoencoder-based feature transfer
learning methods.
The first method uses a DAE as the feature transformation

to accomplish the goal of building the recognition model.
In order to discover the knowledge from the test data, it is
necessary to access the test data and feed it into the training
procedure of a DAE (cf. Section III-A). According to the fea-
ture encoding function (cf. Section III-A), then, the optimized
parameters of the DAE

{
W(1),b(1)

}
lead both the training
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Algorithm 1 Autoencoder-Based Feature Transfer Learning
Input: The labeled training data Xtr, the corresponding

labels Ltr, and the test data Xte.
Output: Predictions P for the target task.
1: if Method 1 (DAE) then
2: Train a DAE using Xte without supervision and result

in
{
W(1),b(1)

}
.

3: else if Method 2 (SHLA) then
4: Train an SHLA using Xte and Xtr together without

supervision and result in
{
W(1),b(1)

}
.

5: else ifMethod 3 (ELM-AE) then
6: Train an ELM-AE using Xte without supervision and

result inW(2).
7: end if
8: Generate new representations Htr and Hte for Xtr and

Xte (cf. Section III-A) if DAE and SHLA, otherwise
Equation (11):

9: Learn a classifier C with Htr and Ltr by applying a
supervised learning algorithm (e. g., an SVM).

10: Make predictions P with Hte by the classifier C.
11: return The predictions P .

data and test data to generating their new representations.
After that, these representations are taken to build a standard
supervised classifier. During yielding the feature transforma-
tion, however, this method apparently ignores an attempt to
explore the information behind the training data, and forces
the training data to generate its new representation under the
characteristics as given by the test data. In this case, we may
unexpectedly lose those instances of the training data that
are not following these characteristics, such that we may lose
information useful for the subsequent supervised classifier to
a certain degree.
By contrast, in a ‘win-win strategy’, we propose the sec-

ond, i. e., SHLA method, to learn the common knowledge
of the training data and the test data simultaneously. This
method applies the training data and test data in the training
of an SHLA (cf. Section III-C) so as to result in the feature
transformation which would in particular balance the ‘con-
flicts’ between the two mismatched data in an optimization
way. Subsequently, this method proceeds with the same steps
as the first method to yield the new representations and train
the classifier.
Finally, we turn to using ELM-AEs introduced in

Section III-D for building a feature transfer learning frame-
work and in turn achieve more robust features to classifi-
cation. Using the test data, such method, called ELM-AE,
creates the transformation with the learned output weights for
compensation for the mismatch between the training domain
and the test domain.
In the following, the three methods are referred to as DAE,

SHLA, and ELM-AE. A great advantage of using these meth-
ods is that they take the help from the test data to optimize
all parameters. This is very useful if a large amount of the

TABLE 1. Overview of the selected databases.

test data is available in contrast to the training data. Further,
abundant test data allows to apply cross-validation for tuning
the hyper-parameters.

IV. SELECTED CORPORA
A. GENEVA WHISPERED EMOTION CORPUS
This study employs the Geneva Whispered Emotion Cor-
pus (GeWEC) to evaluate the effectiveness of the proposed
system. The corpus provides normal phonated/whispered
paired utterances. Two male and two female professional
French-speaking actors in Geneva were recruited to speak
eight predefined French pseudo-words (‘‘belam’’, ‘‘molen’’,
‘‘namil’’, ‘‘nodag’’, ‘‘lagod’’, ‘‘minad’’, and ‘‘nolan’’) with a
given emotional state in both normal phonated and whispered
speech modes. Particularly, speech was expressed in four
emotional states: angry, fear, happiness, and neutral. The
actors were requested to express each word in all four emo-
tional states five times. The utterances were labeled based
on the state they should be expressed in, i. e., one emotion
label was assigned to each utterance. As a result, GeWEC
consists of 1 280 instances in total. To give an in-depth evalu-
ation of the proposed method, we decided to further generate
labels for binary valence/arousal from the emotion categories.
In valence space, angry and fear have negative valence, hap-
piness and neutral have positive valence. In arousal space,
neutral is low arousal, angry, happiness and fear are high
arousal. Moreover, an overview of the selected corpus is
found in Table 1.
Recording was done in a sound proof chamber using pro-

fessional recording equipment. All recordings were recorded
with a 16 bit PCM encoded single channel at a sampling rate
of 44.1 kHz. The distance from the microphone was about
0.5m during recording. Recordings were accompanied by
visual cues on a screen, which indicated which word has to be
vocalized and which emotional state needs to be expressed.
Cues were on the screen for 1 s length, separated by a blank
screen of 2 s. The cue duration of 1 s was chosen such that the
actors were guided to vocalize each word with a duration of
about 1 s, which ensures that the vocalizations were compa-
rable in length.
Pre-processing steps were applied to each utterance before

feature extraction, in which all utterances were normalized
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to mean energy, as well as scaled to a mean of 70 dB sound
pressure level (SPL) and added manually a fade-in/fade-out
duration of 15ms.

B. BERLIN EMOTIONAL SPEECH DATABASE
A further well known set for normal phonated speech
emotion classification, Berlin Emotional Speech Data-
base (EMO-DB) [50], is chosen to test the effectiveness of
the proposed methods. It covers anger, boredom, disgust,
fear, happiness, neutral, and sadness as speaker emotions.
The spoken content is again pre-defined by ten German emo-
tionally neutral sentences like ‘‘Der Lappen liegt auf dem
Eisschrank’’ (The cloth is lying on the fridge.). Ten (five
female) professional actors speak ten sentences. The actors
were asked to express each sentence in all seven emotional
states. The sentences were labeled according to the state they
should be expressed in, i. e., one emotion label was assigned
to each sentence. While the whole set comprises around 900
utterances, only 494 phrases are marked as minimum 60%
natural and minimum 80% agreement by 20 subjects in a
listening experiment. This selection is usually used in the
literature reporting results on the corpus (e. g., [51]–[53]).
Further we only retain those emotional states appearing in
the GeWEC data for the experiments. In this way, EMO-DB
in this article ends up consisting of 322 utterances as shown
in Table 1.

V. EMPIRICAL EVALUATION
A. ACOUSTIC FEATURES
As for acoustic features, we chose to use a standard-
ized feature set as is provided by the INTERSPEECH
2009 Emotion Challenge [54] which contains 12 function-
als applied to 2 × 16 acoustic LLDs including their first
order delta regression coefficients In detail, the 16 LLDs are
MFCC 1–12, root mean square (RMS) frame energy, zero-
crossing-rate (ZCR) from the time signal, probability of voic-
ing from autocorrelation function, and pitch frequency F0
(normalized to 500Hz). Then, 12 functionals – arithmetic
mean, moments including standard deviation (SD), kurto-
sis and skewness, four extremes (i. e., minimum and max-
imum value, relative position, and ranges) as well as two
linear regression coefficients with their mean square error
(MSE) – are applied to the LLDs and their deltas. Thus,
the total feature vector per utterance contains 16 × 2 ×
12 = 384 attributes. To ensure reproducibility, the open
source openSMILE toolkit version 2.0 [55], [56], which has
matured to be a standard for feature extraction in speech
emotion recognition, was used with the pre-defined chal-
lenge configuration in the paper. Please note that, although
a variate of moments of the LLDs are used to represent
the speech signal, it is trivial to use such features in an
online manner. As an example, [57] has investigated the
feasibility and reliability of using such acoustic features in a
distributed system formultiple Computational Paralinguistics
tasks.

B. EXPERIMENTAL SETUP
We use unweighted average recall (UAR) as a performance
metric, which has also been the competition measure of the
first challenge on emotion recognition from speech [54] and
follow-up ones. It equals the sum of the recalls per class
divided by the number of the classes, and appears moremean-
ingful than overall accuracy in the given case of presence
of class imbalance. As for the basic supervised learner in
the classification step, we used the L2-regularized L2-loss
support vector classifier implemented in LIBLINEAR [58],
with a fixed penalty factor C = 0.5. Besides, we always
chose logistic sigmoid functions as the activation function for
autoencoders.
For appropriately selecting the hyper-parameters of the

autoencoders, we adopt k-fold cross validation. Therefore,
the training set is split into four folds (k = 4) and each model
is trained four timeswith a different fold held out as validation
data. The predictions made by the four models are used to
obtain a UAR when we report test set results. According to
the performance on the validation data, we choose the best
particular model in each family of models.
For optimization of the parameters in the autoencoders

such as DAE and SHLA, we applied the third party soft-
ware minFunc1 implementing L-BFGS gradient descent. In
our experiments, attempted hyper-parameters for DAE and
SHLA are the following: the maximum iteration number
itermax ∈ {20, 40, 50, 100, . . . , 300}, the number of hidden
units m ∈ {64, 128, . . . , 1 024}, the weight decay value
λtr (λte) ∈ {10−3, 10−2, 10−1}, and the hyper-parameter for
SHLA γ ∈ {0, 0.1, . . . , 1}. In addition to them, masking
noise with a variance of 0.01 is injected to inputs during the
training of the DAE and the SHLA. For ELM-AE, the number
of hidden units m ∈ {64, 128, . . . , 1 024, 2 000, . . . , 7 000}
and the regularization term C ∈ {10−5, 10−4, . . . , 108} are
attempted.

VI. RESULTS
A. ACOUSTIC FEATURE ANALYSIS
This section conducts feature selection as acoustic feature
analysis on GeWEC to show which features derived from
different speech modes are important for the task of interest.
By the means of one feature selection algorithm for ranking
using the information gain with respect to the class imple-
mented in the WEKA toolkit [59], we compare the features
obtained on the normal phonated speech with those obtained
on the whispered speech from the GeWEC data in FIGURE 2.

For all tasks, it can be observed that the relative impor-
tance of LLDs remarkably differs between speech modes.
For instance, the F0-related features are crucial for normal
phonated speech while those are completely of redundancy
for whispered speech, which is expected due to the absence
of the fundamental frequency in whispered speech. Besides,
the probability of voicing and ZCR for whispered speech
become much more reliable in the emotion and arousal cases.

1http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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FIGURE 2. Full INTERSPEECH 09 feature set (Full) vs. 50 best features selected by measuring the information gain with respect to the class
on whispered (W) speech and normal phonated speech (N) in the GeWEC data for emotion, valence, and arousal classification. The
percentage of selected low-level descriptors (LLDs) and types of functionals is shown.

TABLE 2. Recognition results for emotion categories/binary
valence/binary arousal in leave-one-speaker-out testing for different
train/test combinations.

One possible reason causing such change is that for whis-
pered speech, discrimination performance is mainly affected
by the high-frequency region whereas for normal phonated
speech, discrimination performance is mainly affected by the
low-frequency region [23]. As regards the types of function-
als, it can be observed that the relative importance of means
and moments increases for whispered speech when compared
to normal phonated speech.

Overall, the acoustic feature analysis shows that relevant
features for use in speech emotion recognition model con-
struction are different from normal phonated speech and
whisper speech, and using normal phonated speech as train-
ing set to recognize emotional states from whispered speech
is very challenging.

B. BENCHMARK TESTS ON GEWEC
We first run a number of experiments where the training and
the test set varies in the combinations of normal phonated
speech and whispered speech within the data GeWEC.
These include matched and mismatched as well as multi-
condition training and testing. Table 2 lists the results of

all nine different training and test set combinations. Apart
from emotion categories, we also evaluate the discrimina-
tion between binary valence and the discrimination between
binary arousal. For practical andmeaningful comparisons, the
speaker-independent leave-one-speaker-out cross validation
strategy is adopted to meet speaker independent criteria.
As may be expected and can be seen from Table 2, the

recognition system using supra-segmental features works
best when both the training and test data are entirely drawn
from normal phonated speech, leading to the largest UAR
of 74.1% for the four-class emotion classification problem.
Further — also as one may expect —, whispered speech
(in matched condition) reaches a significantly lower UAR of
46.7%. Using whispered speech for training seems to down-
grade in particular the recognition of valence. It seems plausi-
ble that a training set drawn fromwhispered speech should be
a better way for whispered speech emotion recognition (i. e.,
matched condition learning). However, there is no significant
reduction in the system using normal phonated speech based
on Table 2. For binary valence and binary arousal, it is even
surprisingly observed that the system trained with normal
phonated speech sometimes obtains slightly higher UAR than
the ones when trained with whispered speech. Further, a
multi-condition training is only truly beneficial for whispered
speech.

C. RESULTS FOR THE PROPOSED METHODS ON GEWEC
This section reports the results obtained by the emotion
recognition system using the proposed and further domain
adaptation methods.
We compare a basic model without any adaptation and

the three methods above, listed as follows, to evaluate our
proposed approaches:
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TABLE 3. Average UAR over ten trials on GeWEC: no Transfer Learning (‘none’), and methods KLIEP, uLSIF, and KMM, and the proposed
autoencoder-based feature transfer learning methods DAE, SHLA, and ELM-AE. Significant results (p-value < 0.05, one-sided z-test) are marked with an
asterisk, judged relative to ‘none’. The best UAR is highlighted in bold. Speaker-independent classification by SVM.

• ‘None’: employs a conventional speech emotion system,
i. e., involving no adaptation, to predict emotions for a
given whispered utterance.

• KLIEP [30], uLSIF [31], and KMM [32]: utilize
these modern domain adaptation methods for covariate
shift adaptation, respectively before SVM classification.
We chose the ‘tuning parameters’ following [33].

First we train speech emotion recognition models on nor-
mal phonated speech while testing on whispered speech.
Because of the random initialization in the autoencoders
and IW methods, the results of the averaged UAR over
ten trials, along with significance level computed by a one-
sided z-test, are given in Table 3. We found that the DAE,
SHLA, and ELM-AE outperform all the other approaches.
In detail, the best performing methods for the three tasks,
which achieve UARs of 54.5%, 65.0%, and 74.6%, respec-
tively, use autoencoders. For all the three tasks, the IW meth-
ods just achieve similar results as the None. On two of the
three tasks, however, the autoencoder-based methods exhibit
a statistically significant improvement over the None. Note
that the SHLA improves on the DAE, showing that it can
leverage information both from the training set and the test
set in a more effective way. In the meantime, the ELM-AE
generally outperforms the SHLA, whichmay indicate that the
ELM-AE tends to attain more generalization performance.

To further test the effectiveness of the proposed meth-
ods at reducing the mismatch problem, more experiments
for recognizing emotions from normal phonated speech are
considered, specifically in which training data is whispered
speech, and test data is normal phonated speech. Table 3
also summarizes these results. It shows that the proposed
methods consistently outperform all the other methods since
they achieve the highest UARs for the three tasks as well.
In other words, they are also found effective for the normal
phonated speech emotion recognition systems when a mis-
match is given.

D. RESULTS FOR THE PROPOSED METHODS ON EMO-DB
Although the system is carefully designed for whispered
speech, it would be also expected to see if such system can be
suitable for normal phonated speech since normal phonated
speech is a more common way in our daily life. Therefore, we

TABLE 4. Average UAR on EMO-DB: All the models are originally
developed for whisper speech in Section VI-C. These models are only
trained with normal phonated speech from the GeWEC data in order to
classify whispered speech.

further test the proposedmethods on normal phonated speech.
In doing so, the recognition models obtained by the proposed
methods as well as other methods for comparison, which are
originally developed for whispered speech in Section VI-C,
continue to make predictions on the EMO-DB data. Note
that these models are only trained with normal phonated
speech data from the GeWEC data in order to classify whis-
pered speech. Following the experimental settings above, we
present these results in Table 4.
We found that the proposed methods can retain the com-

peting performance as the None, where the training and test
data come from normal phonated speech, whereas all of the
IW methods lead to a significant reduction in performance.
In addition, for emotion and arousal tasks, the proposed
methods significantly improve the performance in UAR over
the None, which may indicate that the knowledge of whis-
pered speech automatically found by the proposed methods
might be beneficial for normal phonated speech recognition
to some degree. Overall, these findings may suggest that the
autoencoder-based methods have great advantages to gener-
ate feature representations which are common to or invariant
across both whispered and normal phonated speech.

E. COMPARISON BETWEEN THE
AUTOENCODER-BASED METHODS
FIGURE 3 demonstrates how the number of hidden
units m influences the performance of the different
autoencoder-based methods on GeWEC and EMO-DB. It can
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TABLE 5. Comparison of running time (s) of DAE, SHLA, and ELM-AE on GeWEC.

FIGURE 3. Average UAR with standard deviation over ten trials obtained
by DAE, SHLA, and ELM-AE with changes in the number of hidden units
(m) for the emotion labeling scheme. (a) On GeWEC. (b) On EMO-DB.

been seen that the change in the number of hidden units,
within a particular range, has a strong influence on the
proposed methods. That is, we could obtain a sustained
performance growth with more hidden units.
Furthermore, we compare the running time of DAE,

SHLA, and ELM-AE on GeWEC. As can be seen from
Table 5, the ELM-AE has the least amount of needed running
time with respect to the DAE and SHLA, simply because its
training phase avoids tuning the parameters iteratively.

VII. DISCUSSIONS AND CONCLUSIONS
Autoencoder-based feature transfer learning, has been
applied to speech emotion recognition primarily for cross-
corpus classification of emotions [25], [35], [49], rather than
whispered speech classification. We extend these work by
showing how autoencoder-based feature transfer learning can
be applied to create a recognition engine owing a completely

trainable architecture that can adapt it to a range of speech
modalities, such as normal phonated speech and whispered
speech.

To reach the goal of this work, i. e., developing an emo-
tion recognition system which is trained on normal phonated
speech and can offer reliable performance also for whispered
emotional speech, we proposed three feature transfer learn-
ing methods using denoising autoencoders, shared-hidden-
layer autoencoders, and extreme learning machines autoen-
coders for whispered speech emotion recognition. Our results
demonstrate that such feature transfer learning methods can
significantly enhance the prediction accuracy on a range
of emotion tasks and compete well with other alternative
methods. The proposed methods also do not reduce system
performance on normal phonated speech.
We further found that autoencoder-based feature transfer

learning not only can aim to alleviate the mismatch between
the training set and test set by discovering common features
across multiple modes or different corpora, which has been
repeatedly shown in previous work like [60], [61], but also
can greatly improve the learning performance of a target task
by transferring useful information in one source task to the
target task in an unsupervised way. Table 4 provides a piece
of evidence on the point. Note that, here, whispered speech
as the source obviously offers helpful information so as to
improve the target task of normal phonated speech emotion
recognition. Such benefit has been constantly demonstrated
in other transfer learning methods and widely applied in
a variant of applications such as web-document classifi-
cation [62] and WiFi-based indoor localization [63], but
has never been found for autoencoder-based feature transfer
learning before. Hence, this work provides a new insight
into the way we explore autoencoder-based feature transfer
learning.
Overall, our results are very informative and encouraging

for future exploitation of the whispered speech recognition
system proposed in this paper. However, this work is only a
first step towards the creation of whispered speech emotion
recognition, and many more experiments need to be carried
out in the future. Since this study using acted data for eval-
uation tends to lead to overestimated performance [64], we
hope to perform further work on spontaneous data, which will
make recognition systems even more applicable in real-life
settings. Obviously, however, collecting sponteanous whis-
pered emotion in large quantities will remain quite a chal-
lenge. Given the rapid progress of research on deep learning,
we also hope to apply deep structures to the whispered speech
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emotion recognition problem and the transfer learning we
proposed.
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