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Abstract—The quality of the singing voice is an important
aspect of subjective, aesthetic perception of music. In this con-
tribution, we propose a method to automatically assess perceived
singing quality. We classify monophonic vocal recordings without
accompaniment into one of three classes of singing quality. Un-
processed private and non-commercial recordings from a social
media website are utilised. In addition to the user ratings given
on the website, we let both subjects with and without a musical
background annotate the samples. Building on musicological
foundations, we define and extract acoustic parameters describing
the quality of the sound, musical expression and intonation of
the singing. Besides features which are already established in
the field of Music Information Retrieval, such as loudness and
mel-frequency cepstral coefficients, we propose and employ new
types of features which are specific to intonation. For automatic
classification by supervised machine learning methods, models
predicting the subjective ratings and the user ratings on the social
media website are learnt. We perform an exhaustive evaluation
of both different classifiers and combinations of features. We
show that the performance of automatic classification is close
to that of human evaluators. Utilising support vector machines,
an accuracy of classification of 55.4 %, based on the subjective
ratings, and of 84.7 %, based on the user ratings of the social
media website, are achieved.

I. INTRODUCTION

The automatic assessment of singing quality is of great

relevance in the field of Music Information Retrieval (MIR).

Until recently, rating of singing has been the domain of

examiners at conservatories or classical singing competitions,

but more and more talent shows like ‘Star Search’, ‘Popstars’

or ‘The Voice of Germany’ are flooding the TV market where

the audience is often involved in the appraisal of the singers.

This trend and the availability of social media websites, such

as YouTube1, has resulted in a growing number of people

recording and publishing their singing. For their audience,

the increasing amount of content makes a manual mining

of all items of potential interest impossible and calls for an

automated preselection of high-quality recordings. The main

application of the technology investigated in this contribution

is the automatic rating of singing recordings which are up-

loaded to social media websites. Furthermore, the proposed

system is able to provide feedback on the overall quality to

amateurs.

1https://www.youtube.com/

Non-professionals usually rate singing on instinct without

knowing the exact reasons. In the entertainment sector, karaoke

systems like ‘SingStar’2 exist which give a rating of each

singer based on how exact the given pitch and rhythm are met.

However, aesthetical aspects, which are the gist of a musical

performance, are not taken into account in these games.

The human voice is considered as the oldest musical

instrument and its functional range exceeds those of other

instruments. The resonance filters of the vocal tract, i. e., the

formants, can be shaped to a large extent, depending on the

skill of the singer, and numerous timbres and vocal registers,

such as, e. g., falsetto or voce faringea [1], can be used. As

it is the case in appraisal of all kinds of art, the aesthetical

perception of singing is very subjective and varies between

different referees, so that even experts often disagree on the

perfection of a certain performance. This makes an automatic

classification of singing quality difficult as we require labels

in order to apply supervised machine learning schemes. In our

case, we do not have a distinct ground truth of labels, i. e., no

objectively correct ratings, but a gold standard derived from

subjective ratings by several referees, or annotators.

In this contribution, we want to present methods for auto-

matic assessment of perceived quality of singing performances

on the basis of non-professional, private home-recordings of

Western classical and pop music. The goal is to build a system

which works for different genres, such as the two mentioned.

We restrict ourselves to unisonous, unaccompanied vocal

recordings from YouTube. Acoustic features are extracted

from the signal on segment-level and then fed into different

classifiers. Except for chunking, no signal enhancement or

preprocessing is applied.

The contribution is organised as follows: In the next section,

we reference related works in the field of singing voice quality

and in section III, we gather the music-theoretical background

of vocals with particular attention on parameters which might

be relevant for perceived quality. In section IV, we describe

the used singing corpus and how we collected annotations by

professionals and non-professionals to get subjective ratings.

Section V presents how those parameters are extracted from

the audio signal and which of them have proven to be

2https://www.singstar.com/home.html
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meaningful for the task at hand. The results of classification

are shown in section VI before we conclude in section VII.

II. RELATED WORKS

Already in 1925, Seashore and Metfessel developed acoustic

parameters for quantitative measurement of singing quality [2].

They argue that the main difficulty in finding those parameters

is that the crucial point of what makes singing art is not

the exact adherence of rhythm and pitches, but the small

deviations from the score. Some meaningful characteristics of

‘good voice quality’, e. g., a stable vibrato, have been defined

by Bartholomew [3].

Wapnik and Ekholm present a study on inter- and intra-

rater reliability in vocal performance evaluation based on 12

criteria that are well-established for the judgement of classical

singing [4]. These criteria include vibrato, timbre, intonation,

dynamic range, breath control, and intensity. They found out

that inter-rater reliability is highest for the overall score and

the accuracy of intonation and that one unfulfilled criterion is

correlated with a decrease in the rating w. r. t. all other criteria.

In the meantime, much research has been carried out on

certain of the mentioned aspects rather than on a general eval-

uation of singing. Concerning vibrato, Hirano and Sundberg

introduce four parameters which are relevant for its quality

[5]: frequency, modulation depth, regularity, and waveform.

However, the recognition of vibrato depends highly on the

accuracy of pitch detection, which is quite challenging in case

of polyphonic music [6]. Weninger et al. propose a robust

approach to automatic recognition of vibrato in polyphonic

music [7]. Instead of the discrete fundamental frequency (F0)

spectrum, they take into account percentiles of delta regression

coefficients of the F0 contour. With this improved vibrato

recognition method, the accuracy was higher than 85 % for

the examined real-life database.

For evaluation of singing voice quality, the singing power
ratio (SPR) can be used [8]. SPR gives the ratio of the

maximum energy in the frequency range of the singing formant
(2-4 kHz, also called ‘singer’s formant’) to the maximum

energy in the range of 0-2 kHz. Watts et al. also investigate

if this parameter can be used to estimate the talent of a

singer. They discovered that SPR significantly differs between

untrained talented and untrained untalented singers.

Concerning untrained singers, criteria for rating can differ

from those for trained singers. Cao et al. examine recordings of

untrained singers with respect to intonation, vibrato, rhythm,

timbre, dynamics, and clarity of voice and the influence of

these features on the ratings from experts, who had to judge

every criterion [9]. Intonation prove to have the highest impact

on the ratings, whereas vibrato had almost no influence.

This might be due to the lack of vibrato in recordings of

unprofessional singers. Rhythm, timbre, and clarity of voice
had an impact on the rating.

For evaluation of intonation, there are basically two differ-

ent approaches:

1) The estimated F0 contour is compared to the frequencies

which correspond to the expected notes [10], [11]. This

approach requires the score of the musical piece in

digital format, e. g., MIDI. The estimated F0 contour

is then simply compared to the prescribed pitch contour

using the frequency-independent measure of cent (see

section III).

2) If the transcription of the musical piece is unknown,

intonation must be rated independent from melody.

Nakano et al. propose a method to evaluate intonation

based on the pitch interval accuracy [12]. The overall

stability of intonation is assessed by measuring the

pitch offset from an equal tempered scale with a fixed

reference tone. This is based on the assumption that this

offset is stable for good singers.

Further approaches exist as the one proposed by Mauch et

al. [13], [14]. While the interval error can be measured in a

straightforward way, the computation of pitch error requires

the knowledge of the reference tone, which is usually not

stable in unaccompanied singing. In the proposed method, a

‘normalised’ representation of the pitch contour is obtained

first by removing the nominal pitch in the score. Then, the

tuning reference is estimated via either linear regression or a

sliding window. Moreover, the authors state that note duration
has a notable impact on pitch accuracy. A good overview of

features for tonal analysis of music, e. g., the recognition of

played notes and chords, is provided in [15].
Besides the tonal characteristics of the voice, also the

analysis of rhythm is of importance for the evaluation of

singing, and more generally, music. For the assessment of

rhythm, numerous methods exist based on recognition of

beat, onsets, and tempo. Onset detection is usually the basis

for all other rhythm-related features [16], [17], [18]. However,

also an analysis based on the periodicity of the envelope of

the audio signal has shown evidence of its practicability [19].

For the assessment of singing skill, several of the mentioned

approaches are combined. For example, Nakano et al. fuse

features derived from intonation and vibrato to classify record-

ings of professional singers as either ‘good’ or ‘bad’ [12] and

achieve an accuracy of up to 87 %, depending on the gender

of the singer.
Many real-time applications already exist for this kind of

research, e. g., Gkiokas et al. [20] describe a visual feedback

system to assess the quality of tone of clarinets and point out

the deficits. InTune [21] visualises the deviations of pitch from

a given reference in singing.
Mayor et al. developed a method for Karaoke systems to

analyse the performance of a singer based on a reference

score giving also feedback about musical expression [22].

They segment the notes at an intra-note level using hidden
Markov models. Another study showing that automatic rating

of Karaoke singing is close to human rating has been published

by Tsai and Lee [23]. Music performance games exist, such

as, e. g., Songs2See [24], where the musician gets feedback

on the accuracy of the played notes. Moreover, Han et al.

present a system for musical performance evaluation based on

intonation [25].
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There are, however, only few systems that do not require the

musical score as foundation for assessment, such as the system

developed by Nakano et al. One approach has been presented

by Nichols et al. [26] where they present a method of ranking

large amounts of ‘home singing’ videos for searching talented

musicians in YouTube videos. They propose intonation his-
tograms and use the most frequent pitch as a tuning reference

from which they induce an equal-tempered scale. Besides the

deviations from this performance-specific scale, melody-based

metrics are extracted as features. An accuracy of up to 67.5 %

for pairwise ranking of singing quality is achieved. However,

if only the proposed intonation-based features are used, the

accuracy is 51.9 %.

In this contribution, we propose new features related to

intonation for the case of an unknown score.

III. MUSIC-THEORETICAL BACKGROUND

Here, we focus on Western classical and pop music. This

is important to note, because music from other cultures often

uses other scales, e. g., oriental music, and in other musical

genres, particular singing techniques or vocalisation styles are

common, e. g., death growl in heavy metal. In general, singing

is a discipline of art, so both interpretation and aesthetical

perception are subjective. Thus, there is no distinct agreement

on which criteria determine the quality of singing.

In the following, all criteria that are taken into account in

our work, are described.

A. Intonation

There is much evidence that a major criterion of good

vocals is intonation [4], [9]. Clean intonation means that the

singer hits and holds out the correct notes, i. e., the pitch

matches exactly the one the singer intends to sing. However,

intonation is also an essential mean of musical expression. As

an example, a tone is often sung too sharp, i. e., its pitch is a

little too high, before dissolving the arc of suspense.

In principle, to decide whether one note is sung in a clean

way, a reference is required. There might be three reasons why

this reference is not available:

1) There is no general reference for pitch in musical scales.

The standard pitch of the note A4 has been standardised

to 440 Hz in ISO 16:1975; however, orchestras usually

do not stick to this agreement and choose standard

pitches between 435 Hz and 445 Hz. If singers are

unaccompanied, they usually choose a reference which

deviates much more from standard pitch as most humans

have no absolute pitch.

2) There are several intonation systems. The intonation

system defines the frequency ratios between the 12 notes

(which is standard in Western music) within one octave.

In pure intonation, those frequency ratios are of small

whole numbers, i. e., the harmonic series [27]. This is

why the intervals in pure intonation are perceived as

clean. However, if several pure intervals are combined

successively, the resulting interval between the first and

the last note is usually not pure. For singers, adaptation

of pitches to sing pure intervals preferentially is common

practice, whereas this is not the case for instruments

with fixed pitches, like piano. For this reason, the equal
temperament has been established as a standard tuning

in Western music, which divides one octave into 12

intervals of relatively equal width (semitones) [28]. This

means that, with the interval measure of cent between

two frequencies f1 and f2, i = log2
f1
f2

· 1200 cent,
all semitones have an equal distance of 100 cent.

3) In addition to that, our goal is to build a system which

does not require a transcription of the notes of the

musical piece. Thus, the melody, i. e., the sequence of

intervals the singer pursues to sing, is also unknown.

B. Voice Quality

Besides intonation, a fundamental question is what discrim-

inates the voice of a ‘good’ singer against the voice of a ‘bad’

singer. Two important criteria are vibrato and timbre.

Vibrato is a continuous oscillation of the pitch of a tone

which is held out. Frequencies (rates) of vibrato around 6 Hz

are perceived as pleasant by human listeners [29].

One major aspect of timbre is the singing formant, which is

located in the band around 3 000 Hz and is of importance for

the assertiveness of the voice in an orchestra [30]. This is due

to the high sensitivity of the human ear at these frequencies.

Furthermore, the clarity of voice is an important criterion.

Untrained singers often have a ‘breathing’ or ‘aspirating’

voice, because their vocal cords do not close properly. Such

deficiencies in breath control lead to a dull voice, caused

by non-harmonic signal parts. However, an overemphasis of

harmonics leads to a sharp sound, which is not desirable either.

So, a well-balanced ratio of harmonic and non-harmonic parts

is essential for a good sound and a lively voice [31].

C. Dynamics

Dynamics, i. e., variations of loudness, are another criterion

for musical expression and the arrangement of a musical

performance. A constant loudness throughout a musical piece,

especially in classical music, can be boring. With meaningful

dynamics, the artist can evoke emotions in the audience.

IV. SINGING CORPUS

Let us now turn to our study. For our experiments, we cre-

ated a corpus out of private non-professional home recordings

from the video-sharing website YouTube.

We selected performances of seven popular songs given in

table I, from which several recordings in different degrees

of quality are available. Only one singer is present in each

video and the singing is unaccompanied; however, different

kinds of noises and disturbances are found. All exploited

recordings have been published under a Creative Commons
CC BY Licence2. Table I shows also the number of samples

of each song and the gender distribution.

2https://creativecommons.org/licenses/by/3.0/
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Song Author male female overall

Amazing Grace William Walker 4 8 12

Ave Maria Franz Schubert 8 15 23

Someone like you Adele 2 8 10

Hallelujah Leonard Cohen 5 8 13

Over the Rainbow Harold Arlen 2 22 24

The Star-Spangled Banner John Stafford Smith 8 17 25

Time to Say Goodbye Francesco Sartori 2 1 3

overall 31 79 110

TABLE I
LIST OF THE SONGS, NUMBER OF SAMPLES, AND DISTRIBUTION OF

GENDER FOR EACH SONG

The audio tracks were segmented without prior processing.

The beginning of each recording was cropped until the entry

of voice and the succeeding minute was divided into two

segments of 30 seconds each, called snippets in the following.

As there is one video clip with only 35 seconds of singing,

we gained a corpus of 219 snippets out of 110 recordings.

A. Ratings

In order to apply supervised learning schemes for audio

classification, we need class labels, or ratings, for each snippet.

As perceived singing quality is a subjective matter and there

is no objectively ‘correct’ classification, it is necessary to have

a multitude of annotators [32]. We employed three different

methods to obtain ratings:

1) We collected subjective ratings of the audio by means

of a web application called Record Ratings based on

the web framework Ruby on Rails3. This application

plays back the audio-only snippets randomly and asks

the annotator to give a grade as a number of stars
between 1 and 10. The annotators were given the three

following questions to form their opinion: “How much
do you like the singing voice?”, “Is the singing out of
tune or not?”, and “Does the singing transport emotion
or is it horribly boring?”. It was pointed out that the

annotators should not rate neither the technical quality

of the recording nor the song itself.

For statistical reasons, each annotator had to give

information on his or her age, gender, if he/she plays

an instrument, sings, has had musical education or is a

professional musician. In the first series, 6 annotators

were asked to rate all snippets of the corpus with the

given application. The group consisted of 3 female and

3 male subjects aged 24 to 59 with different musical

background (see table II). There was one complete

layperson, all others have had musical education, play

an instrument, and two of them also sing professionally.

Inter-rater reliability in terms of Krippendorf’s Alpha,

which takes the order of discrete scales into account, is

0.313. This means that the consensus on the quality of

3http://rubyonrails.org/

Annotator Gender Age Instr. Singer Education Professional

A female 59 yes no yes yes
B female 24 yes yes yes yes
C female 27 yes no yes no
D male 24 yes yes yes yes
E male 27 no no no no
F male 59 yes no yes yes

TABLE II
INFORMATION (GENDER, AGE, INSTRUMENTALIST, TRAINED SINGER,

MUSICAL EDUCATION, PROFESSIONAL MUSICIAN) ON THE SIX

ANNOTATORS OF THE FIRST SERIES OF ANNOTATIONS

the singing is quite low and maintains the assumption

that assessment of singing quality is a highly subjective

task. Our data cannot approve that this is due to a

generally worse rating by the professional musicians.

E. g., annotator D is a professional musician and singer

whereas annotator E is a layperson and the distributions

of their ratings are quite similar. The only correlation

we found is that older annotators tend to give worse

grades. Deviations in the judgement can also depend on

the playback device. However, in 73 % of the snippets,

the difference in the rating of both snippets from one

singer differs not or only in one star (out of ten).

2) In the second series, Record Ratings was used as a

crowdsourcing platform. Anybody was allowed to sign

up and was given 25 randomly chosen snippets to rate.

In total, 96 annotators participated (55 female, 41 male)

aged 21 to 77. The distribution of expert knowledge

was relatively equal, but only 16 of them were complete

laymen. It is also possible that the same user participated

several times in the experiment or skipped some of

the 25 snippets. In total, 2 197 ratings of snippets were

collected by crowdsourcing.

3) On YouTube, the number of views, likes, and dislikes
is available and it is feasible to transfer those three

numbers into one metric or discrete classes of quality.

However, the drawback of this labelling method is that

ratings might refer to the quality of the recording itself

or the visual nature of the singer rather than the singing.

The numbers of views, likes, and dislikes for each song

are summarised in table III.

As a target label based on these measures, the following

two metrics have been evaluated:

YouTube1 = max

(
0, log2

(
#likes

#dislikes
·#views

))

YouTube2 = max

(
0, log2

(
#views

#likes

))

The logarithm was taken to have a denser region of

values, which usually leads to a better classification

performance [32].

The resulting quality measures of each approach were

mapped to three discrete classes of quality: poor, fair, and

good.

For the ratings obtained by Record Ratings, grades 1 to 3

were mapped to quality poor, grades 4 to 6 were mapped to
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Song Views Likes Dislikes
min. max. avg. min. max. avg. min. max. avg.

Amazing Grace 78 698 989 115 111 0 2 146 521 0 48 12

Ave Maria 17 40 456 5 347 0 633 44 0 11 1

Hallelujah 29 1 796 521 0 23 6 0 4 1

Over the Rainbow 19 9 793 761 0 68 9 0 8 1

Someone like you 92 8 959 1 749 0 277 35 0 9 2

The Star-Spangled Banner 15 352 791 15 321 0 665 33 0 43 3

Time to Say Goodbye 54 1 099 550 2 12 7 0 2 1

overall 15 698 989 21 923 0 2 146 79 0 48 3

TABLE III
NUMBER OF MINIMUM, MAXIMUM, AND AVERAGE VIEWS, LIKES, AND DISLIKES PER SONG

Class Ranges of YouTube1 Ranges of YouTube2

poor (0,8.0] (8.0,∞)
fair (8.0,16.0] (5.5,8.0]
good (16.0,∞) [0,5.5]

TABLE IV
MAPPINGS BETWEEN RANGES OF METRICS YOUTUBE1 & YOUTUBE2,

AND THE THREE CLASSES

Class Majority vote YouTube1 YouTube2

poor 89 76 40
fair 95 108 118
good 35 35 61

TABLE V
DISTRIBUTION OF CLASSES

quality fair, and grades 7 to 10 were mapped to quality good.

The last class covers more grades as they are much less present

in the ratings than the lower grades. A gold standard, i. e., the

labels used as targets for supervised learning, was then defined

as the majority of the classes present in the combined ratings

of both series (see 1) & 2)) with Record Ratings (overall 3 051

ratings).

The metrics based on YouTube statistics were mapped

to classes intuitively according to table IV. Note that it is

considered that a smaller value in the measure YouTube2

implies better singing quality.

Finally, we end up with nine different target labels for each

snippet: Six ratings from the single annotators, one originating

from the majority vote of these annotators and crowdsourcing

and two ratings originating from YouTube statistics.

The class distribution for majority vote and the two metrics

from YouTube are shown in table V. For all target labels, the

most frequent class is fair and the least frequent quality is

good.

V. METHODOLOGY

In this section, we describe first the acoustic features which

are extracted from the audio signals and used for classification.

This includes both standard features and intonation-based fea-

tures which have been implemented for the research resulting

in this contribution. We then point out the results of feature

selection and specify the employed classifiers.

A. Standard Feature Sets

The extraction of acoustic standard features is done by

the tool OPENSMILE [33]. OPENSMILE provides, among

other things, the computation of low-level descriptor (LLD)

contours such as loudness, pitch, MFCC, jitter & shimmer,

and the computation of functionals of these LLDs such as

mean, moments, percentiles, etc.

In our experiments, the baseline feature set from the IN-
TERSPEECH 2013 Computational Paralinguistics Challenge
(ComParE) [34] was used. It comprises functionals of 60 LLD

contours and their 1st & 2nd order derivatives, in total 6 373

acoustic features per audio segment or snippet. The whole lists

of features are given in [34]; we now limit ourselves on the

description of those features in the set which are most relevant

to human voice, as pointed out in section III.

The fundamental frequency (F0) or pitch of the voice

signal is mainly responsible for the perceived note. Thus,

the extraction of pitch contour is also the basis for the later

introduced intonation-based features. The computation is done

using the Subharmonic Summation (SHS) method, where F0

can also be detected when only its harmonics are present in

the signal, and afterwards Viterbi smoothing is applied. It is

important to note that the search range for F0 must be adjusted

to 16 Hz – 1 400 Hz, which includes the human pitch range

in singing, as the standard configuration covers only pitches

typical for speech.

Harmonics-to-Noise-Ratio (HNR) gives information on the

amount of noise in a periodic audio signal. As stated in

section III; it is an indicator for voice quality. For HNR, the

autocorrelation function (ACF) is computed and its first peak,

which is at the fundamental period, is set in relation to the

overall signal energy [32].

MFCCs are a well-established acoustic feature, which takes

the subjective scale of human hearing into account and is

capable of separating the excitation part from the resonance

filter part in the speech signal [32]. In COMPARE, coefficients

1 to 14 are used.

The auditory spectrum models the human loudness percep-

tion of different frequencies and also takes the summation

within critical bands into account [35]. Features based on
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the auditory spectrum are therefore able to reflect the human

perception of, e. g., timbre, in a better way.

B. Intonation-based Features

In addition to the described well-established acoustic fea-

tures, features based on intonation have been implemented

prototypically in Matlab.

As a first step, the F0 contour is extracted with openSMILE,

using a Gaussian window with a width of 100 ms and a hop

size of 10 ms. To evaluate how well a tone is hit, a reference

must be determined. Multiple references are tried out:

1) Standard pitch A4 (440 Hz).

2) A set of ten candidates extracted from the audio sample

itself. The deviation is computed for each one of the

candidate references, but only the candidate with the

lowest deviation is included in the final feature vector.

The determination of the candidates is similar to the

method proposed in [26]. A tolerance is defined be-

forehand to define the maximum deviation of pitch to

be interpreted as the same tone. A tolerance of ±20
cents was chosen as the deviation of, e. g., a minor
third between pure intonation and equal temperament
is 16 cents. So, the almost inaudible difference of the

tuning system does not affect the proposed features.

A histogram of the extracted pitch (F0) is created,

where each pitch value is assigned to one ‘interval of

tolerance’. The centre frequencies of these intervals are

created from the F0 contour itself. Each time an F0

occurs which does not fit into any existing interval, a

new interval is added to a list. Finally, the mean of the

F0 values of the ten most frequent intervals are chosen

as candidates for reference.

Using standard pitch A4 and each of the ten candidates as

a reference fref , semitone scales are computed according to

the formula

f(i) = fref · 2 i
12 , (1)

where i takes all integers so that the resulting frequency is in

the range of human pitch (see section V-A).

Now, it would not be wise to compute the error in intonation

for every single frame, as vibrato, which is desired, causes

changes in pitch. So, the next step is segmentation, where

several frames belonging to one note are combined. As a first

step, the semitone (based on the absolute scale derived from

standard pitch and the scales derived from all candidates)

closest to F0 is determined for each frame. If the assigned

semitone is different from that of the preceding F0, or if the

pitch detection failed, a new segment is started, otherwise, F0

is added to the current segment. Without any post-processing,

short segments consisting of only one or two frames would

be generated. So, as a second step of segmentation, to im-

prove robustness, a minimum segment length of 3 frames is

introduced. Shorter segments are combined with the adjacent

segment that has smaller distance in cents. Fig. 1 exemplifies

the segmentation of 13 frames into 3 segments. This results

in a sequence of the sung tones, thus, this intermediate result

is a very basic transcription of the melody.

Now, to determine intonation, three different approaches

were pursued.

1) For the first set of intonation-based features, the error of

intonation is computed frame-wise, i. e., the segmenta-

tion is not considered here. For each frame and each

reference semitone scale (equation 1), the minimum

distance of the current pitch and all pitches from the

respective semitone scale in cents are used as intonation
error. Functionals according to table VI are applied to

obtain a feature vector for the whole snippet.

2) To obtain features, which are more robust against in-

tended deviations in pitch, such as vibrato, the results of

segmentation are used. The error between the pitch of

each frame within a segment and the semitone assigned

to the segment is computed (in cents). To obtain mea-

sures on segment-level, five functionals shown in table

VI are applied on the sequence of errors within each

segment.

3) As a third approach, we now look at the musical

intervals between the segments. Assuming that a singer

cannot hold the same reference over the whole song,

e. g., the pitch gets higher and higher, this would not

affect the subjective perception of intonation, usually,

if the rise is not too fast. However, the reference tone

of our error measures does not change throughout the

piece, so this would have an impact on the computed

features.

The musical interval is, in principle, the frequency ratio

between two adjacent segments. The derived features

are based on the mean pitch of each segment. We look

at nine different orders, i. e., the deviations between

one segment and its nine successors are computed. The

differences of the mean pitches of two segments are

now taken, and a modulo 100 operation is executed

as deviations of multiples of 100 cents (semitones)

are clean intonations, as well as deviations within a

tolerance range. Thus, errors of less than ±20 cents are

set to 0. The functionals shown in table VI are applied

to all deviations of the same order.

As mentioned, both the standard pitch A4 and the 10

candidates are used as a reference fref in all three approaches,

but for the candidates, only the sequence of errors with the

lowest mean error is kept, as the alternative 9 candidates do

not appear to be appropriate.

Overall, we end up in 112 intonation-based features listed

in table VI.

C. Feature Selection

The feature space of COMPARE is quite large, which usually

results in reduced classification performance. To reduce its

dimension, we employ entropy-based features selection tech-

niques [36], in particular information gain and gain ratio.

Feature selection was performed on the whole corpus intro-

duced in section IV, where the majority vote of the listeners
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Fig. 1. Example of the segmentation procedure. Given numbers are pitches in Hz. Numbers in brackets are sizes of the segments (number of frames).

Dim. LLD Functionals

10 Frame-wise deviation from semitone Mean,
scale (Reference pitch: A4 & maximum
candidate with minimum error) standard deviation,

mean squared error,
percentage of frames with
deviation above tolerance

30 Deviation from semitone scale per Segment level:
segment (Reference pitch: A4 & Mean,
candidate with minimum error) maximum,

standard deviation,
mean squared error,
ratio of maximum pitch and
the sum of the other pitches
Snippet level:
Mean,
standard deviation,
maximum error

72 Deviation of intervals between Mean,

segments (1st to 9th order) maximum
(Reference pitch: A4 & candidate standard deviation,
with minimum error) percentage of frames with

deviation above tolerance

TABLE VI
OVERVIEW OF THE INTONATION-BASED LLDS AND THEIR FUNCTIONALS

is used as target label. It was found that MFCC, which are

supposed to correlate with timbre, have a high rank, as well

as loudness. The other voice quality feature, HNR, is not very

relevant in the results of feature analysis.

Three subsets of COMPARE were defined:

• COMPARE 50, consisting of the 50 features with highest

rank according to information gain
• COMPARE 30, consisting of the 30 features with highest

rank according to gain ratio
• COMPARE REDUCED (COMPARE RED.), consisting of

50 manually selected features (inspired by the music-

theoretical background, including HNR and harmonicity).

D. Classifiers

In our experiments, we evaluated the performance of four

different classifiers, in order to ensure that our findings w. r. t.

the optimum feature set are independent from the employed

machine learning scheme.

• Support vector machines (SVM), implemented with Se-
quential Minimal Optimisation (SMO) [37], with linear
and radial basis function (RBF) kernel, and the complex-
ity parameter C,

• Naive Bayes (NB) [38],

• K-Nearest Neighbours (kNN), with linear search, Eu-
clidean distance and different numbers of neighbours k
[39],

• A C4.5 decision tree (C4.5) [40] with different confidence

values C.

All classifiers were trained and evaluated using the data

mining software Weka4 [41].

VI. EVALUATION

As our corpus (see section IV) is not large enough to be

split up into a training and a test partition, we employed two

modified versions of leave-one-out cross validation:

In leave-one-singer-out cross validation (LOSiO-CV), the

model is iteratively trained on all snippets except for the two

snippets of one singer, on which the model is then evaluated.

In leave-one-song-out cross validation (LOSoO-CV), the

model is iteratively trained on all snippets of the 6 training

songs and then evaluated on the snippets of the remaining

song.

This procedure promises results which are more realistic with

regard to singers or songs that are not included in our corpus.

As the three quality classes are not balanced, training instances

of less represented classes are upsampled before each model

training. As quality measure, unweighted average recall (UAR)
is used. The UAR is defined as the average recall over all

classes, where the class-specific recall is given as the ratio of

the number of correctly classified snippets from the respective

class and the total number of snippets in this class. This is

ideal in case of unbalanced instance per class distribution. The

chance level of the UAR in a 3-class learning task, i. e., the

performance achieved by a classifier with random or constant

predictions, is 1
3 ≈ 33.3%.

In the following, the results of the evaluation are shown

separately for each target introduced in section IV: the six

single annotators, majority vote (of the ratings from six

annotators and crowdsourcing), and the two measures from

YouTube ratings. For each case, the result with the CV method

leading to the superior result is shown.

A. Single Annotators
An evaluation of rater-dependent models is justified by the

relatively low inter-rater reliability (see section IV). Classi-

4http://www.cs.waikato.ac.nz/ml/weka/
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Annotator Feature Set Classifier C UAR

COMPARE 30 SVM (linear) 0.06 69.8 %
A INTONATION SVM (RBF) 0.8 50.8 %

COMPARE RED. + INTONATION SVM (RBF) 0.05 52.8 %∗

COMPARE RED. SVM (linear) 1.2 51.1 %
B INTONATION SVM (linear) 1.6 43.6 %

COMPARE RED. + INTONATION SVM (linear) 1.2 49.5 %

COMPARE 50 SVM (linear) 1.8 48.6 %
C INTONATION SVM (linear) 1.0 45.9 %

COMPARE 50 + INTONATION SVM (linear) 0.2 44.5 %

COMPARE 50 SVM (linear) 0.1 55.4 %
D INTONATION SVM (linear) 0.4 44.3 %

COMPARE 50 + INTONATION SVM (linear) 1.4 53.2 %

COMPARE RED. SVM (linear) 0.1 44.6 %
E INTONATION SVM (RBF) 1.4 42.6 %∗

COMPARE RED. + INTONATION SVM (linear) 0.1 44.9 %

COMPARE RED. SVM (linear) 0.7 62.5 %
F INTONATION SVM (linear) 0.04 52.1 %

COMPARE RED. + INTONATION SVM (linear) 0.07 57.5 %

TABLE VII
BEST CLASSIFIERS FOR EACH ANNOTATOR AND EACH TYPE OF FEATURE

SET. ∗EVALUATED WITH LOSOO-CV, ALL OTHER CLASSIFIERS WERE

EVALUATED WITH LOSIO-CV

fiers were trained for each annotator (A-F), and for each

COMPARE-based feature set, the intonation-based feature set

(INTONATION) and combinations of the COMPARE-based

feature sets and intonation-based features. Table VII shows

the results in terms of UAR for all annotators and each of

the three categories of feature sets. The best performance is

achieved with SVM in all cases; the UAR of 69.8 %, with

annotator A and COMPARE 30, is maximum. The best results

with the other classifiers in terms of UAR are: 60.2 % with

kNN, 57.7 % with NB and 47.3 % with a C4.5 decision tree.

It can be observed that the classification performance for

annotators C and E are worse than for the other annotators.

These two annotators are those who are not professional

musicians. This can be a clue that the annotations by experts

are more consistent than those of laymen, but we cannot draw

a final conclusion on that based on only two non-professionals.

Furthermore, as further investigation of the raters’ decisions

shows, the 10-grade scale has been exploited differently by

all annotators. A normalisation of the ratings might have

improved the consistency of the classification results between

different annotators.

For the COMPARE-based features, the reduced sets always

led to better results than the whole set. The intonation-based

features alone have an average performance of only 46.5 %

UAR and also the combined features are usually worse than

the pure COMPARE features. However, the ratings are not only

based on intonation, so we do not have meaningful targets

to get a final conclusion on the relevance of the proposed

intonation-based features. A feature selection on these features

has not been performed and might improve the performance.

However, we decided to present only results with the full

intonation-based feature set. The main reason for that is

that feature selection on large redundant acoustic feature sets

usually results in a rather arbitrary subset. Moreover, feature

reduction and classifier would be trained on the same data set.

Classifier Parameter Feature Set UAR

C = 0.9 COMPARE 30 55.0 %
SVM (linear) C = 0.3 INTONATION 37.6 %∗

C = 0.2 COMPARE RED. + INTONATION 55.4 %

k = 14 COMPARE RED. 59.3 %
kNN k = 20 INTONATION 35.6 %∗

k = 20 COMPARE 50 + INTONATION 47.8 %∗

COMPARE 50 52.9 %
NB INTONATION 29.9 %

COMPARE 50 + INTONATION 49.5 %∗

C = 0.5 COMPARE RED. 47.6 %∗
C4.5 C = 0.5 INTONATION 37.0 %

C = 0.4 COMPARE 30 + INTONATION 43.5 %

TABLE VIII
BEST RESULTS PER CLASSIFIER AND EACH TYPE OF FEATURE SET FOR

TARGET LABELS FROM MAJORITY VOTE. ∗EVALUATED WITH LOSOO-CV,
ALL OTHER CLASSIFIERS WERE EVALUATED WITH LOSIO-CV

Thus, we would not be able to draw a meaningful conclusion.

B. Majority Vote

Table VIII shows the results for all four evaluated machine

learning schemes and all three types of feature sets for the

target labels generated from the majority vote of all annotators.

The highest recognition rate of 59.3 % UAR is achieved

with kNN. This differs from our result for single annotators,

where SVM works best in all cases. The UAR with SVM

is only 55.4 % here. The results with naive Bayes and a

Decision Tree are 52.9 % and 47.6 % UAR, respectively. The

poor performance for naive Bayes might be due to the fact

that the single features are not statistically independent and

naive Bayes is not able to cope with redundancies very well.

Decision trees are generally very powerful if there is a small

subset of meaningful features, which is probably not the case

for this task.

Concerning the feature sets, the best result is attained with

COMPARE REDUCED. However, with SVM, the result of

combined intonation-based and reduced COMPARE features

is slightly better, whereas this is not at all the case for kNN.

Intonation-based features only yield the worst results with all

classifiers.

A UAR of 59.3 % is certainly much better than ‘random

classification’ (33.3 % UAR), but as well worse than desired.

The crucial point is that we depend completely on the quality

of annotations. If the majority vote is done iteratively without

the ratings of one annotator, and the majority is then compared

to the remaining annotator, the UAR is only 52.7 % on average.

This means that the inter-rater reliability is not very high.

Thus, a UAR of 59.3 % is still considerable.

C. YouTube Ratings

Table IX shows the best results for both target classes gen-

erated from the ratings on YouTube. For the targets which take

also dislikes into account (YouTube 1), the maximum UAR is

49.13 %, for the ratio of likes and views only (YouTube 2), the

maximum is 84.7 %, achieved with SVM and a combination

of intonation-based features and COMPARE 30. This is by far

the best performance in all our experiments.
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Target Feature Set Classifier Parameter UAR

COMPARE RED. kNN k = 19 49.1 %
YouTube1 INTONATION NB 48.6 %

COMPARE RED. + INTON. NB 45.6 %

COMPARE SVM (lin.) C = 10−5 51.1 %
YouTube2 INTONATION SVM (lin.) C = 0.04 52.7 %

COMPARE 30 + INTONATION SVM (lin.) C = 0.01 84.7 %

TABLE IX
BEST RESULTS FOR ALL TYPES OF FEATURE SETS AND BOTH TARGET

CLASSES GENERATED FROM YOUTUBE RATINGS (LOSIO-CV)

Now, the question arises, why the classification performance

is much better than with the gold standard created from the

majority vote of the annotators. One possible explanation is

that the number of ratings is much larger on YouTube than

on the Record Ratings platform, which results in a higher

consistency. It could nevertheless be the case that the number

of likes is larger if the recording quality is better. As the

COMPARE 30 feature set comprises also LLDs which are

common in general audio classification, it is possible that the

general audio quality has also been modelled in the proposed

system.

Finally, it must be pointed out that the relatively low number

of instances in the corpus and the large number of features can

result in over-fitting, i. e., a model adapts to the given data too

tightly and would not work with a similar accuracy on new,

unseen data or different corpora. The easiest way to tackle

this problem is simply to collect more labelled recordings.

However, from our point of view, with a feature vector of size

162 (112 intonation based features + 50 (COMPARE features),

there is no disproportion in consideration of a data set of

219 instances. In the INTERSPEECH ComParE tasks [42],

[34] and also in the MediaEval challenge [43], it has been

shown that a large feature vector of more than 6 000 features

led to an improvement for several speech-based recognition

tasks compared to a reduced number of acoustic features. This

applies even though the features are highly redundant.

VII. CONCLUSIONS AND OUTLOOK

The best classification performance in terms of UAR was

achieved on ratings generated from the ratio of likes and views
on YouTube. For each of the three classes poor, fair, and good,

84.7 % of the snippets were classified correctly on average.

The accuracy based on targets from majority vote of annotators

is only 59.3 % UAR. This might be due to a too small number

of participants (six) for annotation in combination with the

high task subjectivity.

Concerning features for the assessment of singing quality,

MFCCs, and loudness have proven to be quite meaningful, but

there is no final conclusion on a specific feature set. Overall,

SVM seems to be the most appropriate machine learning

scheme among the considered ones, besides kNN.

While the intonation-based features have not been very

beneficial in classification based on manual annotations of

singing quality, the best result on YouTube ratings has been

achieved with a combination of the 30 COMPARE features

with highest rank from gain ratio analysis and 112 intonation-

based features. Those intonation-based features alone yield a

UAR of up to 52.7 %. This exceeds the results presented in

[26] of 51.9 % in a 2-class decision, although it is certainly

delicate to compare results of two distinct approaches on

different datasets. Also the performance using an augmented

feature set in our 3-class problem (59.3 %) seems better than

that of the system proposed by Nichols et al. (67.8 %) for

2-class decisions.

Overall, the results show that the largest room for improve-

ment is now in reaching a more reliable gold standard by

a larger amount of ratings. We have found evidence that a

model based on a larger number of annotators usually works

more robust than a model based on the annotations from only

a few experts. This finding is common for many subjective

machine learning tasks, such as, e. g., affect recognition or

speaker likeability. Furthermore, it would be interesting to let

experts rate on different criteria separately, e. g., dynamics,

musical expression, and intonation. Having a gold standard

on intonation would also be helpful to decide which of the

proposed intonation-based features are most meaningful.

In future work, other features related to the singing voice

need to be evaluated, such as features describing vibrato as

presented in [7], rhythm [18], singer traits [44], or emotion
[45].

Further, recent deep learning approaches might be capable

of improving the classification accuracy [46], [47]. Besides,

other feature representations, such as bag-of-audio-words [48]

are worthwhile to be investigated in this context. Active
learning [49] or cooperative learning [50] could help to reduce

the effort of annotation, considering the loads of YouTube

videos that still conceal many potential talents.

Anyway, rating of vocals is still a very subjective task.

Although, with the proposed system, it is possible to get a

rough automatic assessment of vocals, the proposed system

cannot substitute a singing teacher as our system does not tell

how to improve the singing technique.
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