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Abstract—Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends

itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains

rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies

cannot interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that

allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a

semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known

attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our

models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming

Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.

Index Terms—Semi-NMF, deep semi-NMF, unsupervised feature learning, face clustering, semi-supervised learning, Deep WSF, WSF,

matrix factorization, face classification

 
1 INTRODUCTION

MATRIX factorization is a particularly useful family of
techniques in data analysis. In recent years, there

has been a significant amount of research on factorization
methods that focus on particular characteristics of both the
data matrix and the resulting factors. Non-negative matrix
factorization (NMF), for example, focuses on the decompo-
sition of non-negative multivariate data matrix XX into fac-
tors ZZ and HH that are also non-negative, such that
XX � ZZHH. The application area of the family of NMF algo-
rithms has grown significantly during the past years. It
has been shown that they can be a successful dimensional-
ity reduction technique over a variety of areas including,
but not limited to, environmetrics [1], microarray data
analysis [2], [3], document clustering [4], face recognition
[5], [6], blind audio source separation [7] and more. What
makes NMF algorithms particularly attractive is the non-
negativity constraints imposed on the factors they pro-
duce, allowing for better interpretability. Moreover, it has
been shown that NMF variants (such as the Semi-NMF)
are equivalent to a soft version of k-means clustering, and
that in fact, NMF variants are expected to perform better
than k-means clustering particularly when the data is not
distributed in a spherical manner [8], [9].

In order to extend the applicability of NMF in cases
where our data matrix XX is not strictly non-negative, [8]
introduced Semi-NMF, an NMF variant that imposes non-
negativity constraints only on the second factor HH, but
allows mixed signs in both the data matrix XX and the first
factor ZZ. This was motivated from a clustering perspective,
where ZZ represents cluster centroids, and HH represents soft
membership indicators for every data point, allowing Semi-
NMF to learn new lower-dimensional features from the
data that have a convenient clustering interpretation.

It is possible that the mapping ZZ between this new repre-
sentation HH and our original data matrix XX contains rather
complex hierarchical and structural information. Such a
complex dataset XX is produced by a multi-modal data dis-
tribution which is a mixture of several distributions, where
each of these constitutes an attribute of the dataset. Consider
for example the problem of mapping images of faces to their
identities: a face image also contains information about
attributes like pose and expression that can help identify
the person depicted. One could argue that by further facto-
rizing this mapping ZZ, in a way that each factor adds an
extra layer of abstraction, one could automatically learn
such latent attributes and the intermediate hidden represen-
tations that are implied, allowing for a better higher-level
feature representation HH. In this work, we propose Deep
Semi-NMF, a novel approach that is able to factorize a
matrix into multiple factors in an unsupervised fashion—
see Fig. 1, and it is therefore able to learn multiple hidden
representations of the original data. As Semi-NMF has a
close relation to k-means clustering, Deep Semi-NMF also
has a clustering interpretation according to the different
latent attributes of our dataset, as demonstrated in Fig. 2.

It might be the case that the different attributes of our
data are not latent. If those are known and we actually have
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some label information about some or all of our data, we
would naturally want to leverage it and learn representa-
tions that would make the data more separable according to
each of these attributes. To this effect, we also propose a
weakly-supervised Deep Semi-NMF (Deep WSF), a tech-
nique that is able to learn, in a semi-supervised manner, a
hierarchy of representations for a given dataset. Each level
of this hierarchy corresponds to a specific attribute that is
known a priori, and we show that by incorporating partial
label information via graph regularization techniques we
are able to perform better than with a fully unsupervised
Deep Semi-NMF in the task of classifying our dataset of
faces according to different attributes, when those are
known. We also show that by initializing an unsupervised
Deep Semi-NMF with the weights learned by a Deep WSF

we are able to improve the clustering performance of the
Deep Semi-NMF. This could be particularly useful if we
have, as in our example, a small dataset of images of faces
with partial attribute labels and a larger one with no attri-
bute labels. By initializing a Deep Semi-NMF with the
weights learned with Deep WSF from the small labelled
dataset we can leverage all the information we have and
allow our unsupervised model to uncover better representa-
tions for our initial data on the task of clustering faces.

Relevant to our proposal are hierarchical clustering algo-
rithms [10], [11] which are popular in gene and document
clustering applications. These algorithms typically abstract
the initial data distribution as a form of tree called a dendro-
gram, which is useful for analysing the data and help identify
genes that can be used as biomarkers or topics of a collection
of documents. Thismakes it hard to incorporate out-of-sample
data and prohibits the use of other techniques than clustering.

There are certain graphicalmodels that share some similar-
ities with our work as well. In particular, the work of Simon
Prince et al. [12] presents a generative model for face recogni-
tion targeted for images of faces with a large pose variation.
We would like to make clear that ‘Tied Factor Analysis’ is a
strictly supervised technique with a strong Bayesian flavour
specifically aimed for face recognitionwhere ours is a (weakly)
semi-supervised matrix factorisation method with a more
general application. In summary, ‘Tied Factor Analysis’ a)
requires the attribute information for all samples, b) it can
only take into a account in the optimisation procedure a single
attribute, and specifically is only formulated to only use the
pose information, c) it creates multiple models; one for each
pose combination (e.g., mapping profile to frontal pose,

Fig. 1. (a) A Semi-NMF model results in a linear transformation of the ini-
tial input space. (b) Deep Semi-NMF learns a hierarchy of hidden repre-
sentations that aid in uncovering the final lower-dimensional
representation of the data.

Fig. 2. A Deep Semi-NMF model learns a hierarchical structure of features, with each layer learning a representation suitable for clustering according
to the different attributes of our data. In this simplified, for demonstration purposes, example from the CMU Multi-PIE database, a Deep Semi-NMF
model is able to simultaneously learn features for pose clustering (HH1), for expression clustering (HH2), and for identity clustering (HH3). Each of the
images in X has an associated colour coding that indicates its memberships according to each of these attributes (pose/expression/identity).
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frontal to profile pose etc.) d) it is explicitly targeted for face
recognition. In contrast our work a) can utilise only a partial
prior information (for no or some samples) for each attribute,
b) it can leverage information from an arbitrary number of
attributes, c) we only have a single model which is jointly
trained for all attributes and finally d) it is a matrix factorisa-
tion technique for finding the best low-dimensional represen-
tation for the task-at-hand (e.g., classification, regression etc.).
Furthermore, our methodology can be used, as we show in
the experiments, in a synergistic fashion with TFA in order to
improve accuracy.

Another line of work which is related to ours is multi-label
learning [13]. Multi-label learning techniques rely on the cor-
relations [14] that exist between different attributes to extract
better features. We are not interested in cases where there is
complete knowledge about each of the attributes of the data-
set but rather we propose a new paradigm of learning repre-
sentations where have data with only partly annotated
attributes. An example of this is a mixture of datasets where
each one has label information about a different set of attrib-
utes. In this new paradigm we can not leverage the correla-
tions between the attribute labels and we rather rely on the
hierarchical structure of the data to uncover relations between
the different dataset attributes. To the best of our knowledge
this is the first piece of work that tries to automatically dis-
cover the representations for different (known and unknown)
attributes of a dataset with an application to a multi-modal
application such as face clustering.

The novelty of this work can be summarised as follows:
(1)we outline a novel deep framework1 for matrix factoriza-
tion suitable for clustering of multimodally distributed
objects such as faces, (2) we present a greedy algorithm to
optimize the factors of the Semi-NMF problem, inspired by
recent advances in deep learning [16], (3) we evaluate the
representations learned by different NMF–variants in terms
of clustering performance, (4) present the Deep WSF model
that can use already known (partial) information for the
attributes of our data distribution to extract better features
for our model, and (5) demonstrate how to improve the per-
formance of Deep Semi-NMF, by using the existing weights
from a trained Deep WSF model.

2 BACKGROUND

In this work, we assume that our data is provided in a
matrix formXX 2 Rp�n, i.e.,XX ¼ ½xx1; xx2; . . . ; xxn� is a collection
of n data vectors as columns, each with p features. Matrix
factorization aims at finding factors of XX that satisfy certain
constraints. In Singular Value Decomposition (SVD) [17],
the method that underlies Principal Component Analysis
(PCA) [18], we factorize XX into two factors: the loadings or

bases ZZ 2 Rp�k and the features or components HH 2 Rk�n,
without imposing any sign restrictions on either our data or
the resulting factors. In Non-negative Matrix Factorization
(NMF) [19] we assume that all matrices involved contain
only non-negative elements2, so we try to approximate a
factorizationXXþ � ZZþHHþ.

2.1 Semi-NMF

In turn, Semi-NMF [8] relaxes the non-negativity constrains
of NMF and allows the data matrix XX and the loadings
matrix ZZ to have mixed signs, while restricting only the fea-
tures matrix HH to comprise of strictly non-negative compo-
nents, thus approximating the following factorization:

XX� � ZZ�HHþ: (1)

This is motivated from a clustering perspective. If we view
ZZ ¼ ½zz1; zz2; . . . ; zzk� as the cluster centroids, then
HH ¼ ½hh1; hh2; . . . ; hhn� can be viewed as the cluster indicators
for each datapoint.

In fact, if we had a matrix HH that was not only non-nega-

tive but also orthogonal, such that HHHHT ¼ II [8], then every
column vector would have only one positive element, mak-
ing Semi-NMF equivalent to k-means, with the following
cost function:

Ck-means ¼
Xn
i¼1

Xk
j¼1

hkikxxi � zzkk2 ¼ kXX � ZZHHk2F ; (2)

where k � k denotes the L2-norm of a vector and k � kF the
Frobenius norm of a matrix.

Thus Semi-NMF, which does not impose an orthogonal-
ity constraint on its features matrix, can be seen as a soft
clustering method where the features matrix describes the
compatibility of each component with a cluster centroid, a
base in ZZ. In fact, the cost function we optimize for approxi-
mating the Semi-NMF factors is indeed:

CSemi-NMF ¼ kXX � ZZHHk2F : (3)

We optimize CSemi�NMF via an alternate optimization of ZZ�

and HHþ: we iteratively update each of the factors while fix-
ing the other, imposing the non-negativity constrains only
on the features matrixHH:

ZZ  XXHHy; (4)

whereHHy is the Moore-Penrose pseudo-inverse ofHH, and

HH  HH 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ZZ>XX�pos þ ½ZZ>ZZ�negHH
½ZZ>XX�neg þ ½ZZ>ZZ�posHH

s
; (5)

where � is a small number to avoid division by zero, AApos is a
matrix that has the negative elements of matrix AA replaced
with 0, and similarly AAneg is one that has the positive ele-
ments of AA replaced with 0:

8i; j : Apos
ij ¼

jAijj þAij

2
; Aneg

ij ¼
jAijj �Aij

2
: (6)

2.2 State-of-the-Art for Learning Features
for Clustering Based on NMF-Variants

In this work, we compare our method with, among others,
the state-of-the-art NMF techniques for learning features for
the purpose of clustering. Cai et al. [20] proposed a graph-
regularized NMF (GNMF) which takes into account the
intrinsic geometric and discriminating structure of the data
space, which is essential to the real-world applications,
especially in the area of clustering. To accomplish this,

1. A preliminary version of this work has appeared in [15].
2. When not clear from the context we will use the notation AAþ to

state that a matrix AA contains only non-negative elements. Similarly,

when not clear, we will use the notation AA� to state that AA may contain
any real number.
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GNMF constructs a nearest neighbor graph to model the
manifold structure. By preserving the graph structure, it
allows the learned features to have more discriminating
power than the standard NMF algorithm, in cases that the
data are sampled from a submanifold which lies in a higher
dimensional ambient space.

Closest to our proposal is recent work that has presented
NMF-variants that factorize XX into more than two factors.
Specifically, Ahn et al. [21] have demonstrated the concept
of Multi-Layer NMF on a set of facial images and [22], [23],
[24] have proposed similar NMF models that can be used
for Blind Source Separation, classification of digit images
(MNIST), and documents. The representations of the Multi-
layer NMF however do not lend themselves to a clustering
interpretation, as the representations learned from our
model. Although the Multi-layer NMF is a promising tech-
nique for learning hierarchies of features from data, we
show in this work that our proposed model, the Deep Semi-
NMF outperforms the Multi-layer NMF and, in fact, all
models we compared it with on the task of feature learning
for clustering images of faces.

2.3 Semi-Supervised Matrix Factorization

For the case of the proposed Deep WSF algorithms, we also
evaluate our method with previous semi-supervised non-
negative matrix factorization techniques. These include the
ConstrainedNonnegativeMatrix Factorization (CNMF) [25],
and the Discriminant Nonnegative Matrix Factorization
(DNMF) [26]. Although both take label information as addi-
tional constraints, the difference between these is that CNMF
uses the label information as hard constrains on the resulting
features HH, whereas DNMF tries to use the Fisher Criterion
in order to incorporate discriminant information in the
decomposition [26]. Both approaches only work for cases
where we want to encode the prior information of only one
attribute, in contrast to the proposedDeepWSFmodel.

3 DEEP SEMI-NMF

In Semi-NMF the goal is to construct a low-dimensional
representation HHþ of our original data XX�, with the bases

matrix ZZ� serving as the mapping between our original
data and its lower-dimensional representation (see Eq. (1)).
In many cases the data we wish to analyze is often rather
complex and has a collection of distinct, often unknown,
attributes. In this work for example, we deal with datasets
of human faces where the variability in the data does not
only stem from the difference in the appearance of the sub-
jects, but also from other attributes, such as the pose of the
head in relation to the camera, or the facial expression of the
subject. The multi-attribute nature of our data calls for a
hierarchical framework that is better at representing it than
a shallow Semi-NMF.

We therefore propose here the Deep Semi-NMF model,
which factorizes a given data matrix XX into mþ 1 factors,
as follows:

XX� � ZZ�1 ZZ
�
2 � � �ZZ�mHHþm: (7)

This formulation, as shown directly in Eq. (9) with respect to
Figs. 1 and 2 allows for a hierarchy of m layers of implicit

representations of our data that can be given by the follow-
ing factorizations:

HHþm�1 � ZZ�mHH
þ
m

..

.

HHþ2 � ZZ�3 � � �ZZ�mHHþm
HHþ1 � ZZ�2 � � �ZZ�mHHþm;

(8)

As one can see above, we further restrict these implicit rep-
resentations (HHþ1 ; . . . ; HH

þ
m�1) to also be non-negative. By

doing so, every layer of this hierarchy of representations
also lends itself to a clustering interpretation, which consti-
tutes our method radically different to other multi-layer
NMF approaches [22], [23], [24]. By examining Fig. 2, one
can better understand the intuition of how that happens. In
this case the input to the model, XX, is a collection of face
images from different subjects (identity), expressing a vari-
ety of facial expressions taken from many angles (pose). A
Semi-NMF model would find a representation HH of XX,
which would be useful for performing clustering according
to the identity of the subjects, and ZZ the mapping between
these identities and the face images. A Deep Semi-NMF
model also finds a representation of our data that has a simi-
lar interpretation at the top layer, its last factor HHm. How-
ever, the mapping from identities to face images is now
further analyzed as a product of three factors ZZ ¼ ZZ1ZZ2ZZ3,
with ZZ3 corresponding to the mapping of identities to
expressions, ZZ2ZZ3 corresponding to the mapping of identi-
ties to poses, and finally ZZ1ZZ2ZZ3 corresponding to the map-
ping of identities to the face images. That means that, as
shown in Fig. 2 we are able to decompose our data in 3 dif-
ferent ways according to our three different attributes:

XX� � ZZ�1 HH
þ
1

XX� � ZZ�1 ZZ
�
2 HH

þ
2

XX� � ZZ�1 ZZ
�
2 ZZ
�
3 HH

þ
3 :

(9)

More over, due to the non-negativity constrains we enforce
on the latent featuresHHð�Þ, it should be noted that this model
does not collapse to a Semi-NMF model. Our hypothesis is
that by further factorizing ZZ we are ableAlgorithm construct
a deep model that is able to (1) automatically learn what this
latent hierarchy of attributes is; (2) find representations of
the data that are most suitable for clustering according to the
attribute that corresponds to each layer in the model; and
(3) find a better high-level, final-layer representation for clus-
tering according to the attribute with the lowest variability,
in our case the identity of the face depicted. In our example
in Fig. 2wewould expect to find better features for clustering

according to identities HHþ3 by learning the hidden represen-
tations at each layer most suitable for each of the attributes in

our data, in this example: HHþ1 � ZZ�2 ZZ
�
3 HH

þ
3 for clustering our

original images in terms of poses and HHþ2 � ZZ�3 HH
þ
3 for clus-

tering the face images in terms of expressions.
In order to expedite the approximation of the factors in

our model, we pretrain each of the layers to have an initial
approximation of the matrices ZZi; HHi as this greatly
improves the training time of the model. This is a tactic that
has been employed successfully before [16] on deep
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autoencoder networks. To perform the pre-training, we first
decompose the initial data matrix XX � ZZ1HH1, where

ZZ1 2 Rp�k1 and HH1 2 Rþ0
k1�n. Following this, we decompose

the features matrix HH1 � ZZ2HH2, where ZZ2 2 Rk1�k2 and

HH1 2 Rþ0
k2�n, continuing to do so until we have pre-trained

all of the layers. Afterwards, we can fine-tune the weights
of each layer, by employing alternating minimization (with
respect to the objective function in Eq. (10)) of the two fac-
tors in each layer, in order to reduce the total reconstruction
error of the model, according to the cost function in Eq. (10).

Cdeep ¼ 1

2
kXX � ZZ1ZZ2 � � �ZZmHHmk2F

¼ tr½XX>XX � 2XX>ZZ1ZZ2 � � �ZZmHHm

þHH>mZZ
>
mZZ

>
m�1 � � �ZZ>1 ZZ1ZZ2 � � �ZZmHHm�:

(10)

Update rule for the weights matrix ZZ. We fix the rest of the
weights for the ith layer and we minimize the cost function

with respect to ZZi. That is, we set
@Cdeep

@ZZi
¼ 0, which gives us

the updates:

ZZi ¼ ðCC>CCÞ�1CC>XX ~HHi
>ð ~HHi

~HHi
>Þ�1

ZZi ¼ CCyXX ~HHyi ;
(11)

where CC ¼ ZZ1 � � �ZZi�1, y denotes the Moore-Penrose

pseudo-inverse and ~HHi is the reconstruction of the ith
layer’s feature matrix.

Update rule for features matrix HH. Utilizing a similar proof
to [8], we can formulate the update rule for HHi which enfor-
ces the non-negativity ofHHi:

HHi ¼ HHi 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CC>XX�pos þ ½CC>CC�negHHi

½CC>XX�neg þ ½CC>CC�posHHi

s
: (12)

Complexity. The computational complexity for the pre-
training stage of Deep Semi-NMF is of order O mt pnkþðð
nk2 þ kp2þ kn2ÞÞ, where m is the number of layers, t the
number of iterations until convergence and k is the maxi-
mum number of components out of all the layers. The com-

plexity for the fine-tuning stage is O mtf pnkþ ðpþ nÞk2ð Þ� �
where tf is the number of additional iterations needed.

3.1 Non-Linear Representations

By having a linear decomposition of the initial data distribu-
tion we may fail to describe efficiently the non-linearities that
exist in between the latent attributes of themodel. Introducing
non-linear functions between the layers, can enable us to
extract features for each of the latent attributes of the model
that are non-linearly separable in the initial input space.

This is motivated further from neurophysiology para-
digms, as the theoretical and experimental evidence sug-
gests that the human visual system has a hierarchical and
rather non-linear approach [27] in processing image struc-
ture, in which neurons become selective to process progres-
sively more complex features of the image structure. As
argued by Malo et al. [28], employing an adaptive non-lin-
ear image representation algorithm results in a reduction of

the statistical and the perceptual redundancy amongst the
representation elements.

Algorithm 1. Suggested Algorithm for Training a Deep
Semi-NMF Model. Initially We Approximate the Factors
Greedily Using the SEMI-NMF Algorithm [8] and We
Fine-Tune the Factors Until We Reach the Convergence
Criterion

Input: XX 2 Rp�n, list of layer sizes
Output: weight matrices ZZi and feature matrices HHi for each
of the layers

Initialize Layers
for all layers do
ZZi; HHi SEMINMF(HHi�1, layers(i))

end for

repeat
for all layers do

~HHi
HHi if i ¼ k

ZZiþ1 ~HHiþ1 otherwise

�

CC Qi�1
k¼1 ZZk

ZZi CCyXX ~HHyi

HHi HHi 	 ½CC>XX�posþ½CC>CC�negHHi

½CC>XX�negþ½CC>CC�posHHi

h ih
end for

until Stopping criterion is reached

From a mathematical point of view, one can use a non-
linear function gð�Þ, between each of the implicit representa-

tions (HHþ1 ; . . . ; HH
þ
m�1), in order to better approximate the

non-linear manifolds which the given data matrix XX origi-
nally lies on. In other words by using a non-linear squash-
ing function we enhance the expressibility of our model and
allow for a better reconstruction of the initial data. This has
been proved in [29] by the use of the Stone-Weierstrass theo-
rem, in the case of multilayer feedforward network struc-
tures, which Semi-NMF is an instance of, that arbitrary
squashing functions can approximate virtually any function
of interest to any desired degree of accuracy, provided suffi-
ciently many hidden units are available.

To introduce non-linearities in our model we modify the
ith feature matrixHHi, by setting

HHi � gðZZiþ1HHiþ1Þ: (13)

which in turns changes the objective function of the model
to be:

C
 ¼ 1

2
kXX � ZZ1g ZZ2 g � � � g ZZmHHmð Þð Þð Þk2F : (14)

In order to compute the derivative for the ith feature
layer, we make use of the chain rule and get:

@CC


@HHi
¼ ZZ>i

@CC


@ZZiHHi

¼ ZZ>i
@CC


@g ZZiHHið Þ 	 rg ZZiHHið Þ
� �

¼ ZZ>i
@CC


@HHi�1
	rg ZZiHHið Þ

� �
:
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The derivation of the first feature layer HH1 is then identical
to the version of the model with one layer

@CC


@HH1
¼ 1

2

@Tr½�2XX>ZZ1HH1 þ ðZZ1HH1Þ>ZZ1HH1�
@HH1

¼ ZZ>1 ZZ1HH1 � ZZ>1 XX

¼ ZZ>1 ZZ1HH1 �XXð Þ:

Similarly we can compute the derivative for the weight
matrices ZZi,

@CC


@ZZi
¼ @CC


@ZZiHHi
HH>i

¼ @CC


@g ZZiHHið Þ 	 rg ZZiHHið Þ
� �

HH>i

¼ @CC


@HHi�1
	rg ZZiHHið Þ

� �
HH>i ;

and

@CC


@ZZ1
¼ 1

2

@Tr½�2XX>ZZ1
~H~H1 þ ðZZ1

~H~H1Þ>ZZ1
~H~H1�

@ZZ1

¼ ZZ1
~H~H1 �XX

� �
~H~H
>
1 :

Using these derivatives we can make use of gradient
descent optimizations such as Nesterov’s optimal gradient
[30], to minimize the cost function with respect to each of
the weights of our model.

3.2 Stochastic Optimisation

In recent years we have witnessed an exponential growth in
data both in variety but also volume. Unfortunately it is com-
putationally intractable to take advantage of this sheer
amount of data as (semi) non-negative factorisation algo-
rithms scale quadratically in time with respect to the number
of observations n (cf. Section 3) but also require the whole
training set to reside inmainmemory. Fortunately, stochastic
optimisation techniques [31], [32] combat both of these issues
by processing only a small portion of the dataset on every
iteration, known as a minibatch. For simplicity of notation
and without loss of generality we assume that n is divisible

by the number of mini-batches q and in Eq. (15) we formulate
the stochastic version of Deep Semi-NMF cost function

~C ¼ 1

2

Xq�1
i¼0

���XX½i� � ZZ1g ZZ2 g � � � g ZZmHH
½i�
m

	 
	 
	 
���2
F
; (15)

subject to 8i: HHi � 0, and where X½i� is the subset of the
training set (minibatch) containing b ¼ n

q examples. To com-

pute the parameter updates for all the parameters of our
model we can use stochastic optimisation techniques such
as SGD [31] or Adam [32]. Although this is an approxima-
tion of the objective function over the whole training
set Eq. (4) we have found that in practise this works well
even for small batch sizes (32 samples).

4 WEAKLY-SUPERVISED ATTRIBUTE LEARNING

As before, consider a dataset of faces XX as in Fig. 2. In this
dataset, we have a collection of subjects, where each one has
a number of images expressing different expressions, taken
by different angles (pose information). A three layer
Deep Semi-NMF model could be used here to automatically
learn representations in an unsupervised manner (HHpose;

HHexpression; HH identity) that conform to this latent hierarchy of
attributes. Of course, the features are extracted without
accounting (partially) available information that may exist
for each of the these attributes of the dataset.

To this effect we propose a Deep Semi-NMF approach
that can incorporate partial attribute information that we
named Weakly-Supervised Deep Semi-Nonnegative Matrix Fac-
torization (Deep WSF). Deep WSF is able to learn, in a semi-
supervised manner, a hierarchy of representations; each
level of this hierarchy corresponding to a specific attribute
for which we may have only partial labels for. As depicted
in Fig. 3, we show that by incorporating some label informa-
tion via graph regularization techniques we are able to do
better than the Deep Semi-NMF for classifying faces accord-
ing to pose, expression, and identity. We also show that by
initializing a Deep Semi-NMF with the weights learned by a
Deep WSF we are able to improve the performance of the
Deep Semi-NMF for the task of clustering faces according to
identity.

Fig. 3. A weakly-supervised Deep Semi-NMF model uses prior knowledge we have about the attributes of our model to improve the final representa-
tion of our data. In this illustration we incorporate information from pose, expression, and identity attributes into the three feature layers of our model
HHpose,HHexpression, andHH identity respectively.
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4.1 Incorporating Known Attribute Information

Consider that we have an undirected graph GG with N
nodes, where each of the nodes corresponds to one data
point in our initial dataset. A node i is connected to another
node j iff we have a priori knowledge that those samples
share the same label, and this edge has a weight wwij.

In the simplest case scenario, we use a binary weight
matrixWW defined as:

WW ij ¼ 1 if yi ¼ yj
0 otherwise:

�
(16)

Instead one can also choose a radial basis function kernel

WW ij ¼ exp � kxxi�xxjk
2

2s2

� �
if yi ¼ yj

0 otherwise;

8<
: (17)

or a dot-product weighting, where

WW ij ¼ xx>i xxj if yi ¼ yj
0 otherwise:

�
(18)

Using the graph weight matrix WW , we formulate LL, which
denotes the Graph Laplacian [33] that stores our prior
knowledge about the relationship of our samples and is
defined as LL ¼ DD�WW , where DD is a diagonal matrix whose
entries are column (or row, since WW is symmetric) sums of
WW , DDjj ¼

P
k WW jk. In order to control the amount of embed-

ded information in the graph we introduce as in [34], [35],
[36], a term R which controls the smoothness of the low
dimensional representation

R ¼
XN
j;l¼1
khhj � hhlk2WW jl

¼
XN
j¼1

hh>j hhjDDjj �
XN
j;l¼1

hh>j hhjWW jl

¼ Tr HH>DDHH
� �� Tr HH>WWHH

� �
¼ Tr HH>LLHH

� �
;

(19)

where hi is the low-dimensional features for sample i, that
we obtain from the decomposed model.

Minimizing this term R, we ensure that the euclidean
difference between the final level representations of any
two data points hhi and hhj is low when we have prior knowl-
edge that those samples have a relationship, producing sim-
ilar features hhi and hhj. On the other hand, when we do not
have any expert information about some or even all the
class information about an attribute, the term has no influ-
ence on the rest of the optimization.

Before deriving the update rules and the algorithm for
the multi-layer Deep WSF model, we first show the simpler
case of the one layer version, which will come into use for
pre-training the model, as Semi-NMF can be used to pre-
train the purely unsupervised Deep Semi-NMF. We call this
modelWeakly Supervised Semi-NMFWSF .

By combining the term R introduced in Eq. (19), with the
cost function of Semi-NMF we obtain the cost function for
Weakly-Supervised Factorization (WSF)

CWSF ¼ kXX � ZZ�HHþk2F þ �TrðHH>LLHHÞ
s:t: HH � 0:

(20)

The update rules, but also the algorithm for training a WSF
model can be found in the supplementarymaterial, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2554555.

We incorporate the available partial labelled information
for the pose, expression, and identity by forming a graph
Laplacian for pose for the first layer ðLLposeÞ, expression for
the second layer ðLLexpressionÞ, and identity for the third layer
ðLLidentityÞ of the model. We can then tune the regularization
parameters �i accordingly for each of the layers to express
the importance of each of these parameters to the Deep WSF
model.3 Using the modified version of our objective func-
tion Eq. (21), we can derive the Algorithm 2.

CDeepWSF ¼ 1

2
kXX � ZZ1g . . . gð ðZZmHHmÞÞk2F

þ 1

2

Xm
i¼1

�iTrðHH>i LLiHHiÞ:
(21)

In order to compute the derivative for the ith feature layer,
we make use of the chain rule and get:

@Cdwsf
@HHi

¼ ZZ>i
@Cdeep
@ZZiHHi

þ 1

2

�iTrðHH>i LLiHHiÞ
@HHi

¼ ZZ>i
@Cdeep
@HHi�1

	rg ZZiHHið Þ
� �

þ �iLLiHHi;

and the derivation of the first feature layerHH1 is then:

@Cdwsf
@HH1

¼ @Cdeep
@ZZiHHi

þ 1

2

�1TrðHH>1 LL1HH1Þ
@HH1

¼ ZZ>1 ZZ1HH1 �XXð Þ þ �1LL1HH1:

Similarly we can compute the derivative for the weight
matrices ZZi,

@Cdwsf
@ZZi

¼ @Cdeep
@ZZiHHi

HH>i

¼ @Cdeep
@HHi�1

	rg ZZiHHið Þ
� �

HH>i ;

and

@Cdwsf
@ZZ1

¼ @Cdeep
@ZZ1

¼ ZZ1
~H~H1 �XX

� �
~H~H
>
1 :

3. In general, we do believe that the knowledge that each layer cap-
tures depends on the gradually refined level of variability. Of course,
knowing the correspondence of the attributes and the layers is problem,
as well as database dependent. An empirical indicator to choose which
layer is optimal for each attribute is the clustering accuracy (e.g., select
the attribute of the dataset which yields the highest degree of mutual
information for each of the layers). We have chosen the proposed set-
ting because it was intuitive, as well as because it was supported by
empirical evidence (supplementary material, available online).
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Using these derivatives we can make use of gradient
descent optimizations as with the non-linear Deep Semi-
NMF model, to minimize the cost function with respect to
each of the factors of our model. If instead use the linear ver-
sion of the algorithm where g is the identity function, then
we can derive a multiplicative update algorithm version of
Deep WSF, as described in Algorithm 2.

Algorithm 2. Proposed Algorithm for Training a Deep
WSF Model. InitiallyWeApproximate the Factors Greed-
ily Using WSF or Semi-NMF and We Fine-Tune the Fac-
tors Until We Reach the Convergence Criterion

Input:XX 2 Rp�n, list of layer sizes layers
Output: weight matrices ZZi and feature matrices HHi for each
of the layers
Initialize Layers
for all layers do
ZZi; HHi WSF(HHi�1, layers(i), �i)

end for

repeat
for all layers do

~HHi
HHi if i ¼ k

ZZiþ1 ~HHiþ1 otherwise

�

CC Qi�1
k¼1 ZZk

ZZi CCyXX ~HHyi

FF  ½CC>XX�posþ½CC>CC�negHHiþ�iHHiWW i

½CC>XX�negþ½CC>CC�posHHiþ�iHHiDDi

HHi HHi 	 FF h

end for
until Stopping criterion is reached

4.2 Weakly Supervised Factorization with Multiple
Label Constraints

Another approach we propose within this framework is a
single–layer WSF model that learns only a single representa-
tion based on information from multiple attributes. This
Multiple-Attribute extension of the WSF, the WSF-MA,
accounts for the case of havingmultiple number of attributes
� for our data matrix XX, by having a regularization term

�iTrðHHLLiHH
>Þ. This term uses the prior information from all

the available attributes to construct � Laplacian graphs
where each of them has a different regularization factor �i.

This constitutes WSF-MA, whose cost function is

Cmawsf ¼ kXX � ZZHHk2F þ
X�

i¼1
�iTrðHH>LLiHHÞ

s:t: HH � 0:

(22)

The update rules used, and the algorithm can be found in
the supplementary material, available online.

5 OUT-OF-SAMPLE PROJECTION

After learning an internal model of the data, either using the
purely unsupervised Deep Semi-NMF or to perform semi-
supervised learning using theDeepWSF modelwith learned
weights ZZ, and features HH we can project an out-of-sample
data point xx
 to the new lower-dimensional embedding hh
.

We can accomplish this using one of the two presented
methods.
METHOD 1: BASIS MATRIX RECONSTRUCTION.

Each testing sample xx
 is projected into the linear space
defined by the weights matrix ZZ. Although this method has
been used by various previous works [37], [38] using the
NMF model, it does not guarantee the non-negativity of hh
.

For the linear case of Deep WSF, this would lead to

hh
 � ZZ1ZZ2 . . .ZZl½ �yxx
: (23)

and for the non-linear case

hh
 � g�1 ZZyl � � � ZZy2g
�1 ZZy1xx



	 
	 
	 
	 


: (24)

METHOD 2: USING NON-NEGATIVITY UPDATE RULES.
Using the same process as in Deep Semi-NMF, we can

intuitively learn the new features hh
, by assuming that the
weight matrices 8i:ZZi remain fixed.

8l:hh
l ¼ argminhhkxx
 �
Yl
i¼1

ZZihhlk

such that hhl � 0:

(25)

and for the non-linear case

8l:hh
l ¼ argminhhkxx
 � ZZ1g ZZ2 � � � g ZZlhhlð Þð Þk
such that hhl � 0:

(26)

where hhl, corresponds to the lth feature layer for the out-of-
sample data point xx
. This problem is then solved by using
Algorithm 1 as Deep Semi-NMF, but without updating the
weight matrices ZZi.

6 EXPERIMENTS

In order to assess the performance of the proposed unsuper-
vised, as well as semi-supervised methodologies and com-
pare with state-of-the-art we have conducted clustering, as
well as classification experiments.

For clustering we have used the following datasets:

� CMU PIE: We used a freely available version of
CMU Pie [39], which comprises of 2;856 grayscale
32� 32 face images of 68 subjects. Each person has
42 facial images under different illumination condi-
tions. In this database we only know the identity of
the face in each image.

� XM2VTS: The Extended Multi Modal Verification for
Teleservices and Security applications (XM2VTS) [40]
contains 2;360 frontal images of 295 different sub-
jects. Each subject has two available images for each
of the four different laboratory sessions, for a total of
eight images. The images were eye-aligned and
resized to 42� 30.

� CASIA WebFace: This is the largest and most challeng-
ing of the three datasets. CASIAWebFace [41] is com-
prised of 494,414 images of 10,575 people in-the-wild
conditions.We use the aligned and rescaled version of
the dataset as is provided by the creators (100 � 100
images). As the large size of the dataset makes it hard
to do extensive experimental analysis on it, we use a
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subset of 10,000 images of 500 subjects (20 images/
subject). Some emperical clustering results are shown
in supplementarymaterial, available online.

In order to evaluate the performance of our Deep Semi-
NMF model, we compared it against not only Semi-NMF
[8], but also against other NMF variants that could be useful
in learning such representations. By using only the pixel
intensities of the images in each of our datasets, which of
course give us a strictly non-negative input data matrix XX,
we compare the reconstruction error and the clustering per-
formance of our Deep Semi-NMF method against the Semi-
NMF, NMF with multiplicative update rules [19], Multi-
Layer NMF [24], GNMF [20], and NeNMF [42].

In Section 6.4, having demonstrated the effectiveness of
the purely unsupervised Deep Semi-NMF model we show
next how pretraining a Deep WSF model on an auxiliary
dataset and using the learned weights to perform unsuper-
vised Deep Semi-NMF can lead to significant improvements
in terms of the clustering accuracy.

Classification experiments are reported in two datasets:

� CMUMulti-PIE:CMUMulti-PIE [43] contains around
750;000 images of 337 subjects, captured under labora-
tory conditions in four different sessions. In this work,
we used a subset of 7;905 images of 147 subjects in 5
different poses and expressing six different emotions,
which is the amount of samples that we had annota-
tions andwere imposed to the same illumination con-
ditions. In this experiment (in Section 6.5) we examine
the classification abilities of the proposed models for
each of the three attributes of the CMU Multi-PIE
dataset (pose/expression/identity) and use this to
test more on our secondary hypothesis, i.e., that every
representation in each layer is in fact most suited for
learning according to the attributes that corresponds
to the layer of interest.

6.1 Implementation Details

To initiate the matrix factorization process, NMF and Semi-
NMF algorithms start from some initial point (ZZ0; HH0),

where usually ZZ0 andHH0 are randomly initialized matrices.
A problem with this approach, is not only the initializa-

tion point is far from the final convergence point, but also
makes the optimization non deterministic.

The proposed initialization of Semi-NMF by its authors
is instead by using the k-means algorithm [44]. Nonethe-
less, k-means is computationally heavy when the number
of components k is fairly high (k > 100). As an alternative
we implemented the approach by [45] which suggests exact
and heuristic algorithms which solve Semi-NMF decompo-
sitions using an SVD based initialization. We have found
that using this method for Semi-NMF, Deep Semi-NMF,
andWSF helps the algorithms to converge a lot sooner.

Similarly, to speed up the convergence rate of NMF we
use the Non-negative Double Singular Value decomposition
(NNDSVD) suggested by Boutsidis et al. [46]. NNDSVD is a
method based on two SVD processes, one to approximate
the initial data matrix XX and the other to approximate the
positive sections of the resulting partial SVD factors.

For the GNMF experimental setup, we chose a suitable
number of neighbours to create the regularizing graph, by

visualizing our datasets using Laplacian Eigenmaps [47],
such that we had visually distinct clusters (in our case 5).

6.2 Reconstruction Error Results

Our first experiment was to evaluate whether the extra
layers, which naturally introducemore factors and are there-
fore more difficult to optimize, result in a lower quality local
optimum. We evaluated how well the matrix decomposition
is performed by calculating the reconstruction error, the
Frobenius norm of the difference between the original data
and the reconstruction for all the methods we compared
Table 1. Note that, in order to have comparable results, all of
themethods have the same stopping criterion rules. We have
set the maximum amount of iterations to 1,000 (usually�100
iterations are enough) and we use the convergence rule
Ei�1 �Ei 
 kmaxð1; Ei�1Þ in order to stop the process when
the reconstruction error ðEiÞ between the current and previ-
ous update is small enough. In our experiments we set

k ¼ 10�6. Section 6.2 shows the change in reconstruction
error with respect to the selected number of features in HH2

for all themethodswe used on theMulti-PIE dataset.
The results show that Semi-NMF manages to reach a

much lower reconstruction error than the other methods
consistently, which would match our expectations as it does
not constrain the weights ZZ to be non-negative. What is
important to note here is that the Deep Semi-NMF models
do not have a significantly lower reconstruction error com-
pared to the equivalent Semi-NMF models, even though the
approximation involves more factors. Multi-layer NMF and
GNMF have a larger reconstruction error, in return for
uncovering more meaningful features than their NMF
counterpart.

6.3 Clustering Results

After achieving satisfactory reconstruction error for our
method, we proceeded to evaluate the features learned at
the final representation layer, by using k-means clustering,
as in [20]. To assess the clustering quality of the representa-
tions produced by each of the algorithms we compared, we
take advantage of the fact that the datasets are already
labelled.

As learning is unsupervised, we do not have a correspon-
dence between the clusters found by k-means and the
ground truth annotations, making the evaluation of the
results not completely trivial. Two popular metrics that are
used in literature to assess the clustering results are the clus-
tering accuracy (AC) and the normalized mutual

TABLE 1
The Reconstruction Error (kXX � ~XXk2F ) for Each of the Algorithms
on the CMU PIE Dataset, for a Variable Number of Components

# Components

Model 20 30 40 50 60 70

Deep Semi-NMF 9.18 7.61 6.50 5.67 4.99 4.39
GNMF 10.56 9.35 8.73 8.18 7.81 7.48
Multi-layer NMF 11.11 10.16 9.28 8.49 7.63 6.98
NMF (MUL) 10.53 9.36 8.51 7.91 7.42 7.00
NeNMF 9.83 8.39 7.39 6.60 5.94 5.36
Semi-NMF 9.14 7.57 6.43 5.53 4.76 4.13
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information (NMI) metric [20], [48]. Given a set of predic-
tions ŷy and ground truth annotations yy, the clustering accu-
racy is defined to be

ACðyy; ŷyÞ ¼
PN

i¼1 d yi;mapðŷiÞð Þ
N

;

where map is a permutation function that maps each
predicted cluster id to each corresponding ground truth.
The problem is formulated as a weighted bipartite
matching problem and is solved using the Kuhn-Munkres
algorithm [49].

By employing information theory to measure the agree-
ment between the two clustering partitions one arrives at

the Mutual Information (MI) score. MI quantifies the
amount of information between the two random variables
and is defined as

MIðyy; ŷyÞ ¼
X

yi2yy;ŷi2ŷy
pðyi; ŷiÞlog pðyi; ŷiÞ

pðyiÞ pðŷiÞ
� �

;

where pðyiÞ and pðŷiÞ are the probabilities that an image of a
face selected from the dataset belongs to clusters yi and ŷi
respectively, and pðyi; ŷiÞ is the joint probability that an arbi-
trary selected image belongs to clusters yi and ŷi at the same
time. To force the score to have an explicit upper bound we
use the Normalized Mutual Information (NMI) score which
is then defined to be

NMIðyy; ŷyÞ ¼ MIðyy; ŷyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðyyÞHðŷyÞp :

It is easy to check that NMI score ranges from 0 to 1. In
the case that the two clusters are identical then it will be
exactly to 1, whereas if two clusterings are independent
then it will be equal to 0. The AUC score which we report
for each method in our results, is simply the area under
each curve approximated using the trapezoid rule.

For a cleaner presentationwe have included all the experi-
ments that use NMI in the supplement, available online.

We made use of two main non-linearities for our experi-
ments, the scaled hyperbolic tangent stanhðxÞ ¼ a tanhðbxÞ
with a ¼ 1:7159;b ¼ 2

3 [50], and a square auxiliary function

sqðxÞ ¼ x2.
Figs. 4, 5, and 6 show the comparison in clustering accu-

racy when using k-means on the feature representations
produced by each of the techniques we compared, when
our input matrix contained only the pixel intensities of each
image. Our method significantly outperforms every method
we compared it with on all the datasets, in terms of cluster-
ing accuracy.

Fig. 5. CMU PIE–Pixel Intensities: Accuracy for clustering based on the
representations learned by each model with respect to identities. The
deep architectures are comprised of two representation layers (1024-
625-a) and the representations used were from the top layer. In paren-
thesese we show the AUC scores.

Fig. 4. XM2VTS-Pixel Intensities: Accuracy for clustering based on the
representations learned by each model with respect to identities. The
deep architectures are comprised of two representation layers (1260-
625-a) and the representations used were from the top layer. In paren-
theses we show the AUC scores.

Fig. 6. CASIA WebFace–Pixel Intensities: Accuracy for clustering based
on the representations learned by each model with respect to identities.
The deep architectures are comprised of two representation layers
(10000-625-a) and the representations used were from the top layer. In
parentheses we show the AUC scores.
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6.4 Supervised Pre-Training

As the optimization process of deep architectures is highly
non-convex, the initialization point of the process is an
important factor for obtaining good final representation for
the initial dataset. Following trends in deep learning [51],
we show that supervised pretraining of our model on a aux-
iliary dataset and using the learned weights as initialization
points for the unsupervised Deep Semi-NMF algorithm can
lead to significant performance improvements in regards to
clustering accuracy.

As an auxiliary dataset we use XM2VTS where we resize
all the images to a 32 � 32 resolution to match the CMU PIE
image resolution, which is our primary dataset. Splitting
the XM2VTS dataset to training/validation sets, we learn

weights ZZxm2vts
1;2 using a Deep WSF model with (625–a)

layers, and regularization parameters � ¼ f0; 0:01g.
We then use the obtained weights ZZxm2vts

1;2 from the super-

vised task as an initialization point and perform unsuper-
vised fine-tuning on the CMU PIE dataset. To evaluate the
resulting features, we once again perform clustering using
the k-means algorithm.

In our experiments all the models with supervised pre-
training outperformed the ones without, as shown in Fig. 7,
in terms of clustering accuracy. Additionally this validates
our claim of how pretraining can be exploited to get better
representations out of unlabelled data.

6.5 Learning with Respect to Different Attributes

Finally, we conducted experiments for classification using
each of the three representations learned by our three-lay-
ered Deep WSF models when the input was the raw pixel
intensities of our images of a larger subset of the CMUMulti-
PIE dataset. Using the annotations from Sagonas et al. [52],
[53], we aligned these images based on a common frame.
After that, we resized them to a smaller resolution of 40� 30.
The database comes with labels for each of the attributes
mentioned above: identity, illumination, pose, expression.
We only used CMU Multi-PIE for this experiment since we
only had identity labels for our other datasets. We split this

subset into a training and validation set of 2,025 images, and
the rest for testing.

We compare the classification performance of an SVM
classifier (with a penalty parameter g ¼ 1) using the data
representations of the NMF, Semi-NMF, and Deep Semi-
NMF models that have no attribute information. The CNMF
[25], DNMF [26], and our WSF models that have attribute
labels only for the attribute we were classifying for, and our
WSF-MA and Deep WSF that learned data representations
based on all attribute information available. In Table 2, we
demonstrate the performance in accuracy of each of the
methods. In all of the methods, each feature layer has 100
components, and in the case of the Deep WSF model, we

have used 8i:�i ¼ 10�3. Detailed results for Deep WSF.
We also compared the performance of our Deep WSF

with that of WSF and WSF-MA to see whether the different
levels of representation amount to better performance in
classification tasks for each of the attributes represented. In
both cases, but also in comparison with the rest state-of-
the-art unsupervised and semi-supervised matrix factoriza-
tion techniques, our proposed solution manages to extract
better features for the task at hand as seen in Table 2 for
classification are also shown in Fig. 8.

Fig. 7. Supervised pre-training: Clustering accuracy on the CMU PIE
dataset, after supervised training on the XM2VTS dataset using a priori
Deep Semi-NMF. In parentheses we show the AUC scores.

TABLE 2
The Performance in Classification Accuracy
on the CMU Multi-PIE Dataset Using an SVM
Classifier on Top of the Learned Features

Model Pose Expression Identity

Unsupervised Semi-NMF 99.73 81.50 36.46
NMF 100.00 80.68 49.12
Deep Semi-NMF 99.86 80.54 61.22

Semi CNMF 89.21 33.88 28.30
DNMF 100.00 82.22 55.78

Proposed WSF 100.00 81.50 63.81
WSF-MA 100.00 81.50 64.08
Deep WSF 100.00 82.90 65.17

For the multi-layer models we used three layers corresponding to each of the
attributes, and performed classification using the features learned for the corre-
sponding attribute. For the one-layer models, we learned three distinct models.

Fig. 8. A three layer Deep WSF model trained on CMU MultiPIE with
only frontal illumination (camera 5). The bars depict the accuracy levels
for the pose ( ), emotion ( ), and identity ( ) respectively, for each
layer, with a linear SVM classifier.
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7 CONCLUSION

We have introduced a novel deep architecture for semi-non-
negative matrix factorization, the Deep Semi-NMF, that is
able to automatically learn a hierarchy of attributes of a given
dataset, as well as representations suited for clustering
according to these attributes. Furthermore we have pre-
sented an algorithm for optimizing the factors of our Deep
Semi-NMF, and we evaluate its performance compared to
the single-layered Semi-NMF and other related work, on the
problem of clustering faces with respect to their identities.
We have shown that our technique is able to learn a high-
level, final-layer representation for clustering with respect to
the attribute with the lowest variability in the case of two
popular datasets of face images, outperforming the consid-
ered range of typical powerful NMF-based techniques.

We further proposed Deep WSF , which incorporates
knowledge from the known attributes of a dataset that might
be available. Deep WSF can be used for datasets that have
(partially) annotated attributes or even are a combination of
different data sources with each one providing different
attribute information. We have demonstrated the abilities of
this model on the CMUMulti-PIE dataset, where using addi-
tional information provided to us during training about the
pose, emotion, and identity information of the subject we
were able to uncover better features for each of the attributes,
by having themodel learning from all the available attributes
simultaneously. Moreover, we have shown that Deep WSF
could be used to pretrain models on auxiliary datasets, not
only to speed up the learning process, but also uncover better
representations for the attribute of interest.

Future avenues include experimenting with other appli-
cations, e.g., in the area of speech recognition, especially for
multi-source speech recognition and we will investigate
multilinear extensions of the proposed framework [54], [55].
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