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Abstract—Objective: Obstructive sleep apnea (OSA) is
a serious chronic disease and a risk factor for cardiovas-
cular diseases. Snoring is a typical symptom of OSA pa-
tients. Knowledge of the origin of obstruction and vibration
within the upper airways is essential for a targeted surgi-
cal approach. Aim of this paper is to systematically com-
pare different acoustic features, and classifiers for their per-
formance in the classification of the excitation location of
snore sounds. Methods: Snore sounds from 40 male pa-
tients have been recorded during drug-induced sleep en-
doscopy, and categorized by Ear, Nose & Throat (ENT) ex-
perts. Crest Factor, fundamental frequency, spectral fre-
quency features, subband energy ratio, mel-scale frequency
cepstral coefficients, empirical mode decomposition-based
features, and wavelet energy features have been extracted
and fed into several classifiers. Using the ReliefF algorithm,
features have been ranked and the selected feature sub-
sets have been tested with the same classifiers. Results: A
fusion of all features after a ReliefF feature selection step
in combination with a random forests classifier showed the
best classification results of 78% unweighted average recall
by subject independent validation. Conclusion: Multifeature
analysis is a promising means to help identify the anatom-
ical mechanisms of snore sound generation in individual
subjects. Significance: This paper describes a novel ap-
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proach for the machine-based multifeature classification of
the excitation location of snore sounds in the upper airway.

Index Terms—Drug-induced sleep endoscopy (DISE),
multifeature analysis, obstructive sleep apnea (OSA), snore
sound classification.

I. INTRODUCTION

W ITH a prevalence of 13% (men) and 6% (women) in
the U.S. population [1], obstructive sleep apnea (OSA)

is a chronic disease that can severely affect health and quality
of life. OSA is defined as a syndrome with cessation or reduc-
tion of airflow during sleep due to complete (apnoea) or partial
(hypopnea) collapse of the upper airway for more than 10 s
and with five or more episodes per hour in sleep [2]. It is usu-
ally associated with a decrease in oxyhemoglobin saturation [2].
When untreated, OSA can be among other symptoms, result in
daytime sleepiness and morning headache [3]. Furthermore, it
is an independent risk factor for cardiovascular diseases, stroke,
hypertension, myocardial infarction, and is associated with dia-
betes and vulnerability to accidents [4], [5].

Loud snoring, as a typical symptom of OSA, is reported in
more than 80% of OSA patients [6]. The acoustic properties
of snoring have been analyzed by the researchers in acoustics
and otorhinolaryngology with the aim of developing methods
to replace or complement the gold standard for the diagnosis
of OSA polysomnography (PSG) [7]. Works by pioneers have
shown that methods based on snoring sound analysis can reach
the sensitivities and specificities up to 90% and accuracies up
to 80% in the detection of OSA [8]. Even though based on
small populations (generally between 5 and 60 subjects) [8], the
results are promising and encouraging.

Due to the multifactorial mechanisms of snore sound (SnS)
generation, and depending on the individual anatomy, surgical
options for OSA differ and include, among others, tonsillec-
tomy or tonsillotomy, uvulotomy, uvulopalatopharyngoplasty,
soft palate stiffening, tongue base suspension, hypoglossal nerve
stimulation, mandibular advancement, epiglottectomy, and hy-
oid suspension [9]. Especially in severe OSA, a combination of
several surgical treatments at different anatomic levels (multi-
level surgery) [10] is often used. The analysis of the individual
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anatomical site of snoring sound generation, and of the obstruc-
tion mechanism can lead to a targeted, and less invasive surgical
approach.

Drug-induced sleep endoscopy (DISE) is increasingly used
to identify the location and form of vibrations and obstruc-
tions [11]. However, DISE is time consuming, costly, and strain-
ing for patients. Further, it cannot be performed in natural sleep.
Another method to identify the location of obstruction in the
upper airway is multichannel pressure measurement [12]–[14].
Here, a thin tube with multiple pressure sensors is introduced
into the upper airway. The pattern of pressure changes during
the breathing of the different sensors allows a determination of
the obstruction location during an apnoeic or hypopnoeic event.
An advantage of this method is that it can be used in natural
sleep. However, the tube within the upper airway is not toler-
ated by every patient. Acoustic analysis could be an alternative
to determine the vibration mechanisms within the upper airway,
which is easier for doctors and patients.

Fewer studies exist on how to determine the location and
form of vibration and obstruction in the upper airway from
the acoustic properties of SnSs. Miyazaki et al. [15] adopted
fundamental frequency to distinguish SnS generated by soft
palate, tonsils/tongue base, combined type (both palate, and
tonsils/tongue base), and the larynx. Based on the examination
of 75 adult patients, they concluded that the average value
of fundamental frequency was 102.8, 331.7, 115.7 Hz, and
around 250 Hz in the corresponding sites mentioned above,
respectively. Hill et al. found the crest factor, the ratio of peak
to root-mean-square (rms) value of a time-varying signal, to
be significantly higher for palatal snorers (p < 0.01, Student-t
or Mann–Whitney tests) in 11 patients [16]. Agrawal et al.
found that the SnS generated by palate and tongue were
respectively characterized by low and high peak frequency
(137 and 1 243 Hz), while epiglottic snores occurred at
490 Hz and tonsillar snores at 170 Hz within a population of
16 subjects [17]. Beeton et al. proposed a combination of a
two-means clustering method and the statistical dimensionless
moment coefficients of skewness and kurtosis to discriminate
palatal and nonpalatal SnS collected from 15 patients [18]. They
indicated that the statistical moment coefficients demonstrate a
method of measurement of the peakedness and symmetry of the
impulse.

The studies mentioned above are focused on evaluating cer-
tain well-selected acoustic features for their sensitivity to the
anatomical mechanisms of snoring sound generation or upper
airway obstruction. The comparisons and results are based on
statistical analysis, and basic signal observation. The applica-
tion of multifeature analysis methods to this problem has been
proposed [19]; however, advanced signal processing methods,
and machine learning models have not yet been used for this
purpose. In our approach, we combine the methods used previ-
ously, and introduce new features within advanced classification
techniques. The structure of this paper is as follows: In Sec-
tion II, we present the data acquisition system and the methods
for multifeature analysis-based classification. Detailed experi-
mental results are given in Section III. Finally, we discuss the
findings in Section IV, and provide a conclusion in Section V.

TABLE I
DEMOGRAPHIC INFORMATION OF SUBJECTS. BMI: BODY MASS INDEX. AHI:

APNEA HYPOPNEA INDEX

Mean Std. Dev. Range

Age (years) 47.4 11.5 26 – 71
BMI (kg/m2 ) 26.9 3.1 21.2 – 38.4
AHI (events/h) 21.7 12.8 1.3 – 59.1

Fig. 1. Example of the DISE clinical setting in Munich. The video of the
upper airway was recorded using a flexible nasopharyngoscope (Storz,
Germany at the Munich and Halle sites and Olympus, Germany, at the
Essen site) connected to a video recording system (Telepack X, Storz,
Germany, at the Munich site; AIDA, Storz, Germany, at the Halle site; rp-
Szene, Rehder/Partner, Hamburg, Germany, at the Essen site). The au-
dio signal was simultaneously recorded using a microphone connected
to the same recording system. Audio and video information was stored
in the same file.

II. MATERIALS AND METHODS

A. SnS Data Acquisition and Labeling

This study is approved by the ethic committee of Klinikum
rechts der Isar, Technische Universität München, Germany. We
used SnS data from 40 male subjects, which were diagnosed
with primary snoring or OSA through a PSG. The demographic
data for the subjects are shown in Table I.

In addition to PSG, DISE was performed in all subjects in
order to determine adequate surgical intervention measures.
DISE videos were recorded at Klinikum rechts der Isar, Mu-
nich, Germany, at Alfried Krupp Hospital, Essen, Germany, and
at University Hospital Halle (Saale), Germany, using a flexible
nasopharyngoscope (see Fig. 1 as an example of the clinical
setting). Audio information was recorded in parallel using a
headset microphone (in Munich), or a handheld microphone (in
Essen and Halle), respectively, and synchronously stored in the
same file. Based on the video and audio recordings, the locations
of sound generation were categorized by an ENT expert based
on the VOTE classification [20]. VOTE is a popular classifica-
tion, which distinguishes four levels within the upper airway:
the level of the velum (V), the oropharyngeal area including
the palatine tonsils (O), the tongue base (T), and the epiglottis
(E) (see Fig. 2). Only recordings that showed a clearly identifi-
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Fig. 2. Corresponding positions of the VOTE classification in the upper
airway. “V” represents the level of the velum. “O” represents the oropha-
ryngeal area. “T” represents the tongue base. “E” represents the level of
the epiglottis.

able single source of snoring sound have been included. Snoring
events with mixed forms (several vibration locations) or unclear
source of vibration were excluded. From each included record-
ing, three to five snoring events, which showed no obstructive
disposition, have been manually selected. These snoring events
have then been extracted from the audio data stream, and labeled
based on the VOTE classification. In fact, “snore site” and “ob-
struction site” in the upper airway are two different definitions,
which may or may not coincide in individual patients. In this
study, we exclusively focus on the determination of the site of
vibration as a cause for the generation of SnSs.

Out of the 40 subjects, 11, 11, 8, and 10 subjects were cate-
gorized to be V, O, T, and E-type snorers, respectively. Between
one and five snoring events per type were extracted per subject.
In total, we used 164 snoring events (41 episodes for each type
of SnS, length ranging from 0.728 to 2.495 s with an average
of 1.498 s). We segmented the events into single segments for
further feature extraction and machine learning. Every segment
has a length of 200 ms and neighboring segments have an over-
lap of 50%. We performed a subject-independent validation to
evaluate the performance of our trained classifiers. As indicated
by Roebuck et al. [8], previous works on snoring audio analysis
have not been based on independent test datasets. In order to
achieve substantiated results with a practical relevance, we use
subject-independent testing sets in our study. We randomly sep-
arated the 40 subjects’ data into the train, development (dev),
and test sets within the proportion of 60%, 20%, and 20% of the
total dataset. The number of segments and independent subjects
for each set are shown in Table II. The segments are divided
into frames of 64 ms length and an overlap of 50%. Features
and statistical functionals are applied to each frame in every seg-
ment and all attribute information is stored for further machine
learning steps.

B. Feature Extraction

Until most recent, the lion’s share of the work done in mul-
tifeature snoring analysis is focused on finding and evaluating
suitable acoustic feature sets [7] to identify obstructive events,

TABLE II
NUMBER OF SEGMENTS (INDEPENDENT SUBJECTS) FOR EACH SNORE-TYPE

AND DATASET

Train Dev Test
∑

V-Type 363 (7) 104 (2) 152 (2) 619 (11)
O-Type 326 (7) 125 (2) 122 (2) 573 (11)
T-Type 289 (4) 90 (2) 78 (2) 457 (8)
E-Type 323 (6) 96 (2) 148 (2) 567 (10)∑

1 301 (24) 415 (8) 500 (8) 2 216 (40)

to distinguish between primary snoring and OSA, or to esti-
mate the severity of OSA. Abeyratne et al. proposed a multifea-
ture analysis method built on combined models of pitch, total
airway response estimators, and Mel-frequency cepstral coef-
ficients (MFCCs, 0–12), and achieved 89.3% sensitivity with
92.3% specificity in OSA detection [21].

Fig. 3 illustrates the waveforms and the corresponding spec-
trograms of typical V, O, T, and E-type SnS episodes. We can see
that the main energy components in three of the classes are con-
centrated in the frequency area below around 5000 Hz. Energy
and spectral distribution characteristics are similar, except for
the Type T, which shows higher energy content above 2500 Hz
compared to the other three.

Motivated by the results of the multifeature analysis method-
ology [21], combined with the basic spectral analysis of the four
types of SnS, we propose nine basic acoustic feature sets, and
systematically explore, and compare their performance in the
classification of SnSs based on the VOTE system.

1) Crest Factor: Hill et al. in 1999 proposed the use of
the crest factor [16]; we redefine it as shown in our previous
study [22]

Crest Factor =
V90

Vrms
(1)

where V90 is the 90th centile maximum absolute value in the
digitized sound epoch, and Vrms is the root-mean-square of the
amplitude values (between the 10th and 90th centile maximum
absolute values) in one epoch. Elimination of the lowest (below
10th) and highest (above 90th) values is done to minimize the
impacts of both random and quantization noise.

2) Fundamental Frequency (F0): We estimate the F0
of SnS with an algorithm based on spectrum shifting on a log-
arithmic frequency scale and calculating the subharmonic-to-
harmonic ratio, which was proposed by Sun [23].

3) Formants: In our study, an 18th-order linear predictive
coding (LPC) is performed to estimate the formants. Like in
speech analysis, the LPC parameters are determined via the
Yule–Walker autoregressive method along with the Levinson–
Durbin recursive procedure [24]. Then, the formant frequencies
can be estimated from the angles of the positive values of the
complex roots in an all-pole model as follows:

H(z ) =
1

1 − ∑p
q=1 αqz−q

(2)

where αq (q = 1, 2, 3, ..., p) are the LPC parameters. Subse-
quently, we extract the first three formant frequencies (i.e., F1,
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Fig. 3. Waveforms and spectrograms of typical VOTE SnS events. (a) V (velum) typical snoring event. (b) O (oropharyngeal) typical snoring even.
(c) T (tongue base) typical snoring event. (d) E (epiglottis) typical snoring event.

F2, and F3), and the corresponding amplitude energies to create
a formants feature set.

4) Spectral Frequency Features: The spectrum of SnS
carries vital information on the state of the upper airway [25].
Certain frequency features such as peak frequency, center fre-
quency, and mean frequency, were studied both on the diagnosis
of OSA [21] and distinction of the snore site [17]. In our previ-
ous work [26], we found that spectral frequency features (SFF)
can achieve a good performance on the classification of inspira-
tion related SnS. Here, we define Fcenter, and Fpeak, respectively,
as the half and maximum point in the full spectrum of the SnS
in [17], Fmean is defined as follows:

Fmean =

∑fc

fi =0 fiS(fi)
∑fc

fi =0 S(fi)
(3)

where fc is the cutoff frequency of the SnS spectrum (in our
study fc is 8 kHz). S(fi) is the absolute amplitude of the
spectrum at the frequency of fi Hz. The spectrum calcula-
tions in this study are based on the fast Fourier transform
(FFT). In addition, we define the Fmean of the 1000 Hz subband
spectrums as

Fmean(j ) =

∑1000j
fi =1000(j−1) fiS(fi)

∑1000j
fi =1000(j−1) S(fi)

(4)

where j = 1, 2, 3, ..., 8. Thus, we obtain detailed infor-
mation on the spectral energy distribution in the subbands
of SnS.

5) Power Ratio: Power ratio (PR) compares the rel-
ative amount of power emanating below and above a set
frequency [17]. Some researchers chose the frequency at

800 Hz [27], and others chose it to be 750 Hz [17]. In this
study, we use the PR at the frequency of 800 Hz and define it as

PR800 = lg

∑800
fi =0(S(fi))2

∑fc

fi =800(S(fi))2
(5)

6) Subband Energy Ratio: The subband energy ratio
(SER) describes the relative energy distribution in subbands of
the SnS spectrum. It had been demonstrated to be efficient in
snore/nonsnore classification [28], [29]. We extract a 1000-Hz
SER feature set as

SER1000(j) =

∑1000j
fi =1000j−1(S(fi))2

∑fc

fi =0(S(fi))2
(6)

where j = 1, 2, 3, ..., 8.
7) Mel-Scale Frequency Cepstral Coefficients:

MFCCs have long been demonstrated to be efficient features
for speech recognition [30]. In our previous study [31], we
found that MFCCs can outperform other spectral features on
classification of SnS. In this study, we extract 13 Mel cepstral
coefficients (MFCCs 0–12) obtained from SnS passing 27 tri-
angular Mel filter banks.

8) Empirical Mode Decomposition-Based Fea-
tures: SnS are a typical kind of nonstationary signal [7]. There-
fore, FFT-based methods are not suitable to reveal detailed in-
formation on the variation of the SnS in the time domain. Em-
pirical mode decomposition (EMD), based on choosing basis
functions, is adaptive to characterize nonstationary signals [32].
Motivated by the performance of EMD-based features (EMDF)
for classification of roller bearing fault vibration signals [33], we
extract the subband EMD energy ratio EMDratio(k) = Ek/E.
Ek is the energy (sum of squares) of the kth level intrinsic mode
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functions decomposed by EMD from the SnS. E is the total en-
ergy of the whole SnS within EMD (the residual is eliminated).
In addition, we calculate the entropy of the EMDratio as

HEMDratio = −
∑

k=1

EMDratio(k) lg(EMDratio(k)). (7)

9) Wavelet Energy Features: It is known that wavelet
transform (WT) is a useful tool to analyze nonstationary sig-
nals [34]. In 2007, Matsiki et al. studied how to use WT-based
methods to analyze SnS of OSA patients [35]. Ng et al. used
WT to enhance the snore signal from a noisy environment for
improving the feature extraction [36]. Khushaba et al. [37] pre-
sented a wavelet-packet-based feature extraction algorithm and
adopted it to classify five different drowsiness levels based on
Electroencephalography, Electrooculography, and Electrocar-
diography signals. In this study, we introduce this wavelet packet
transform (WPT) method into SnS multifeature extraction.

The core technique of the algorithm proposed by Khushaba
et al. is the WPT, introduced by Coifman et al. [38]. The WPT
could be understood as a tree of subspaces, where Φ0,0 is the root
node. The signal space Φl,m (l is the level of the decomposition
process and m is the subband index) is decomposed into two
orthogonal subspaces level by level: Φl+1,2m and Φl+1,2m+1 ,
namely, the approximation space, and the detail space [39].

This decomposition process is done by dividing an or-
thogonal basis Ωl(t − 2lm)l,m∈Z from Φl,m into two new
orthogonal bases: Ωl+1(t − 2l+1m)l,m∈Z from Φl+1,2m and
Ψl+1(t − 2l+1m)l,m∈Z from Φl+1,2m+1 , respectively, where,
Ωl,m (t) and Ψl,m (t) are wavelet functions [34] (we select
“sym3”1 of the “Symlets” wavelet function family due to its best
performance in our previous experiments [40]). A construction
of normalized filter bank energy is defined as

EΦ l , m
=

√∑
n (wl,m ,n )2

Nm
, m = 0, 1, 2, . . . , 2l−1 (8)

where wl,m represent the WPT coefficients calculated from the
signal at the subspace Vl,m , and Nm is the number of wavelet
coefficients in the mth subband. Therefore, EΦ l , m

denotes the
normalized bank filter energy in mth subband at the lth de-
composition level. Due to the origination of these features from
WPT-based coefficients, we call them WPT Energy (WPTE)
features.

As a complementary feature set, we use the WT to define a
percentage-like WT-based Energy (WTE) feature as

ÊΦ̂ l
=

(ŵl)2

∑Lmax
l=1 (ŵl)2

× 100 (9)

where ŵl are the coefficients generated by WT at the lth decom-
position level. In addition, the mean variance, waveform length
(the sum of absolute differences), and the entropy are calculated
from the base by (9).

WT decomposes only the approximation part, using low-pass
filters, whereas WPT decomposes both the approximation and

1The wavelet function names in this paper are all identical to
the ones given in the Wavelet Toolbox of MATLAB by Math-
Works(http://www.mathworks.com/products/wavelet/).

TABLE III
FRAME-BASED FEATURE SETS AND STATISTICAL FUNCTIONALS

Frame-based feature sets (338) Statistical functionals (9)

Crest Factor (1), F0 (1), max, min, mean,
Formants (6), SFF (11), range, standard deviation,
PR800 (1), SER (8), slope, bias (linear
MFCCs (13), EMDF (10), regression approximation)
WEF (287) skewness, kurtosis

the detail part (low pass and high pass filtering). All WPTE
and WTE features are modified with a logarithmic operator. We
generate 2Lmax+1 − 1 WPTE related features, and 4 × (Lmax +
1) WTE related features, where Lmax is the maximum level
for wavelet decomposition. We then fuse all WPTE and WTE
features in one combined feature set. Since these are all energy
related features, we call the resulting feature set “Wavelet energy
features (WEF).” Here, Lmax is set to be 7, therefore, we extract
255 + 32 = 287 descriptors in total.

10) Statistical Functionals: In order to evaluate the
nonstationary characteristics of the material, the differences be-
tween the frames within a segment are taken into account [7].
Motivated by the success of our large scale feature extraction
toolkit, openSMILE [41], we implement statistical functionals
into our SnS feature extraction. After calculating the frame-
based features using the algorithms described above, the statis-
tical functionals are applied to each frame in every segment. The
whole attribute information of this segment is used for the ma-
chine learning process. Detailed information of this technique
can be found in [41]. The basic frame-based feature sets and the
statistical functionals are listed in Table III.

C. Machine Learning Models

SnS recognition based on the VOTE classification is a four-
class classification task. We select and compare seven machine
learning models, which we have chosen based on their popu-
larity, diversity, and abilities. K-nearest neighbors (K-NN) and
linear discriminant analysis (LDA) are chosen since their prob-
abilistic models are built for and they are frequently applied
in biomedical signal processing tasks [42]. Models with a ma-
ture theoretical foundation like feedforward neural networks
(FNN) [43]), support vector machines (SVM)2 [44], and ran-
dom forests (RF) [45] (an ensemble classifier [46]) are also
used in our experiments. Further, extreme learning machines
(ELM) [47] and the kernel-ELM (KELM) [48], one recent pop-
ular fast and accurate classifier models, are explored.

D. ReliefF Feature Selection

To achieve higher classification accuracy and to understand
how the different features contribute to the machine learning
models, we add a feature selection phase into our classifier op-
timization process. Motivated by the success of our previous
study [26], [31], we employ the ReliefF algorithm for feature

2The SVM classifier is implemented by the frequently-used, and mature
toolkit LIBSVM [49].
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ranking and selection. Unlike principle component analysis, Re-
liefF retains the original physical meaning of each feature set in
the vector. That is, we can further use these information of the
ranked features to find the relationship between feature proper-
ties and anatomical characters, which is significant in our study.

Proposed by Kira and Rendell [50], Relief is a feature selec-
tion algorithm used in binary classification, which is repeated t
times to update the weight vector (initially it is set to be zeros)
as follows:

Wa = Wa − (xa − nearHita)2 + (xa − nearMissa)2 (10)

where nearHita is the closest same-class segment within the ath
feature to a randomly selected segment x. Likewise, nearMissa

is the closest different-class segment. After t times, each ele-
ment of Wa will be divided by t. Thus, the weight of any given
feature will decrease if the distance of that feature to nearby
segments of the same-class is longer than to nearby segments
of a different-class, and increase in the reverse case. Wa can be
regarded as a reward and punishment factor due to the classi-
fication performance of each feature: Features with a high Wa

show a good performance for the classification task at hand.
ReliefF is an extension of Relief, which can handle multiple
classes and performs better with noisy data. It searches for b (in
our study, b is empirically set to be 5) nearest hits and misses
and averages their contributions for updating Wa , weighted with
the prior probability of each class [51]. Since Wa evaluates the
quality of each feature, we can rank the features according to
their performance, and select the best ones to construct a new
subset of the original features. We define the Rank Ratio as

Rank Ratio =
∑M

a=1 W+
a∑

W+
a

(11)

where W+
a represents the positive weights of the features sorted

in a descending order and M is the number of features included
in the subset. The features with negative weights (W−

a ) are elim-
inated. By testing the classifier with feature subsets of different
sizes (based on different Rank Ratios), a feature subset for op-
timal classification performance can be identified, while at the
same time, the size of the required feature set can be reduced.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

All experiments are done within the software environment of
MATLAB R2016a by MathWorks. The grids of main parameters
for each classifier model mentioned in Section II-C are listed in
Table IV. We chose these parameters by empirical experiments
to optimize the performance of classification on the development
data. A statistical significance p value is calculated by a one-
sided z-test [52].

B. Experimental Baselines

Before feeding them to the classifier model, all the features
extracted from our SnS are normalized as follows:

f̂c,r =
fc,r − Min(Fc)

Max(Fc) − Min(Fc)
(12)

TABLE IV
GRIDS OF MAIN PARAMETERS FOR EACH LEARNING MODEL

Models Main Parameters Setting

K-NN K: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100;
distance metrics: “euclidean,” “cityblock,” “chebychev,”
“correlation,” “cosine,” “hamming,” “jaccard,”
“minkowski,” “seuclidean,” “spearman”;

LDA discriminant type: linear; gamma: 0:0.05:1.00;
SVM “linear kernel”, “polynomial”, “radial basis function”, “sigmoid”;

c-value: 10−5 , 10−4 ,..., 104 , 105 ;
RF number of trees: 21 , 22 ,..., 29 , 210 ;

fraction for the treebagger: 0.1:0.1:1.00;
FNN one hidden layer; size: 21 , 22 ,..., 29 , 210 ;
ELM activation functions: “signmoidal,” “sine,” “hardlim,” “tribas,”

“radbas”; number of hidden neurons: 21 , 22 ,..., 214 ;
KELM kernels:“radial basis function,” “linear,” “polynomial,” “wavelet”;

regularization coefficients: 10−5 , 10−4 ,..., 104 , 105 ;

where fc,r is the original cth feature property for the rth seg-
ment, Fc is the cth feature vector, which includes the properties
for all of the segments. Thus, the normalized feature property
f̂c,r will be limited into [0,1].

In order to evaluate the performance of our method, we apply
the unweighted average recall (UAR) defined as follows:

UAR =
∑NM C

class=1 Nclass,correct/Nclass,all

NMC
× 100% (13)

where Nclass,correct and Nclass,all are the number of correctly rec-
ognized segments, and all segments in one certain class, re-
spectively. NMC is the total number of classes.

The UAR baselines of the different combinations of classifiers
and feature sets are shown in Table V. We found that MFCCs
within a K-NN classifier (K: 30, distance metrics: “correlation”)
achieve the best recognition rate of 76% (p < 0.001). Of the
nine feature sets, the novel wavelet-based WEF performs best
with a mean UAR of 58% among all classifiers used. MFCCs
score second best (mean UAR of 56%), followed by SER (UAR
of 55%). The performance of WEF and MFCCs is significantly
better compared to the remaining six feature sets (p < 0.05).
On the other hand, Crest Factor, F0, and PR800 did not show a
good performance in our study.

C. Feature Selection

We use the ReliefF algorithm as described in Section II-D for
the feature selection step. The different feature sets separately, as
well as a complete combination of all features from each feature
set (ALL) are fed into the ReliefF process at Rank Ratio settings
from 0.05 to 1.00 with increments of 0.05 to find the best-
performing combined subset. The best results of the features
selected by ReliefF are shown in Table VI.

We find that, except for the Crest Factor that remains at
34% UAR, ReliefF can improve the mean performance of each
feature set among different classifier models. In particular, for
the combination of all feature sets, the mean performance sig-
nificantly improves from 46% to 68% (p < 0.001). For SFF
(45% to 62%), MFCCs (56% to 68%), and WEF (58% to 66%),
the improvement after the feature selection step is also signif-
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TABLE V
UAR ([%]) ACHIEVED WITH DIFFERENT FEATURE SETS AND CLASSIFIERS WITHOUT FEATURE SELECTION

K-NN LDA SVM RF FNN ELM KELM Mean Std. dev.

Crest Factor 37 36 30 32 38 37 29 34 ±3.7
F0 32 37 34 27 36 31 32 33 ±3.4
Formants 50 51 57 40 56 42 52 50 ±6.5
SFF 60 59 25 66 55 25 25 45 ±19.0
PR800 35 39 36 35 39 36 41 37 ±2.4
SER 62 56 51 66 50 44 53 55 ±7.5
MFCCs 76 50 61 57 42 53 55 56 ±10.5
EMDF 47 56 25 57 41 25 25 39 ±14.5
WEF 59 53 53 59 56 59 64 58 ±3.9
ALL 62 60 25 64 64 25 25 46 ±20.1
Mean 52 50 40 50 48 38 40 – –
Std. dev. ±14.3 ±9.1 ±14.3 ±15.1 ±9.7 ±11.9 ±14.8 – –

TABLE VI
UAR ([%]) ACHIEVED WITH DIFFERENT FEATURE SETS AND CLASSIFIERS AFTER THE FEATURE SELECTION STEP

K-NN LDA SVM RF FNN ELM KELM Mean Std. dev.

Crest Factor 35 36 31 36 39 30 30 34 ±3.5
F0 32 38 34 34 39 33 32 35 ±2.8
Formants 54 50 55 50 57 50 57 53 ±3.3
SFF 62 71 65 72 62 54 49 62 ±8.4
PR800 35 39 40 36 42 42 42 39 ±2.9
SER 61 58 58 66 58 52 59 59 ±4.2
MFCCs 76 64 62 70 73 66 64 68 ±5.2
EMDF 52 55 60 58 56 47 54 55 ±4.2
WEF 68 69 69 67 64 59 68 66 ±3.6
ALL 74 73 74 78 71 45 58 68 ±11.8
Mean 55 55 55 57 56 48 51 – –
Std. dev. ±16.3 ±14.1 ±14.8 ±16.6 ±12.4 ±11.0 ±12.9 – –

icant (p < 0.001, p < 0.001, and p < 0.005, respectively).
The standard deviations among different classifiers in each of
the feature sets decrease after the ReliefF step, which means
that the selected subset of features is more robust and contains
more useful information of the SnS compared to the original
set. Finally, the best classification performance is achieved by a
combination of all feature sets within a random forest classifier
(UAR of 78%). This reduced feature set has a dimension of 374,
only 12.3% of the original feature set.

Fig. 4 provides an insight of the weight contribution of
different types of features for the classification of SnS. We
found that, of all feature sets, WEF (containing WPTE and
WTE), contributes most, followed by MFCCs and SFF. This
is not surprising given the high dimension compared to the
other feature sets. As for functionals, mean, max, and min
values of the frame-based Low Level Descriptors contribute
most, followed by the bias of the linear regression estimation.
In addition, we illustrate the detailed weight contribution of
MFCCs and WTE. For WTE, we compare the contribution of
the subsets by a level of decomposition. It is shown that the
level-1 and level-2 decomposed components contribute most.
In MFCCs, the MFCCs-7 and MFCCs-2 are best.

Fig. 5 shows the confusion matrix of the combination of all
feature sets using a random forest classifier after ReliefF feature
selection. We can see that among the four classes of SnS, Type
O (the oropharyngeal area) and Type E (the epiglottis) are the

two most easily wrongly classified as Type E and Type V (the
level of the velum), respectively. In our experiments, the best
trained classifier has the highest recognition accuracy for Type
T (around 90%) and the lowest accuracy for Type O (around
64%).

IV. DISCUSSION

In this paper, we systematically compare frequently used
acoustic features for their performance on the classification of
SnSs based on the VOTE model. In our experiments, we can
achieve a UAR of 78% with the best combination of features
and classifier. When performed by human experts, the interrater
reliability of DISE classifications is up to 86% [53]. This is
a benchmark for us, which has not yet been entirely achieved
by our model. We believe that a major limitation is the small
number of independent subjects in the database, and we aim to
improve our results based on more data.

For our dataset of SnSs and with the experiments described,
MFCCs and WEF have shown to be the best suited feature
sets (mean UAR at 68% and 66%, respectively) across different
classifiers. As a sophisticated indicator in speech recognition,
MFCCs can be regarded to represent the airway transfer func-
tion. In our previous studies on classification of different snore
related sounds from overnight audio recordings, MFCCs also
proved to be quite efficient. Thus, MFCCs tend to play an im-
portant role SnS classification.
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Fig. 4. Weight contribution ([%]) analysis by the ReliefF algorithm with different Rank Ratios. (a) Detailed weight contribution of all feature sets.
(b) Detailed weight contribution of functionals. (c) Detailed weight contribution of MFCCs. (d) Detailed weight contribution of WTE.

The proposed novel feature set WEF is based on the wavelet
transform theory, which is capable to give a multiresolution
analysis of nonstationary signals. In the early works by Matsiki
et al. [35], continuous wavelet transform is used to analyze the
spectrum energy distribution changes before, during, and after
apneic events based on snoring sounds. However, they did not
propose a feature extraction method and their classification is not
based on machine learning techniques. Furthermore, the number
of subjects they investigated is small with only seven in total.
Ng et al. [54] used wavelet polyspectral techniques to generate
novel features to distinguish apneic from nonapneic snoring.
Their results in [54] showed that wavelet-based features outper-
form the conventional spectral peak frequency. In our study, the

WEF feature set, combining both the wavelet packet transform
and the wavelet transform techniques, achieves an excellent per-
formance of mean UAR of 66% among all classifiers used after
the feature selection step. Further, it contributes most (69%) in
the best-performing feature set.

Ng et al. [55] describe that formants are representative of
the physical frequency transfer function of the upper airway
and can be good indicators to classify apneic and nonapneic
snorers. The performance of the Formants feature set in our
study is better than that of other features analyzed in earlier
studies, i.e., Crest Factor, F0, and PR800 (p < 0.001). This
can be another indicator that the airway transfer function is a
suitable indicator to distinguish different forms of snoring.
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Fig. 5. Confusion matrix of the best-performing combination of feature
set and classifier.

EMD is based on a different signal analysis method than the
FFT. Specifically, it is suitable for nonstationary signals [32].
In this study, EMDF did not prevail as a feature set. A possible
reason for this moderate performance is that we based the clas-
sification task on relatively short fractions of a snoring event in
order to increase the number of available segments for model
learning. Therefore, the nonstationary characteristics of the un-
derlying snore event could not be considered in full. A better
performance can be expected when using this feature set on
complete snoring events.

Future works can be done mainly in the following three
areas: First, more potentially useful acoustic features can be
tested, specifically, psychoacoustic characteristics (e.g., loud-
ness, sharpness, roughness, and fluctuation strength), and higher
order statistical model-based features (e.g., bispectrum), which
have been studied in [56] and [57]. Some fundamental work
to explore the relationship between feature properties and the
anatomical changes in the upper airway can help to better un-
derstand the SnS generation mechanisms. Also, using complete
snore events, rather than segments of snore sounds, as a basis for
feature extraction can reveal additional useful information on the
different snoring classes, as their nonstationary characteristics
will show more clearly. A limitation of our work is the rela-
tively small number of snoring subjects in the database used.
Although, the total number of snore segments is sufficiently
large to apply machine learning methods, they stem from com-
parably few different subjects. Last but not least, the feature
selection phase at this stage of our method is based on an em-
pirical parameter setting process (Rank Ratio is set using a step
interval selection process) rather than on an automatic method
without human involvement. Excluding the “human touch” on
the parameter setting process will be important for future base-
line improvement and practical product development.

V. CONCLUSION

For the first time, we comprehensively investigated various
acoustic feature sets and classifiers for the task of classifying
SnSs according to their excitation locations based on the VOTE

model. Even with a relatively small dataset, we can achieve a
good classification performance with selected feature sets inde-
pendent of subjects. The results show that multifeature analysis
is a promising means to help identifying the anatomical mech-
anisms of SnS generation in individual subjects.
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