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Abstract—Research on automatic emotion recognition from speech has recently focused on the prediction of time-continuous

dimensions (e.g., arousal and valence) of spontaneous and realistic expressions of emotion, as found in real-life interactions. However,

the automatic prediction of such emotions poses several challenges, such as the subjectivity found in the definition of a gold-standard

from a pool of raters and the issue of data scarcity in training models. In this work, we introduce a novel emotion recognition system,

based on ensembles of single-speaker-regression-models. The estimation of emotion is provided by combining a subset of the initial

pool of single-speaker-regression-models selecting those that are most concordant among them. The proposed approach allows the

addition or removal of speakers from the ensemble without the necessity to re-build the entire recognition system. The simplicity of this

aggregation strategy, coupled with the flexibility assured by the modular architecture, and the promising results observed on the

RECOLA database highlight the potential implications of the proposed method in a real-life scenario and in particular in web-based

applications.

Index Terms—Speech emotion recognition, cooperative regression model, naturalistic emotional display

 

1 INTRODUCTION

SPEECH is one of, if not the, most natural way for humans
to communicate. In everyday social interactions, humans

express various complex feelings such as emotion and empa-
thy. Despite the fact that the cognitive processes used to
encode affective information during social interactions are
relatively complex, humans can easily manage to decode
such information in real time from multimodal cues. Con-
versely, the effort required of computer-based systems for a
reliable and autonomous understanding of emotion is still
challenging, even for the unimodal analysis of speech. None-
theless, the development of such affective computing sys-
tems is promising for many distinct fields of research. Health
care systems may offer a personalised treatment according
to the measured emotional content, along with an auxiliary
diagnostic tool of the psychological or developmental state
of the patient, such as depression [1], [2] or autism spectrum
conditions [3], [4]. Remote care assistance can benefit from
the estimation of the affective state (e.g., stress or fear) in the
voice of elder people [5]. Moreover, applications such as
speech based advertising [6], remote teaching (e-learning) [7],

job interview [8], and surveillance systems [9]may be incred-
ibly enriched by customer-affect oriented services andmoni-
toring, amongmany others.

Beyond the proven interests in the relatively new disci-
pline of affective computing, until now numerous issues
have limited the full development and use of speech emo-
tion recognition (SER) systems in real-life applications [10].
Whereas the automatic recognition of acted emotion can
provide useful insights in the process of affective behav-
iours encoding into speech and lead to very high recogni-
tion rates [11], [12], [13], it is widely acknowledged that
such data cannot be a good representative of the emotions
produced in real-life interactions [14]. Spontaneous emo-
tions are indeed much more subtle and almost never appear
as a ”full-blown” expression [15]. As a result, the automatic
recognition of spontaneous emotions is much more chal-
lenging in comparison to the automatic recognition of acted
emotions. In such scenario, we aimed at developing a sys-
tem able to continuously and automatically predict the per-
ceived emotional condition of a subject expressed in any
kind of naturalistic environment.

1.1 Related Work

Recently, databases of emotion collected during natural
interactions with time-continuous ratings (e.g., arousal and
valence [16]) have emerged, such as the Sensitive Artificial
Listener (SAL) set in the HUMAINE database [17], the SEM-
AINE database [18] and the RECOLA database [19]. Such
databases have caused a shift in methods, first of all moving
from classification to regression to be able to model continu-
ous affective dimensions [20], and next moving from utter-
ance or segment level labels [21] to quasi time-continuous
labels [18], [22]. Automatic recognition of naturalistic emo-
tion from time-continuous labels presents, however, several
challenges that are not yet solved [10], such as the definition
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of a reliable gold-standard from a pool of raters and the
issue of data scarcity in training models.

In the light of the appraisal theory from the domain of
emotion psychology [23], each annotator may have a subjec-
tive perception of the affective state expressed by an individ-
ual, motivated by his/her own past and present experience,
memories, reasoning, etc. Additionally, humans have natu-
ral bias and inconsistencies in their judgement [24], which
creates additional noise in the ratings. Further, the variability
in emotion perception can also be observed in the time
domain, since the evaluators may have different reaction lag
(RL) during the procedure of time-continuous annota-
tion [25]. However, the natural diversity found in emotion
perception is usually merged when a machine learning
model is trained, by averaging several evaluations from a
pool of raters into a single gold-standard. Whereas the use of
all annotation data can help at preserving diversity in emo-
tion perception, e.g., by using multi-task learning of each
annotator [26], [27], it has the main disadvantage to increase
the overall complexity of the model according to the number
of available raters. The issue of synchronisation of various
individual ratings for defining a gold-standard has also been
investigated with signal processing techniques. Models of
RL have been estimated from the data, by maximising the
correlation coefficient ([28], [29], [30]), or the mutual infor-
mation [25] between audiovisual features and emotional rat-
ings while shifting back in time the latter.

Regarding the issue of data scarcity, the main question to
be solved is how to deal with the huge diversity found in a
collection of spontaneous displays of emotion. The common
approach in the literature is to use all the emotion variability
found in the data as training material and tune the machine
learning system in order to disregard the less relevant
instances (e.g., by optimising the number of support vectors
and the soft margin in Support Vector Regression (SVR)) for
emotion prediction [20], [31], [32], [33]. Recent work has
proposed to use cooperative learning as a means to select
the most informative instances from a set of unlabelled
acoustic utterances [34]. But the core underlying idea of this
approach is to reduce the cost of the human annotation task,
e.g., by selecting instances which are predicted with a low
confidence level, not to consider consensus as a way to
optimise the predictability of a given SER system. Attempts
have already been made in developing cooperative strate-
gies in supervised classification with ensemble models [35],
or by considering multi-scaled sliding windows for binary
classification [36]. Cooperative strategies have also been
used to perform fusion of multimodal stimuli, by using
either early (i.e., feature-level) or late (i.e., decision-level)
fusion techniques [27], [37], [38], [39].

Taking inspiration from the cooperative strategy pro-
posed in [40], here we introduce a system able to autono-
mously and temporarily change the composition of a
restricted group of predictors provided by single-speaker-
regression-models (SSRMs) in a cooperation task governed
by a concordance paradigm.

1.2 Main Contributions

Motivation of our work lies in the intention to produce a
system that can predict the perceived level of emotion of a

subject from speech analysis through the fusion of multiple
independently trained systems. To this end, we propose a
three-topics formulation of the problem of SER from time-
continuous labels: (1) emotion subjectivity, (2) models con-
cordance, and (3) dynamic settings.

As mentioned earlier, the use of annotated data of
emotion has the immediate consequence of forcing the
discrepancy between the emotion produced by the subject
and that perceived by the evaluators [23]. Even though
the latter may not match the actual affective state of the
subject, the evaluators provide the unique available
judgement about the emotion, transferring the natural
subjectivity of the speaker into the subjectivity of a group
of listeners. Hence, in this article, we propose a modular
strategy based on cooperative models to perform emotion
prediction from speech data. A consensus-based merging
strategy is crucial for the cooperation of concordant
responses, either of the evaluators (e.g., the Evaluator
Weighted Estimator (EWE) [41]) or of the model devel-
oped for each speaker. The main goal here is not to con-
sider emotion prediction as a fixed evaluation procedure,
but rather as a dynamic cooperative task.

The first stage of our SER system consists of developing
an SSRM for each speaker. Then, a second stage follows that
consists of applying a cooperative strategy to merge the
responses provided by the different SSRMs, while dynami-
cally selecting the window of observation in which the con-
cordance of the responses is estimated. The possibility to
develop single-speaker-models merged through a coopera-
tive strategy makes the proposed method easily applicable
for real-time applications. Mobile devices and web-based
applications require that the regression model can be con-
tinuously updated with new data, while avoiding the expo-
nential increase of the learning time or the re-training of the
whole model after the addition of new speakers to the sys-
tem. The cooperative approach proposed in this article
offers an elegant solution to this constraint, because it is
able to embed new speakers’ models independently trained
on separate speech sequences in a dynamic cooperative gen-
eration rule. Further, the dynamic adaptation of the SSRM
along the observation window allows the system to auto-
matically select the most concordant models and thus maxi-
mise the overall performance.

In line with the three-topics formulation named above,
and in accordance with the article’s organisation, the main
contributions of this contribution can be listed as follow: (i)
we propose to use a quadrant-based temporal division to
estimate the RL of emotion annotation and perform feature
selection (topic emotion subjectivity), (ii) we define a
dynamic consensus-based cooperative strategy to predict
emotion from several SSRMs (topics dynamic settings and
models concordance), and (iii) we perform extensive evalu-
ations on a fully naturalistic database of emotion (RECOLA)
to compare the performance of our system with methods
from the state-of-the-art.

The remainder of this article is structured as follows:
first, Section 2 gives a detailed description of the pro-
posed consensus-based SER system, and introduces the
database used for the experiments; next Section 3 reports
results. Final remarks and direction of future research
are given in Section 4.
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2 DATA AND METHODS

2.1 Database

A new multimodal corpus of spontaneous interactions in
French called RECOLA, for REmote COLlaborative and
Affective interactions, was recently introduced by Ringeval
et al. [19]. Spontaneous interactions were collected during
the resolving of a collaborative task (“Winter survival task”)
that was performed in dyads (i.e., interaction of two speakers
at a time) and remotely by video conference. The RECOLA
database includes 9.5 h ofmultimodal recordings, i. e., audio,
video, electro-cardiogram (ECG) and electro-dermal activity
(EDA), that were continuously and synchronously recorded
from 46 participants. Ratings of emotion were performed by
six French-speaking assistants (three male, three female)
via the ANNEMOweb-based annotation tool [19], i. e., time-
and value-continuous, for the first five minutes of all
recorded sequences. The dataset for which participants gave
their consent to share their data is reduced to a set of 34 par-
ticipants for an overall duration of 7 hours, from which
the annotation of 23 participants (10 male, 13 female; age:
m ¼ 21:3 years and s ¼ 4:1 years) were made publicly avail-
able.1 Even though all participants were French speakers,
they had different mother tongue: 17 subjects were French,
three German and three Italian. Note that the nonconsecutive
numeric speaker labels displayed in this article—e.g., P16,
P17, P21, and so on—originate from the RECOLAdataset.

2.2 Single Speaker Regression Model (SSRM)

Fig. 1 shows a schematic description of the whole method.
Coloured blocks identify each SSRM receiving as input the
speech of a speaker as well as the corresponding annotations
in terms of arousal and valence. The cooperative regression
model (CRM) used for the prediction of an emotional dimen-
sion (e.g., arousal or valence) from an unlabelled speech
sequence involves to average the responses of each SSRM
exhibiting a common consensus, as illustrated by the stylised
men with raised hand. The steps needed for the construction
of SSRM and CRM are listed in Algorithms 1 and 2, respec-
tively, and are detailed in the following sections.

2.2.1 Acoustic Features Extraction

According to previous work [27], we consider the 65 acoustic
low level descriptors (LLDs) and their first order derivatives
(producing 130 LLDs in total) that were used for the

INTERPSEECH Computational Paralinguistic challengE
since its 2013 edition [42]. The COMPARE feature set has been
computed with the open source extractor OPENSMILE
(release 2.0) [43]. This feature set includes a group of 4 energy
related LLDs, 55 spectral related LLDs, and 6 voicing related
LLDs, cf. Table 1 and step 1 in Algorithm 1. For more details
on the COMPARE feature set, the reader is referred to [44].
In what follows, we denote with Nt the temporal length of
each speech sequence, with Nf the total number of acoustic
features, with Ne the number of evaluators for each speech
sequence, and with Nsp the number of speakers for which
data and annotations are available as trainingmaterial.

Algorithm 1. Construction of each Single Speaker
Regression Model (SSRM)

1: acoustic features extraction
2: gold-standard estimation
3: Quadrant-Based Temporal Division (QBTD)
4: for all q ¼ fa�; aþ; v�; vþg do
5: Lq  length of each segment
6: for all RL ¼ 0 to 8 s step 0:04 s do
7: shift gold-standard of RL
8: return CFSðRLÞ for feature selection
9: end for
10: RLq

opt  argmaxRLðCFSÞ
11: save selected features according to RLq

opt

12: end for
13: return RLa  

1
La�þLaþ

La� �RLa�
opt þ Laþ �RLaþ

opt

� �

14: return RLv  
1

Lv�þLvþ
Lv� �RLv�

opt þ Lvþ �RLvþ
opt

� �

15: gold standard synchronisation by RLa and RLv

16: concatenate selected features for each dimension
17: features normalisation by Z�score
18: linear regression by Partial Least Square (PLS)

2.2.2 Gold-Standard Estimation

Learning the acoustic model of an emotional dimension
requires the computation of a gold-standard from the

Fig. 1. Schematic description of the consensus based speech emotion
recognition system.

TABLE 1
COMPARE Acoustic Feature Set: 65

Low-Level Descriptors (LLDs)

4 energy related LLDs Group

Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic
RMS energy, Zero-crossing rate Prosodic

55 spectral LLDs Group

RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz) Spectral
MFCC 1–14 Cepstral
Spectral energy 250–650 Hz, 1 k–4 kHz Spectral
Spectral roll-off pt. 0.25, 0.5, 0.75, 0.9 Spectral
Spectral flux, Centroid, Entropy, Slope Spectral
Psychoacoustic sharpness, Harmonicity Spectral
Spectral variance, Skewness, Kurtosis Spectral

6 voicing related LLDs Group

F0 (SHS & Viterbi smoothing) Prosodic
Probability of voicing Voice quality
log. HNR, Jitter (local & d), Shimmer (local) Voice qual.

1. https://diuf.unifr.ch/diva/recola/
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annotated data of each speaker, cf., step 1 in Algorithm 1.
This is often achieved by averaging the traces provided by
each rater. The EWE [41] procedure can be used to centre
the ratings to a value that maximises the inter-rater agree-
ment [27]. Assuming that individual mean centring of each
annotation may alter the original rating by resetting the nat-
ural bias of each annotator, i.e., the subjective perception of
each rater, here we propose a newweighted averaging strat-
egy that maintains the original dynamic of the annotations
similarly to the one used in [27].

Formally, indicatingwith d each dimension, i.e., d ¼ fa; vg,
and starting from the evaluation provided by each rater, ei,

y
ei
d ðtÞ, i ¼ 1; . . . ;Ne, the six evaluations are shifted by the
same quantity �yd that is obtained by applying Eqs. (1)–(3)

�rdðiÞ ¼
1

Ne � 1

XNe

j¼1
ðj6¼i;rdði;jÞ> 0Þ

~rdði; jÞ; (1)

�yd ¼ 1PNe
i¼1 �rdðiÞ

XNe

i¼1

1

T

X
t

y
ei
d ðtÞ �rdðiÞ; (2)

ydðtÞ ¼ 1

Ne

XNe

i¼1
y
ei
d ðtÞ � �yd

� �
; (3)

with �rdðiÞ the mean pair-wise Pearson’s correlation coeffi-
cient of the annotation provided by the evaluator ei with the
remaining Ne � 1, and ~rdði; jÞ ¼ max 0; rdði; jÞð Þ the positive
Pearson’s correlation coefficient of the ratings provided by
the evaluators ei and ej.

Such procedure gives thus priority to the raters that
agree more with the pool when averaging their respective
annotation. If all raters perfectly agree with each other, then
all pair-wise correlation coefficients are equal to one and
our procedure corresponds to a simple average of the anno-
tations after mean centring.

Note that we do not consider in the computation of the
gold-standard the annotations that exhibit negative correla-
tion coefficients to avoid unwanted compensation effects in
the normalisation procedure.

2.2.3 Quadrant-Based Temporal Division (QBTD)

According to Russell’s two dimensional representation of
emotions [16], each quadrant of the diagram conveys spe-
cific characteristics of emotion. Further, all emotions are not
conveyed by a unique acoustic feature set [45], and such
associations can also vary according to the age and the gen-
der of the speaker, among many other paralinguistic traits
and states [46].

We therefore propose to consider such peculiarities to
select relevant acoustic feature subsets and estimate RL
of the raters. For the purpose of optimising the feature
selection as well as the reaction lag estimation procedures,
we decide to segment the gold-standards ydðtÞ and the cor-

responding acoustic features xkðtÞ, k ¼ 1; . . . ; Nf into seg-
ments of positive and negative arousal or valence. Denoting
with q ¼ faþ; a�; vþ; v�g each possible quadrant of the 2D
arousal-valence space, cf. step 1 in Algorithm 1, the corre-
sponding segments of the gold-standard are indicated by

yaþðtÞ, ya�ðtÞ and yvþðtÞ, yv�ðtÞ, and the corresponding

segments of acoustic features by xk
aþðtÞ, xk

a�ðtÞ and xk
vþðtÞ,

xkv�ðtÞ, where yaþðtÞ ¼ fyajya � 0g, ya�ðtÞ ¼ fyajya < 0g and
yvþðtÞ ¼ fyvjyv � 0g, yv�ðtÞ ¼ fyvjyv < 0g. With reference to
the Russell representation, we call this segmentation the
quadrant-based temporal division (QBTD). Segmentation is
performed by simply concatenating all the segments of a
single quadrant. Such procedure adds the benefit to avoid
that feature selection is mostly guided by the most popu-
lated quadrant.

2.2.4 Reaction Lag Estimation and Feature Selection

It is known that, evaluators need some time to evaluate the
cues observable in an audiovisual sequence and then report
the corresponding emotion. This is especially observable on
time-continuous ratings used on dimensional models of
emotion, where a delay occurs between the observable cues
and the reported emotional value. According to the evalua-
tions performed in [25], we assume here a RL distinct for
each speaker and emotional dimension with a negligible
variation among the six ratings of the same speaker, com-
pensating this effect with the correlation-based estimation
of the gold-standard. However, we relate the estimation of
the optimal RL to a feature selection procedure that is per-
formed independently on each quadrant of the 2D arousal-
valence emotional space, to consider the peculiarities of the
acoustic features according to the emotions.

The importance of such kind of analysis has been demon-
strated by the results obtained in preliminary comparative
simulations performed without the RL-based synchronisa-
tion of features and gold-standard. In this regard, in Sec-
tion 3.5 we will discuss results of the related experiments
run to reinforce our assumption.

All gold-standard segments yaþðtÞ, ya�ðtÞ, yvþðtÞ, and
yv�ðtÞ extracted by the QBTD decomposition are thus used
separately for each quadrant to perform synchronisation
with the corresponding acoustic features. For each quadrant
q and a variable RL value in the range ½0; 8� s with a step of
0:04 s, the corresponding gold-standard segment is shifted
back in time with a lag equal toRL and the correlation-based
feature selection (CFS)measure is computed [47], [48] (steps 7
and 8 in Algorithm 1). The optimal reaction lag RLq

opt is then

defined as the RL that maximises the CFS measure (step 10
in Algorithm 1). Given the two optimal values RLq

opt for a

given dimension (i.e., arousal or valence), the final reaction
lag is estimated by weighting the two values obtained on
each side of the considered dimension with the length of the
corresponding segments (step 13 for arousal and step 14 for
valence in Algorithm 1). Compensation of the annotation
delay is finally obtained by shifting back in time the gold-
standardwith the correspondingRL (step 15 inAlgorithm 1).

The results show that, an average RL of 3:89 s is obtained
for arousal (s ¼ 1:16 s) and 4:52 s (s ¼ 2:15 s) for valence, in
total agreement with the experimental results reported in
the literature [25], [27]. Arousal is indeed a less subjective
emotion dimension than valence is, and thus requires less
time for being evaluated. Concerning the results of feature
selection, we list in Appendix A the most frequently
selected features in each quadrant along with the related
description. Note that, the list of features that are selected in
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each quadrant are saved (step 11 in Algorithm 1) and
concatenated (step 16 in Algorithm 1) for each affective
dimension in order to be used for the prediction of an
unknown speaker’s emotion.

2.2.5 Feature Normalisation and Linear Regression

The features selected using the QBTD procedure are normal-
ised by a Z-score (step 1 in Algorithm 1), i.e., the mean is
removed from the features and the values are further divided
by the standard-deviation, and the normalisation parameters
m~xkq

and s~xkq
(mean and standard deviation) are stored in the

SSRM’s parameters for being used later in the cooperative
regression. Concerning the regression part of the SSRM, we
trained Partial Least Square regression (PLS) on the selected
features (step 1 in Algorithm 1). The SIMPLS algorithm is
used for this purpose [49]. The optimal numbers of latent
variables LVa and LVv (for arousal and valence, respectively)
are extracted through contiguous block splitting cross-valida-
tion (10 splits) performed on the entire speech of the speaker.

2.3 Cooperative Regression Model

The principle of the cooperative regression model is illus-
trated in Fig. 1. The CRM receives as inputs the predictions
provided by each SSRM. Only the predictions that exhibit a
common consensus (indicated by the men with raised
hand) are averaged, and a final prediction is produced. The
cooperation principle is based on a two-fold strategy. First,
each SSRM is applied on the speech of a new speaker spx
which produces an individual response. Then, only the
most concordant responses among the Nsp available ones
are retained and merged to produce the final prediction. In
order to select the most concordant predictions, we used the
mutual concordance correlation coefficient (CCC), rc [50]. It
is a measure of agreement between two time-continuous
predictions that non-linearly combines in a unique parame-
ter the Pearson correlation coefficient (CC), r, and the mean
square error. The parameter CCC computed on two time-
series y1ðtÞ and y2ðtÞ on a given observation time-interval T
is defined as follows:

rcðy1; y2Þ ¼
2rðy1; y2Þ sy1 sy2

s2
y1
þ s2

y2
þ my1

� my2

� �2 ; (4)

where the CC (r), the mean (m), and the standard deviation
(s) are meant to be computed under the assumption of sta-
tionarity of the two time-series y1ðtÞ and y2ðtÞ on the obser-
vation time-interval T . The underlying idea of using the
CCC is to measure the consensus of the predictions pro-
vided by the speakers in the cooperation observed on a
given time period T . The steps used in the CRM are listed in
Algorithm 2 and detailed below.

At each time t (step 1 in Algorithm 2) and for a given
temporal window w (step 2 in Algorithm 2), the pth-SSRM
is first applied to the unlabelled speech sequence spx pro-
ducing a response yðt; spx; sppÞ (step 6 in Algorithm 2). We
emphasise that the range of ½0 � 80�s where to select the
most concordant responses has been chosen to let the
approach have a wide range of possibilities to choose the
optimum interval of concordance from. Then, for each
SSRM, the average pair-wise CCC is computed considering
its prediction with the others rcðw; pÞ (step 5 in Algorithm 2).

A global concordance factor rcðwÞ, for the duration w, is
obtained by averaging only the rcðw; pÞ that fall into the
60th-percentile (step 6 in Algorithm 2). This value has been
selected after running experiments using values in the range
½50 � 70�th-percentile and selecting the optimal trade-off
between the number of predictions merged on average and
the performance in the prediction. The optimal window
duration wopt and the most concordant predictions are
defined by the arguments that maximise the value of rc,
(step 8 in Algorithm 2). The most concordant responses are
then averaged which produces the final prediction in wopt

(step 9 in Algorithm 2). Continuous monitoring can be
achieved by implementing a sliding windowing procedure
with a time lag t0 ¼ 200ms. Due to the optimal duration
selection (wopt) and to the used sliding window, there can be
overlapping predictions that are finally averaged time by
time (step 11 in Algorithm 2). Finally, a moving average
procedure over 8 s is applied to produce a smoothed
response in the final prediction (step 12 in Algorithm 2).

Algorithm 2. Implementation of the CRM

1: for t ¼ 0 toNt step t0 ¼ 200ms do
2: for w ¼ 0 to 80 s step 2 s do
3: application of each SSRM at time t
4: yðt; spx; sppÞ  prediction of spx provided by the

pth-SSRM
5: rcðw; pÞ  average pair-wise rc of pth-prediction in

each w
6: rcðwÞ  average over rcðw; pÞ in the 60th-percentile
7: end for
8: wopt  argmaxwðrcðwÞÞ
9: average prediction values in the optimal window wopt

10: end for
11: return yðtÞ  average predictions collected for each time

step
12: return output smoothing by moving average with time lag

of 8 s

The described procedure illustrates how the most
concordant predictions are selected according to the ave-
rage pair-wise CCC computed on a dynamically changing
window. This implementation choice is motivated by the
fact that it is not a priori known which is the duration of con-
sensus or of disagreement of each predictor with the major-
ity. As a consequence, the composition of the cooperation
changes dynamically over time as it is shown in Fig. 2.

3 RESULTS AND DISCUSSION

The proposed method has been tested using the RECOLA
database which contains 23 publicly available emotion
speech sequences of five minutes length each that were
annotated in terms of arousal and valence. To assess the
performance of the CRM we implemented a leave-one-
speaker-out (LOSO) cross-validation strategy to ensure
speaker independence in testing the system.

In the following, we describe each test that has been per-
formed to evaluate system performance.

3.1 Training and Optimisation of SSRM

We first evaluated the performance obtained during the
training and the optimisation of the SSRM. The CCC, CC,
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and root mean square error (RMSE) between the gold-stan-
dard and the prediction, as well as the average CFS (i.e.,
averaged over the two CFS carried out in the two quadrants
of the same dimension) computed during the optimisation
step are given in Figs. 3 and 4 for arousal and valence,
respectively. Results show that, arousal is significantly bet-
ter recognised from the acoustic features than valence. This
result is in agreement with the literature, where acoustic
features have always been shown to present a stronger cor-
relation with the arousal dimension in comparison to
valence [22], [26], [27], [31], [38]. The values of CCC and CC
are most of the time almost identical, as the RMSE is quite
low; we obtained an average RMSE of 0.068 for arousal and
of 0.128 for valence over a range of 2.

3.2 Overall Performance of the CRM

We tested our system on the RECOLA database by apply-
ing the CRM on the predictions provided by each SSRM
with a LOSO evaluation framework. The performance
obtained for each speaker is combined in the box-plot in
Fig. 5 for CCC (top) and CC (bottom) and for arousal (left)
and valence (right) dimensions. Results confirm that the
prediction of arousal from acoustic features provides sig-
nificantly better results than for valence. The combination
of weak predictors (PLS) in the CRM, which is similar to a
boosting strategy [51], provides a performance that is
comparable with the one obtained with more complex
machine learning methods that are trained on a full set of
speakers [27], [38].

Fig. 2. Illustration of the dynamic consensus-based cooperative merging rule for emotion prediction on arousal. The left and right plots represent two
consecutive segments each of 20 s of duration. The red curve represents the gold-standard (speaker P19), the black curve is the unsmoothed predic-
tion obtained after averaging the most concordant predictions (the magenta curves, i.e., those that fall below the 60th-percentile) and excluding the
less concordant ones (the green curves). The blue curve is the final prediction obtained after applying a moving average sliding window for smoothing
purpose. On the top of the figure, the magenta circles indicate the speakers that were included in the cooperation process for each of the two seg-
ments whereas green circles indicate those that were excluded. The magenta arrows indicate the process of inclusion of the SSRMs (speakers P62
and P64) and the green ones the process of exclusion (speakers P25, P26 and P28) when in the second segment.

Fig. 3. Performance obtained during the training of each SSRM for the
arousal dimension (from top to bottom): concordance correlation coeffi-
cient (CCC), Pearson’s correlation coefficient, root mean square error
(RMSE), and correlation-based feature selection (CFS).

Fig. 4. Performance obtained during the training of each SSRM for the
valence dimension (from top to bottom): concordance correlation coeffi-
cient (CCC), Pearson’s correlation coefficient, root mean square error
(RMSE), and correlation-based feature selection (CFS).
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3.3 Inclusion of the SSRM in the CRM

Since our system dynamically adapts the ensemble of SSRM
used in the cooperation strategy to perform emotion predic-
tion, we have analysed the frequency of inclusion (i.e., the
number of times the SSRM of a speaker is included in the
cooperation over the number of observation windows) of
each speaker in themodel. Fig. 6 illustrates two bar diagrams
(the upper for arousal and the lower for valence), represent-
ing the frequency with which each speaker is included in the
cooperation. The x-axis reports the speaker labels. Results
highlight that some speakers such as P16, P17, and P21 (for
arousal), P17, P34, and P62 (for valence), marked by the black
arrows and represented by red bars, are rarely selected in the
cooperative rule. Indeed, if one speaker generally produces
emotion in such a specific way that her/his data cannot be
used to predict efficiently another speaker’s affective behav-
iour, then these data are not included in the cooperation rule.
In addition, we observed that the gold-standard annotation
of these speakers (in terms of arousal, valence, or both)
exhibit a very small total variation (quantified by the sum of
the absolute first derivative over the entire period), meaning
that the annotations remain almost stable except for a few
small time intervals. This strong heterogeneity in terms of
depicted emotions is another possible explanation for the
exclusion of the corresponding SSRM from the consensus
rule. Therefore, the system autonomously solves this aspect
by the dynamic selection of the members of the cooperation,
assuring that speakers with low generalisation capabilities
do not deteriorate the overall prediction performance.

3.4 Comparison with Standard Approaches

To further quantify the performance of the proposedmethod
(i.e., SSRM combined with CRM) with respect to standard

regression approaches, we also implemented two other emo-
tion recognition strategies. The first one, labelled as AVER-
AGE, consists in averaging predictions from all the SSRMs
without using the cooperation rule. Such test allows to verify
the improvement achieved by the proposed adaptive merg-
ing procedure. The second comparative approach, labelled
as GLOBAL, is based on a global training of a unique PLS
model performed on the entire training dataset. This com-
parison allows to highlight the advantage of using an ensem-
ble of SSRM in a modular architecture without taking into
account the benefits of the CRM for adaptive merging. Note
that, the learning of the global model is computationally
much more demanding than the other two approaches,
because all speakers are used to compute the PLS model.
Moreover, such approach is not flexible to the on-line addi-
tion of new speech sequences. Performance is quantified
through the median CCC value and the corresponding inter-
quartile range (i.e., the distance between the 75th and the
25th percentiles), and is given in Fig. 7 for each of the three
comparativemethods, i.e., CRM, AVERAGE andGLOBAL.

The results show that, the performance obtained with the
CRM approach is significantly higher than the two other
strategies (i.e., AVERAGE and GLOBAL) for both arousal
(p < 0:001) and valence (p < 0:05, paired t-test). Although
the performance is slightly higher for AVERAGE in com-
parison to GLOBAL, for both arousal and valence, the dif-
ferences are not statistically significant (i.e., (p > 0:05)).

3.5 Gold-Standard and Features Synchronisation
by the Estimated RL

Another novelty proposed in this article is the synchronisa-
tion of the gold-standard with acoustic features for the

Fig. 5. Box-plots of CCC (top) and CC (bottom) values of the cooperative
regression model applied to each speaker in testing phase for arousal
and valence.

Fig. 6. Bar diagrams (top: arousal, bottom: valence) showing the fre-
quency of inclusion of the SSRM in the CRM. Bars corresponding to the
SSRMs that are rarely involved in the CRM are coloured in red and indi-
cated with a descending black arrow.
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construction of each SSRM, performed using the reaction
lag estimated separately for arousal and valence. To prove
the importance of such procedure, we compare the CCC
values computed on the predictions achieved by the pro-
posed approach with those obtained without the synchroni-
sation and the RL estimation procedures. In the latter case,
features are selected without shifting back the gold-
standard of a quantity equal to the estimated reaction lag.

Fig. 8 shows the box-plots of the CCC values obtained in
the two experiments for arousal (top) and valence (bottom).
The statistical significance of the improvements obtained
with the inclusion of the synchronisation procedure is veri-
fied by a paired t-test for both arousal and valence; we
obtained p < 0:001 for those two dimensions, demonstrat-
ing the importance of the synchronisation procedure for
constructing the SSRMs that cooperate in the CRM.

3.6 QBTD-Optimisation of the SSRM

We also propose in this article the use of a QBTD-
optimisation for the construction of each SSRM. To demon-
strate the importance of the QBTD procedure, we performed
a global optimisation of the SSRM by using all the quadrants
of a given emotional dimension, i.e., passive and active for
arousal and negative and positive for valence. This global

Fig. 7. Comparison of the performance (median and inter-quartile range
of CCC) obtained with the proposed CRM, the average of all SSRM
(AVERAGE), and a single PLS model learnt on all the training data
(GLOBAL) for arousal (top) and valence (bottom). The p-values obtained
by a t-test on the CCC values between CRM and the two other methods
are also indicated.

Fig. 8. Box-plots of the performance in terms of CCC values obtained
with (left—labelled as SYNC) or without (right—labelled as NO-SYNC)
the shifting back of the gold-standard by the estimated reaction lag for
each dimension, for arousal (top) and valence (bottom). The p-values
of a paired t-test between the CCC values obtained on those two
approaches are reported.

Fig. 9. Box-plots of the performance in terms of CCC values obtained
with (left—labelled as QBTD) or without (right—labelled as ALL) the use
of the QBTD procedure for the construction of the SSRM for arousal
(top) and valence (bottom). The p-values of a paired t-test between the
CCC values obtained on those two approaches are reported.
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optimisation is labelled as ALL in the following. Related
results, comparing the QBTD and the ALL procedures in
terms of CCC values obtained for arousal (top) and valence
(bottom), are collected in the box-plots shown in Fig. 9.

The statistical significance of the improvements obtained
with the QBTD procedure over the global optimisation
(ALL), is verified with a paired t-test for both arousal and
valence; we obtained p < 0:001 and p ¼ 0:027 for arousal
and valence, respectively, demonstrating the importance of
the QBTD procedure for constructing the SSRM. Indeed, the
QBTD allows the selection of acoustic features that are well
correlated with each quadrant of the 2D arousal-valence
space. Further, the analysis of the selected acoustic feature
sets shows that they strongly depend on the quadrant, espe-
cially for valence, cf. Appendix A.

3.7 Correlation between Inter-Rater Agreement and
Prediction Performance

According to our preliminary statements on the impor-
tance given to the perceived emotions, we also show that

on average, the prediction performance in terms of CC is
positively correlated with the mean inter-rater agreement
(evaluated through the average pair-wise CC of the ratings
for each speaker), cf., Fig. 10. This fact demonstrates how
concordance can be considered as a very promising merg-
ing principle, both for the design of the cooperation of
the models, and for the collection of the gold-standard.
Note that, there is a good linear correlation (with r equal
to 0.75 and 0.61 for arousal and valence, respectively)
among the two metrics, especially for arousal, that also
presents higher average inter-rater agreement as expected.
Moreover, we did not find any statistically significant dif-
ference on the CC values grouped according to the gender
of speakers, proving that the system is both gender and
speaker independent.

3.8 Comparison between PLS and SVR

We investigate here the benefit of using a PLS regression
approach to perform adaptive boosting as proposed with
the CRM. The generalisation capability of the CRM system
based on PLS regression is compared with the use of a pre-
dictor based on SVR, with default settings, i.e., a complexity
value of C ¼ 1, and a Gaussian kernel with s ¼ 1=fsel [52],
being fsel the number of features selected in each SSRM.
The results reported in Fig. 11 illustrate two kinds of experi-
ments. The first two columns, labelled as SSRM-PLS
and SSRM-SVR, respectively, are the box-plots of the CCC
values obtained by subject-dependent cross-validation of

Fig. 10. CC values of the prediction for each speaker during testing
versus the average CC value of the evaluators: (top) arousal and
(bottom) valence. Colours identify female subjects (magenta) and
male subjects (cyan).

Fig. 11. Box-plots of the CCC values for the CRM applied using PLS
regression compared with the CRM based on SVR. The first and the sec-
ond column report the CCC values obtained during subject-dependent
validation of each SSRM (SSRM-PLS and SSRM-SVR), the third and the
fourth column indicate the CCC values during testing (CRM-PLS and
CRM-SVR): p-values obtained by running paired t-test on the CCC values
obtained for the CRM-PLS and the CRM-SVR are also indicated. Results
are presented separately for arousal (top) and valence (bottom).
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each SSRM in the corresponding speaker speech sequence,
comparing PLS and SVR regression methods. In addition,
the third and fourth columns, labelled as CRM-PLS and
CRM-SVR, respectively, represent the box-plots of the CCC
values obtained by merging the responses of all the SSRMs
in the training set and estimating the response in the test
set, using a LOSO subject-independent cross-validation
technique. Results are presented separately for arousal (top)
and valence (bottom). One can observe that, even though
the SVR provides the best performance in the validation of
each SSRM for both arousal and valence, the PLS algorithm
is more robust to overfitting and thus produces significantly
improved performance on the test set. Our conclusion is
that, weak predictors are indeed more suitable to perform
boosting than more sophisticated algorithms [51].

3.9 Dynamic Evaluation of the Prediction
Performance

As a final consideration, and due to the large duration of the
recorded speech signal (5 minutes for each sequence), it is
interesting to quantify the tightness of the prediction. To
this regard, after we collect the prediction for each speaker,

we apply a sliding windowing with observation time frame
wo in the range [5, 300] s on each prediction in testing,
and computed the corresponding CCC and the CC values
achieved in that segment with respect to the corresponding
gold-standard. Given a wo, the maximum CCC and the max-
imum CC values computed over all segments of the same
length wo are extracted. Then, by collecting these values for
all the 23 speakers, we have a single box-plot related to a
given wo. By repeating for each wo, we derive the graph in
Fig. 12. Such further test allows us to emphasise the fact that
for each window length there is at least a segment for each
speaker exhibiting very high CCC and CC values in both
dimensions. The results indicate that, as long as the window
length wo decreases, the performance metrics increase. This
result can be explained by the fact that it is more probable
for the prediction to reach a high concordance level with
the gold-standard in a small interval than in very long
ones. However, from a preliminary analysis, we also noted
that, the significance of the metrics CCC and CC decreased
on very short segments (i.e., less than 4 s), since the reliabil-
ity of the computation of CCC and of CC values depends on
the size of the data used for the calculus. For this reason, we

Fig. 12. Box-plots of the maximum CCC and CC values computed over all the possible segments of the same length wo and distributed over the 23
speakers: (top) arousal and (bottom) valence. The graph is obtained by varying the window length wo in the range [5, 300] s.
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decided to consider the observation windows of duration
less than 4 s not as meaningful.

4 CONCLUSION

In this article, we presented a new strategy for continuous
speech emotion estimation. New paradigms have been pre-
sented concerning single speaker and cooperative regres-
sion models. Those novel strategies allow a system to
dynamically select the most concordant models over time,
which provide an elegant solution to the issues of data scar-
city and inconsistencies in the definition of emotion, by fos-
tering the paradigm of perception of an unknown speaker’s
emotion. A novel quadrant-based decomposition of a
speech sequence is used for model optimisation to achieve
emotion-related feature selection. Concepts like evaluator’s
reaction lag and concordance for aggregation have also
been addressed and embedded in the whole method. As
demonstrated with extensive experiments on a database
featuring spontaneous and natural emotions, our approach
confers robustness to inter-rater agreement variability, but
also to variations in both gender and age of the speaker. The
proposed system presents important potential implications.
First of all, new speakers can be added to the cooperative
system simply by training a new SSRM using the speech
sequence along with the corresponding annotations for the
new speaker. Second, new affective contents of a speaker
already present in the system may be included in the coop-
eration simply by performing re-learning of the SSRM of
that speaker, adding a new speech sequence with a strong
reduction of the required learning time. Consequently, sys-
tem updating can be seen as a parallel procedure that does
not influence the normal functioning and, in addition, it
does not require time consuming re-learning of the whole
prediction system. For this reason, the proposed architec-
ture is perfectly suitable for mobile applications, thanks to
the easiness and flexibility to develop single models sepa-
rately trained on distinct speech sequences with different
emotional contents. Web-based applications could offer the
possibility to everyone to upload to the cloud his/her
speech sequence along with the corresponding annotation.
Finally, the introduction of the QBTD paradigm suggests
future developments based on modular architecture in
which each SSRM is trained and optimised on each quad-
rant and then merged using a cooperative rule based on dif-
ferent machine learning scenarios and other databases of
emotional speech. This strategy could also be applied for
multimodal emotion recognition, to ensure that only rele-
vant cues are effectively used over time [53], [54].

APPENDIX

In this section, we provide additional results concerning fea-
ture selection based on the QBTD procedure. Table 2 lists for
each quadrant the most frequently selected features along
with the corresponding LLD name; the reader is referred
to [44] for more information on the computation of the fea-
tures. These results clearly show that the sets of features
selected for the two partitions of arousal and of valence
are almost entirely disjoint—especially for valence—, under-
lining the importance of a quadrant-based selection. Addi-
tionally, spectral based acoustic features appear to be the

most robust ones for emotion prediction of both arousal
and valence.
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France (LISIF) and the Institute of Intelligent Systems and Robotics
(ISIR), UPMC, France, from 2006 to 2011, with the MMK institute, at the
Technische Universit€at M€unchen (TUM), Germany in 2011, with the
DIVA group, at the Universit�e de Fribourg, Switzerland from 2011 to
2013, and with the MISP group at TUM, Germany from 2013 to 2014.
He is actually an assistant researcher and lecturer at the Chair of Com-
plex and Intelligent Systems, at Universit€at Passau, Germany. His
research interests concern digital signal processing and machine learn-
ing, with applications on the automatic recognition of paralinguistic infor-
mation (e.g., emotions, social and atypical behaviours) from multimodal
data (e.g., audio, video and physiological signals), at the cross-road of
computer sciences and human behaviour understanding.

326                                                                   

                                                                                                                                               



Bj€orn W. Schuller received his diploma in 1999,
his doctoral degree for his study on Automatic
Speech and Emotion Recognition in 2006, and
his habilitation and was entitled Adjunct Teaching
Professor in the subject area of Signal Process-
ing and Machine Intelligence for his work on Intel-
ligent Audio Analysis in 2012 all in electrical
engineering and information technology from
TUM in Munich/Germany. At present, he is Full
Professor and head of the Chair of Complex and
Intelligent Systems at the University of Passau/

Germany where he previously headed the Chair of Sensor Systems in
2013. At the same time he is a Reader (Associate Professor) in Machine
Learning in the Department of Computing at Imperial College London/
UK since 2015, being a Senior Lecturer since 2013. Further, he is the
co-founding CEO of audeering UG – a TUM start-up on intelligent audio
engineering. Previously, he headed the Machine Intelligence and Signal
Processing Group at TUM from 2006 to 2014. In 2013 he was also
invited as a permanent Visiting Professor in the School of Computer Sci-
ence and Technology at the Harbin Institute of Technology, Harbin/P.R.
China and a Visiting Professor at the Universit�e de Gen�eve in Geneva/
Switzerland in the Centre Interfacultaire en Sciences Affectives and
remains an appointed associate of the institute. In 2012 he was with
Joanneum Research, Institute for Information and Communication Tech-
nologies in Graz/Austria, working in the Research Group for Remote
Sensing and Geoinformation and the Research Group for Space and
Acoustics – currently he is an expert consultant of the institute. In 2011
he was guest lecturer at the Università Politecnica delle Marche
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