
Convolutional Neural Networks with Data Augmentation for Classifying
Speakers’ Native Language

Gil Keren1, Jun Deng1, Jouni Pohjalainen1, Björn Schuller1,2

1Chair of Complex & Intelligent Systems, University of Passau, Germany
2Department of Computing, Imperial College London, UK

gil.keren@uni-passau.de

Abstract
We use a feedforward Convolutional Neural Network to clas-
sify speakers’ native language for the INTERSPEECH 2016
Computational Paralinguistic Challenge Native Language Sub-
Challenge, using no specialized features for computational par-
alinguistics tasks, but only MFCCs with their first and second
order deltas. In addition, we augment the training data by re-
placing the original examples with shorter overlapping samples
extracted from them, thus multiplying the number of training
examples by almost 40. With the augmented training dataset
and enhancements to neural network models such as Batch Nor-
malization, Dropout, and Maxout activation function, we man-
aged to improve upon the challenge baseline by a large margin,
both for the development and the test set.
Index Terms: Computational Paralinguistics, Deep Learning,
Convolutional Neural Networks.

1. Introduction
In recent years, neural networks have become empirically suc-
cessful in a wide range of supervised learning applications, such
as computer vision [1, 2], speech recognition [3, 4] and natural
language processing [5]. In addition, in many applications, the
traditionally used models that are based on hand-crafted fea-
tures to represent the data, have been replaced by neural net-
work models with convolutional layers [6] that are learned di-
rectly from raw data or from simpler general-purpose features in
an end-to-end manner. In these models, the convolutional lay-
ers are typically the lower layers in the network (closer to the
input) and can be seen as extracting features from small patches
of data, to create a new and possibly more useful representation
of the data. Prominent examples of the end-to-end approach can
be seen in [1], in which an object recognition model is learned
from raw images without any prior knowledge, and [4], where
a state-of-the-art speech recognition model is learned directly
from the speech spectrogram.

In many cases in the field of computational paralinguistics,
including the ComParE Challenge 2016 [7], the pipeline of a
machine learning model begins by extracting features to rep-
resent the data at hand: first, low-level descriptors (LLDs) are
extracted from short time windows and include short term char-
acteristics of the audio signal such as voicing probability, HNR,
F0 and zero-crossing rate [8]. This first step is possibly followed
by a number of functionals (e.g., mean, max, percentiles), com-
puted over time on these LLDs. Recent studies have shown
([9, 10]), that the end-to-end approach can be adopted to ap-
plications in computational paralinguistics, by training a con-
volutional neural network model based on simpler and non-
specialized features.

A necessary condition for the success of neural network
models for classification is in many cases the presence of large
amounts of labeled training data [11]. In many classification
datasets in the field of computational paralinguistics, the num-
ber of labeled training examples is at most a few thousands
[12, 13, 14], which is rather small when compared to object de-
tection or speech recognition datasets that typically contain at
least a few tens of thousands of labeled examples, and in many
cases much more than that [15, 16, 4]. On the other hand, in
audio datasets, this problem might be alleviated if every labeled
example is long enough.

In an audio classification task, there might be some redun-
dancy in long examples, when smaller parts of the whole exam-
ple contain enough information each for correctly classifying
the whole example. This is indeed the case, when very long time
dependencies (relations between two distant time frames) in the
data are not needed for correctly classifying the whole example.
In that situation, we can safely introduce data augmentation of
the training set by replacing each labeled example with many
small patches from it, retaining the same class label. This ap-
proach is different to other data augmentation approaches, such
as changing the speed of an audio signal ([17]).

In this year’s ComParE challenge, the Native Language
dataset is comprised of 5,132 labeled examples, where the
length of each example is approximately 45 seconds. The task
in the nativeness subchallenge is to classify the mother tongue
of the speaker in each example. We assume that less than the
whole 45 seconds are required for correctly classifying an ex-
ample, therefore posing the possibility for the necessary data
augmentation that will allow successfully training a large neu-
ral network model with convolutional layers, using relatively
simple and general-purpose input features.

As a step towards the end-to-end approach, we extract only
MFCC features with first and second order delta regression co-
efficients, and we train feedforward neural network models with
convolutional layers to classify the data for the nativeness sub-
challenge of the ComParE 2016 competition. In addition, we
introduce data augmentation as described above, and we use
two well-known enhancements for the neural network models,
namely Dropout [18] and Batch Normalization [19]. For com-
parison, we train a few additional neural networks and Support
Vector Machine (SVM) classifiers, that vary in the input fea-
tures used and training data augmentation.

Therefore, the purpose of this work is two-fold: First, to ex-
plore the possibility that general-purpose features of relatively
lower complexity might yield good classification results when
coupled with a neural network model, compared to models us-
ing the provided challenge features. Second, to explore the ben-
efits of the training data augmentation resulting from training

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-2612393

models on smaller patches from the original training examples.
In the rest of the paper, we present the models we use and

the specifications of the training data augmentation we apply
(Section 2), our experiments and results (Section 3), and con-
clude our work in Section 4.

2. Model and Data Augmentation
For classifying audio signals with a neural network, we use a
feedforward neural network comprised of a few convolutional
hidden layers followed by a few fully connected hidden layers
(dense layers), with a softmax layer [20] on top for classifica-
tion. For this task, a more natural choice of neural networks
might be Recurrent Neural Networks (RNNs), which are neu-
ral networks that process the input sequentially and are able to
model dependencies over time. However, sequential process-
ing of even a few tens of time steps can introduce a significant
computational overhead, as the network then corresponds to a
very deep neural network, with many more steps of computa-
tion. This becomes even more significant, when using variants
of RNNs that require more computation when processing each
time step, such as Long Short Term Memory networks (LSTMs)
[21].

We elaborate on the key components of our feedforward
neural networks.

2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks
that contain one or more convolutional layers. A convolutional
layer processes a two-dimensional input of size m × n with
k channels x ∈ Rm×n×k in the following manner: The in-
put x is split spatially across its first two dimensions into (po-
tentially overlapping) patches of the same size {xij}i∈I,j∈J ,
where xij ∈ Rm1×n1×k. Then, the n-dimensional output vec-
tor of a patch xij is:

cij = σ(xij �W1 + b1, . . . , xij �Wn + bn), (1)

whereW1, . . . ,Wn are weight matrices of sizem1×n1×k,
the bias terms are b1, . . . , bn ∈ R, � is an element-wise matrix
multiplication and σ is a non-linear activation function operat-
ing element-wise. The output of the convolutional layer is the
spatial map c = {cij}i∈I,j∈J of dimension |I| × |J | × n. The
number n is called the number of feature maps in the convolu-
tional layer, and c can be viewed as a spatial two dimensional
map with n channels in each spatial location.

Potentially, a convolutional layer can include a max-
pooling mechanism after the above described process, that op-
erates as follows: The output of the above procedure c is again
split spatially across its first two dimensions into (potentially
overlapping) patches {pij}i∈I′,j∈J′ . Then, a max operation is
performed across the first two dimensions of a given patch, for
each patch separately, resulting in an n-dimensional represen-
tation for each path. The output of the max-pooling mechanism
(and the whole convolutional layer) p is the spatial map of all
the n-dimensional representations, p ∈ R|I

′|×|J′|×n.
Other types of pooling exist, such as mean-pooling [22], but

models in this work use only the max-pooling mechanism.
In the case of an audio signal, the dimension of x can be

seen as 1×t×k, where t is the number of time steps in the audio
signal and k in the number of features used to represent each
time step. In this case, Figure 1 depicts the procedure described
above (without pooling).

Time

F
ea

tu
re

s

Fe
at
ur

es

Time

⊙ W 1

+

. ⊙ W n

b()σ

Figure 1: A convolutional layer operating on an audio signal
(without pooling)

2.2. Batch Normalization

When training neural networks, the distribution of each layer’s
inputs changes during training, as the parameters of the previ-
ous layers change. The authors of [19] name this phenomenon
internal covariance shift, and state that it slows down training
by requiring lower learning rates and careful parameter initial-
ization. To alleviate this issue, they introduce Batch Normal-
ization, which applies a linear transformation on the output of
a layer (just before applying the activation function), to enforce
values for its mean and standard deviation. The mean and stan-
dard deviation are calculated per mini-batch of examples, and
for each element of the output vector separately, in the case of
a dense layer, or for each feature map separately and across all
spatial locations, in the case of a convolutional layer. The target
mean and standard deviation are again decided for each element
of the output vector / feature map separately in the case of a
dense layer / convolutional layer, and are additional parameters
of the model that are learned during training. At inference time,
mini-batch mean and standard deviation are replaced by their
equivalents calculated on the whole training set.

All neural network models in this work use Batch Normal-
ization for all hidden layers, not including the softmax layer.

2.3. Dropout

Dropout [18] is a technique for preventing overfitting in neu-
ral network models. When dropout is applied on some layer
of a neural network, each element in the output (possibly mul-
tidimensional output, as in convolutional layers) is set to zero
with probability p. This process is being done for each train-
ing example separately. At inference time, dropout is not used,
therefore on average test examples might induce bigger outputs
in absolute values, compared to training examples. To compen-
sate for this effect, at inference time the output of the layer with
dropout is multiplied by 1

1−p
. By using dropout, we might pre-

vent different units in the neural network from co-adapting too
much.

2394

Table 1: Architectures of the three main settings using neural networks.

Data Augmentation Features Convolutional Layers Dense Layers Batch Normalization Dropout
Yes MFCC + deltas + delta-deltas 3 2 Yes 0.5
Yes ComParE 2013 0 1 Yes 0.5
No ComParE 2013 0 4 Yes 0.5

2.4. Data Augmentation

As was mentioned before, in some of our models we augment
the training dataset by replacing each training example x with
a few samples x1, . . . , xr from it. In this work, each training
example is an audio signal, and each sample is a continuous
patch of the original audio signal. It is important to note that,
two samples that are almost completely overlapping, are still
very different in values when compared element-wise for each
element in the input.

For classification at inference time, we need to predict one
class label for each example x in a test/development set. Note
that, in the case of a neural network classifier with a softmax
layer, for each sample xi the network outputs the selected class
label yi, as well as a probability pij for each class j. We ex-
amine three different ways to combine the class predictions /
probability distributions from the samples x1, . . . , xr into one
class prediction y for the example x:

• Using the prediction of the sample the classifier is most
sure about: y = argmaxj max({pij}1≤i≤r)

• Averaging all predictions: y = argmaxj
1
r

r∑
i=1

pij

• Majority vote: y is the the most common value in
(y1, . . . , yr). In case two classes’ labels are equally
common, the one with the lower index is chosen.

Except for enlarging the training dataset, replacing exam-
ples with shorter samples extracted from them has two addi-
tional properties, that are crucial in order to use a feedforward
neural network model on this data. First, using fixed size sam-
ples from the training data forces all inputs to be of the same
size, allowing us to use feedforward neural networks for this
problem. Second, since the original audio clips from the Native
Language dataset are approximately 45 seconds long, extracting
LLDs from short time windows can result in an infeasible size
of input, and using shorter samples may alleviate this problem.

3. Experiments
For the main model used in this paper, we augment the training
set by replacing each example with 10 seconds samples from it,
with the starting point of samples shifted by one second. For ex-
ample, for a 45 seconds audio signal, 36 samples of 10 seconds
will replace the original audio signal in the training set. The
augmented training set contains 122,980 examples, compared
to 3,300 in the original set. For each example in the augmented
dataset, we extract 12 MFCC features and the logarithmic en-
ergy for windows of 25 ms shifted by 10 ms. In addition, we
extract first and second order delta regression coefficients, to
result in a total 39 features to represent each 25 ms time win-
dow. We apply mean and standard deviation normalization for
each feature separately.

We experiment with different network architectures, learn-
ing rate, momentum, dropout rate and training algorithm, and
we report the setting that was used in our best performing model

on the development set. The network contains three convolu-
tional layers with 350 feature maps each, with a window size of
five time steps, shifted by two time steps. In the first two layers,
max-pooling is used, to pool over non-overlapping groups of
two time steps. After each convolutional layer, a maxout activa-
tion function [23] is applied, grouping sets of two feature maps
with the max operator, to result in 175 output feature maps for
each convolutional layer. The output of the third convolutional
layer is flattened to be one dimensional, and is fed into two con-
secutive dense layers with 1000 hidden units each, and a maxout
activation function applied over groups of two units. The output
of the second dense layer is fed into a softmax layer to output a
probability distribution over the possible classes.

Batch Normalization is applied for each of the hidden lay-
ers (convolutional and dense) just before applying the activa-
tion function. Dropout is as well applied for all hidden layers,
with dropout probability of 0.5. Initial values for all weights
in the network were sampled from a Gaussian distribution with
a standard deviation of 0.1. Optimization is performed using
stochastic gradient descent with momentum [24], using a learn-
ing rate of 0.1, momentum value of 0.9 and a mini-batch size
of 128 examples. Gradient-Clipping [25] is applied as well, to
limit the L2 norm of the gradient to 100.0. The selected model
is the one performing best on the development set, and train-
ing is stopped after 25 training epochs with no improvement
in Unweighted Average Recall (UAR) on the development set,
using all three ways to combine predictions on samples to pre-
dictions on full-length examples, described in Section 2.4. The
experiments were performed using the deep learning framework
Blocks [26] based on Theano [27, 28].

Table 2: Unweighted Average Recall on the development set
for different values of the complexity parameter C, for an SVM
classifier with a linear kernel.

C UAR [%]
5 50.40
2 50.60
1 50.61

10−1 50.33
10−2 52.18
10−3 53.64
10−4 55.11
10−5 53.66

For comparison, two additional settings using neural net-
works are evaluated. First, a setting where we use the same
data augmentation technique as the main model, but use the
challenge’s provided feature set (the ComParE 2013 feature set,
with 6373 features), which includes functionals computed over
LLDs. Second, a setting in which we use challenge’s provided
feature set and do not use data augmentation. We extract the
ComParE 2013 features from each 10 seconds example, using
openSMILE [29]. Note, that these features are not ordered by

2395

Table 3: Unweighted Average Recall on the development and test sets for best models of each of the four experiment settings and the
challenge baseline. When data augmentations was used, we also report the UAR of samples from the development set, before combining
the predictions on samples to predictions on full-length examples.

Classifier Features Data Augment’ Dev’ UAR [%] Best Predictor Samples UAR [%] Test UAR [%]
SVM (baseline) ComParE 2013 No 45.10 — — 47.50

SVM ComParE 2013 Yes 55.11 Majority Voting 41.94 —
NN ComParE 2013 No 50.03 — — —
NN ComParE 2013 Yes 55.78 Majority Voting 42.98 —
NN MFCC + d + dd Yes 59.67 Mean 50.99 55.95

NN (ensemble) MFCC + d + dd Yes 61.47 — — 58.33

time or any other order, therefore it does not make sense to use
convolutional layers in this case. Since all settings are different
one from the other by the input features or the size of the train-
ing data, we had to configure each setting separately. We found
that the same learning rate, momentum and dropout values, as
well as the number of hidden units in the dense layers and the
choice of activation function that yield best results on the de-
velopment set, are the same in our main setting and in the two
additional settings described above, leaving only the number of
hidden layers to vary. An overview of the architectures used for
the three settings we discussed so far appears in Table 1.

In the last additional setting we use for comparison, we
still use the same training data augmentation method and the
ComParE 2013 features, but we use a Support Vector Machine
(SVM) with a linear kernel as the classifier, instead of a neu-
ral network. Since an SVM in its basic version does not output
a probability distribution over the possible classes, at inference
time we use only majority voting in order to combine the predic-
tions on the 10 seconds samples to one prediction on the longer
example from the development / test set. We use the implemen-
tation of an SVM from the Python package scikit-learn [30].
The complexity parameter C is optimized using the develop-
ment set. The Unweighted Average Recall on the development
set for the different values of C is found in Table 2.

Table 3 contains the UAR for the development and test sets
for each of the total four experiment setting (three with Neural
Networks, one with an SVM) and the challenge baseline. From
the results in the table, it is evident that, the best performing
model on the development set was from the setting of a con-
volutional neural network with MFCC + deltas + delta-deltas
input features, yielding a UAR of 59.67%, outperforming the
challenge baseline (45.10%) by a large margin. A great im-
provement over the challenge baseline was observed also for the
test set results, where our best model yielded a UAR of 55.95%,
compared to 47.50% of the challenge baseline model. In partic-
ular, our best setting yielded superior results over a similar set-
ting that differs only by the input features used. These results
are positive evidence that simpler and more general-purpose
features, paired with a convolutional neural network and a large
enough dataset, can outperform a standard approach relying on
a large number of specialized features, as we hypothesized in
the introduction.

In addition, when data augmentation was used, Table 3
also reports the UAR on the samples themselves from the de-
velopment set, and the best predictor, that is, the best method
to combine the predictions on samples to one prediction on a
full-length example. The results in the table allow us to eval-
uate the contribution of the training data augmentation, which
seems to improve the results for both SVM and neural network
classifiers, using the ComParE features (a setting with a neural

network classifier, no data augmentation and MFCC + deltas
+ delta-deltas input features was not evaluated for comparison,
due to infeasible input size). For the SVM classifiers, combing
the predictions on samples that were classified with a UAR of
only 41.94%, was enough to yield a UAR of 55.11% for full-
length examples. A similar phenomenon regarding the gap be-
tween the UAR on samples and full-length examples is present
in all experiment settings that include data augmentation.

To further improve our results, we evaluated the majority
voting of an ensemble, comprised of our best model together
with six other models from the same setting, that differ from
the best model by the number of feature maps in the convolu-
tional layers, dropout probability, learning rate and momentum
value. The ensemble of models yielded a UAR of 61.47% on
the development set, and 58.33% on the test set.

4. Conclusion
We compared models from a few settings of neural networks
and Support Vector Machines (SVM), differing in data aug-
mentation and input features used, for the classification task of
the INTERSPEECH 2016 Computational Paralinguistics Native
Language subchallenge. For training data augmentation, we re-
placed the original examples with shorter overlapping samples
extracted from them, multiplying the number of training ex-
amples by more than 37. We found that the best performing
model on the development set is a Convolutional Neural Net-
work model, using the augmented data set and trained in an
end-to-end manner from MFCCs and their first and second or-
der delta regression coefficients as input features. In particular,
our best model obtained an Unweighted Average Recall (UAR)
of 55.95% on the challenge test set (and 58.33% with an ensem-
ble of similar models), improving over the challenge baseline of
47.50% by a large margin. The results are a positive evidence
that specialized features for tasks in computation paralinguistics
can be replaced by general-purpose and simpler features like
MFCCs. In addition, we evaluated the isolated effect of train-
ing data augmentation, that yielded a 10.01% improvement in
UAR using an SVM classifier with the provided challenge fea-
tures, and a 5.75% improvement in UAR using a neural network
model with the same features.

5. Acknowledgements
This work has been partially supported by the European Com-
munity’s Seventh Framework Programme through the ERC
Starting Grant No. 338164 (iHEARu) and the BMBF IKT2020-
Grant under grant agreement No. 16SV7213 (EmotAsS). We
further thank the NVIDIA Corporation for their support of this
research by Tesla K40-type GPU donation.

2396

6. References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-

sification with deep convolutional neural networks,” in Proc. of
Advances in neural information processing systems (NIPS), Lake
Tahoe, NV, 2012, pp. 1097–1105.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. of The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1–
9.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Maga-
zine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[4] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. C.
Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos,
E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Y. Hannun,
B. Jun, P. LeGresley, L. Lin, S. Narang, A. Y. Ng, S. Ozair,
R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta,
Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and
Z. Zhu, “Deep speech 2: end-to-end speech recognition in English
and Mandarin,” arXiv preprint arXiv:1512.02595, 2015.

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. of Advances in neural
information processing systems (NIPS), Montreal, Canada, 2014,
pp. 3104–3112.

[6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.

[7] B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon,
A. Baird, A. Elkins, Y. Zhang, E. Coutinho, and K. Evanini, “The
INTERSPEECH 2016 Computational Paralinguistics Challenge:
Deception & Sincerity,” in Proc. of INTERSPEECH 2016, 17th
Annual Conference of the International Speech Communication
Association, San Francsico, CA, 2016.

[8] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi,
M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and
S. Kim, “The INTERSPEECH 2013 Computational Paralinguis-
tics Challenge: Social Signals, Conflict, Emotion, Autism,” in
Proc. of INTERSPEECH 2013, 14th Annual Conference of the
International Speech Communication Association, Lyon, France,
2013, pp. 148–152.

[9] G. Keren and B. Schuller, “Convolutional RNN: an enhanced
model for extracting features from sequential data,” in Proc. of
2016 International Joint Conference on Neural Networks (IJCNN)
as part of the IEEE World Congress on Computational Intelli-
gence (IEEE WCCI), Vancouver, Canada, 2016.

[10] G. Trigeorgis, F. Ringeval, R. Brückner, E. Marchi, M. Nico-
laou, B. Schuller, and S. Zafeiriou, “Adieu features? End-to-end
speech emotion recognition using a deep convolutional recurrent
network,” in Proc. of the 41st IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Shanghai,
P. R. China, 2016, pp. 5200–5204.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[12] B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli,
F. Burkhardt, R. van Son, F. Weninger, F. Eyben, T. Bock-
let, G. Mohammadi, and B. Weiss, “The INTERSPEECH 2012
Speaker Trait Challenge,” in Proc of. INTERSPEECH 2012, 13th
Annual Conference of the International Speech Communication
Association, Portland, OR, 2012, pp. 254–257.

[13] B. Schuller, S. Steidl, A. Batliner, J. Epps, F. Eyben, F. Ringeval,
E. Marchi, and Y. Zhang, “The INTERSPEECH 2014 Computa-
tional Paralinguistics Challenge: Cognitive & Physical Load,” in
Proc. of INTERSPEECH 2014, 15th Annual Conference of the In-
ternational Speech Communication Association, Singapore, Sin-
gapore, 2014, pp. 427–431.

[14] B. Schuller, S. Steidl, A. Batliner, S. Hantke, F. Hönig, J. R.
Orozco-Arroyave, E. Nöth, Y. Zhang, and F. Weninger, “The
INTERSPEECH 2015 Computational Paralinguistics Challenge:
Degree of Nativeness, Parkinson’s & Eating Condition,” in Proc.
of INTERSPEECH 2015, 16th Annual Conference of the Inter-
national Speech Communication Association, Dresden, Germany,
2015, pp. 478–482.

[15] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, 2015.

[17] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Proc. of INTERSPEECH 2015,
16th Annual Conference of the International Speech Communica-
tion Association, Dresden, Germany, 2015, pp. 3586–3589.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929–1958, 2014.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc.
of of the 32nd International Conference on Machine Learning
(ICML), Lille, France, 2015, pp. 448–456.

[20] J. S. Bridle, “Probabilistic interpretation of feedforward classi-
fication network outputs, with relationships to statistical pattern
recognition,” in Neurocomputing. Springer, 1990, pp. 227–236.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[23] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and
Y. Bengio, “Maxout networks,” in Proc. of the 30th International
Conference on Machine Learning (ICML), Atlanta, GA, 2013, pp.
1319–1327.

[24] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in Proc.
of the 30th international conference on machine learning (ICML),
Atlanta, GA, 2013, pp. 1139–1147.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in Proc. of the 30th International
Conference on Machine Learning (ICML), Atlanta, GA, 2013, pp.
1310–1318.

[26] B. van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk,
D. Warde-Farley, J. Chorowski, and Y. Bengio, “Blocks and fuel:
Frameworks for deep learning,” arXiv preprint arXiv:1506.00619,
2015.

[27] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements,” Deep Learning and Unsupervised Fea-
ture Learning Workshop, Advances in neural information process-
ing systems (NIPS), Lake Tahoe, NV, 2012.

[28] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: a CPU and GPU math expression compiler,” in Proc.
of the Python for Scientific Computing Conference (SciPy), vol. 4,
2010, p. 3.

[29] F. Eyben, F. Weninger, F. Groß, and B. Schuller, “Recent devel-
opments in openSMILE, the Munich open-source multimedia fea-
ture extractor,” in Proc. of the 21st ACM International Conference
on Multimedia, Barcelona, Spain, 2013, pp. 835–838.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

2397

