
Deep Bidirectional Long Short-Term Memory Recurrent Neural
Networks for Grapheme-to-Phoneme Conversion utilizing

Complex Many-to-Many Alignments

Amr El-Desoky Mousa1, Björn Schuller1,2

1Chair of Complex & Intelligent Systems, University of Passau, Passau, Germany
2Department of Computing, Imperial College London, London, UK

amr.mousa@uni-passau.de, schuller@ieee.org

Abstract
Efficient grapheme-to-phoneme (G2P) conversion models

are considered indispensable components to achieve the state-
of-the-art performance in modern automatic speech recognition
(ASR) and text-to-speech (TTS) systems. The role of these
models is to provide such systems with a means to generate ac-
curate pronunciations for unseen words. Recent work in this do-
main is based on recurrent neural networks (RNN) that are capa-
ble of translating grapheme sequences into phoneme sequences
taking into account the full context of graphemes. To achieve
high performance with these models, utilizing explicit align-
ment information is found essential. The quality of the G2P
model heavily depends on the imposed alignment constraints.

In this paper, a novel approach is proposed using complex
many-to-many G2P alignments to improve the performance of
G2P models based on deep bidirectional long short-term mem-
ory (BLSTM) RNNs. Extensive experiments cover models with
different numbers of hidden layers, projection layer, input splic-
ing windows, and varying alignment schemes. One observes
that complex alignments significantly improve the performance
on the publicly available CMUDict US English dataset. We
compare our results with previously published results.

Index Terms: grapheme-to-phoneme conversion, long short-
term memory, many-to-many alignments

1. Introduction
G2P conversion is the task of generating a sequence of pro-
nunciation symbols (phonemes) for a given sequence of letters
(graphemes). It is an essential component in ASR and TTS
systems in order to provide highly accurate pronunciations for
words outside the base lexicon. The quality of the G2P model
significantly affects the performance of the underlying systems.

Successful approaches to G2P conversion use joint se-
quence models [1, 2]. Therein, an initial grapheme-phoneme se-
quence alignment is created. Based on this alignment, an inven-
tory of paired units called graphones is constructed, where ev-
ery unit consists of two joint components, a graphemic compo-
nent and a phonemic component. Then, a joint probability dis-
tribution of words and their pronunciations is modeled as a stan-
dard n-gram language model (LM) over graphone sequences.
Usually, this n-gram model is represented as a weighted finite
state transducer (WFST) [3, 4]. An important parameter of this
model is the maximum possible number of letters or phonemes
per graphone. This parameter represents the alignment con-
straints. The quality of the G2P model is heavily influenced
by the alignment constraints imposed on the model.

In [3], the joint sequence modeling is improved by enhanc-
ing the alignment algorithm and using a RNN LM for N -best
rescoring along with the standard n-gram LM. In [5], condi-
tional and joint maximum entropy (MaxEnt) models are used
for G2P conversion. In [6, 7, 8], conditional random fields
(CRF) are used for G2P conversion. In [9], a discriminative
structure-prediction model based on averaged perceptron and a
margin infused relaxed algorithm (MIRA) is utilized to perform
G2P conversion for English, French, Dutch and German. In
[10], a joint n-gram model is combined with a CRF model. In
[11], many-to-1 alignment constraints are used with CRF mod-
els. However, in [12, 7], many-to-many alignments are used.

Neural network models have also been used for G2P con-
version. In [13], multilayer perceptron (MLP) neural networks
are found to outperform RNNs. Most recently, in [14], unidi-
rectional LSTMs are used with different forms of output de-
lays that enable the model to see several graphemes before out-
putting any phoneme. Another approach experimented in [14],
is the use of BLSTMs with a connectionist temporal classifi-
cation (CTC) layer [15]. The objective in [14] is to avoid the
need of explicit alignment before training. The best results
are achieved via BLSTMs with a CTC layer of 512 units. A
further improvement gain is obtained by combining this model
with a traditional 5-gram WFST model. Another recent work in
[16] uses an encoder-decoder neural network architecture with
a side-conditioned LM to perform sequence-to-sequence G2P
conversion without explicit alignment. This is inspired by the
successful translation model of [17]. Also in [16], a BLSTM
model that utilizes explicit alignment is found to significantly
outperform the encoder-decoder approach without alignment.

In all the recent work with RNN G2P models, not much at-
tention is paid to the alignment problem. Either the alignment
is greatly simplified to the 1-to-1 or 1-to-2 cases, like in [16], or
it is completely avoided, like in [14], which always comes at the
price of significant performance degradation. In this paper, we
explore the utilization of many-to-many alignment constraints
between graphemes and phonemes in order to improve the per-
formance of G2P models based on deep BLSTM RNNs. We
experiment with networks with different numbers of hidden lay-
ers, optional linear projection layer, optional splicing window at
input side, and various alignment schemes. We test our models
on the publicly available CMUDict1 US English dataset. For
the purpose of comparison, we use the same dataset partition-
ing defined in [1, 2, 4, 5, 14].

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-12292836

2. Alignment constraints
The pronunciation generation of the US English words is con-
sidered a difficult task compared to other languages like German
or Spanish. The pronunciations of US English words appear
inconsistent and involve complex alignment relationships be-
tween graphemes and phonemes. These alignments are not usu-
ally restricted to only 1-to-1, 1-to-many or many-to-1. Rather,
the alignment relationships are better described by a mixture
of all these cases. This is known as many-to-many alignment
which is the most general and natural way of alignment. For
example, the word “EXCUSING” with pronunciation “IH K S
K Y UW Z IH NG”, can be aligned as:

graphemes E X C U S I N:G
phonemes IH K:S K Y:UW Z IH NG

Here, we can see the the existence of 1-to-1, 1-to-many and
many-to-1 alignments. In addition, it is quite common in the
alignment process to find some silent letters that are not natu-
rally aligned to any phonemes, like in the word “LATE” with
pronunciation “L EY T” with the alignment:

graphemes L A T E
phonemes L EY T

Therefore, the “null” phoneme (indicated by “ ” in the pre-
vious example) should be considered as a valid phonetic sym-
bol. In other words, the word “many” in the phonetic side of the
alignment should include the case of zero (means no) symbols.
A comprehensive discussion of the alignment constraints and
methods can be found in [18]. In this work, we use the align-
ment algorithm provided by the aligner tool from the Phoneti-
saurustoolkit2. Using this alignment algorithm, we can impose
different types of constraints on the alignment process. The fol-
lowing constraints are explored in our experiments:

• c1) 1-to-{0,1,2} : one grapheme is aligned to null, one,
or two phonemes.

• c2) {1,2}-to-{0,1,2}: one or two graphemes are aligned
to null, one, or two phonemes.

• c3) {1,2,3}-to-{0,1,2}: one, two, or three graphemes are
aligned to null, 1, or 2 phonemes.

Here, it is worth noting that we do not allow “null”
graphemic symbols. Thus, we do not consider cases where no
grapheme is aligned to one or more phonemes. The reason is
that the existence of such a symbol will add a great complexity
to the process of finding all possible segmentations of a given
graphemic string given a finite set of all possible single and
compound graphemes. We will see later that this process is
required by our decoding approach.

3. Recurrent neural networks
3.1. Standard RNN

A RNN can map from a sequence of input observations to a se-
quence of output labels. The mapping is defined by activation
weights and a non-linear activation function as in a standard
MLP. However, recurrent connections allow to access activa-
tions from past time. For an input sequence xT

1 , a RNN com-
putes the hidden sequence hT

1 and the output sequence yT
1 by

performing the following operations for t = 1 to T [19]:

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

2https://github.com/AdolfVonKleist/Phonetisaurus

where H is the hidden layer activation function, Wxh is the
weight matrix between input and hidden layer, Whh is the re-
current weight matrix between hidden layer and itself, Why is
the weight matrix between the hidden and output layer, bh and
by are the hidden and output layer bias vectors, respectively. In
a standard RNN, H is usually an element-wise application of
sigmoid function. Such a network is usually trained using the
back-propagation through time (BPTT) training [20].

3.2. LSTM

In [21], an alternative RNN called Long Short-Term Memory
(LSTM) is introduced where the conventional neuron is re-
placed with a so-called memory cell controlled by input, out-
put and forget gates in order to overcome the vanishing gradient
problem of traditional RNNs [22, 23]. In this case, H can be
described by the following composite function [19]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (4)

ct = ftct−1+it tanh(Wxcxt+Whcht−1+bc) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot tanh(ct), (7)

where σ is the sigmoid function. i,f ,o and c are, respectively,
the input, forget, output gates and cell activation vectors.

3.3. Bidirectional LSTM

A BLSTM processes the input sequence in both directions with
two sub-layers in order to account for the full input context.
These two sub-layers compute forward and backward hidden

sequences
−→
h ,
←−
h respectively, which are then combined to com-

pute the output sequence y as follows [19] (see Fig.1):

−→
h t = H(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
) (8)

←−
h t = H(W

x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h
) (9)

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (10)

���� …… ���� ��

���� …

ℎ	⃗ ���

ℎ⃖	���

ℎ	⃗ �

ℎ⃖	�

ℎ	⃗ ���

ℎ⃖	���

… ���� ��

Outputs

Backward Layer

Forward Layer

Inputs
Figure 1: Architecture of BLSTM.

4. G2P conversion model
The training data for the G2P conversion model comes in a form
of a dictionary with pairs of words and their pronunciations. It
is commonly possible that one word has multiple pronunciation
variants in the dictionary. These variants are treated as separate
training examples for the G2P model. We start our model cre-
ation by aligning all the word-pronunciation pairs of the train-
ing dictionary using the Phonetisaurus aligner tool following
each of the three different alignment constraints in Sec.2. We

2837

create a different G2P conversion model for each imposed con-
straint separately. We use the aligned grapheme-phoneme se-
quences to train a BLSTM network described in Sec.3.3. For a
given grapheme sequence g = g1, g2, ...gT and a correspond-
ing aligned phoneme sequence p = p1, p2, ..., pT , the BLSTM
network provides the posterior probability p(p|g) as follows:

p(p|g) = p(pT1 |gT1) ≈
T∏

t=1

p(pt|gT1). (11)

This probability assumes that every output phonemic token3 pt
at each time step t is conditionally dependent on the complete
grapheme sequence gT1 . Thus, the full context is exploited to
predict the individual component tokens of the phoneme se-
quence. Here, we should note that the product of Eq. 11 runs
over the highest probable phonemic tokens at all the time steps
from 1 to T as provided by the neural network.

In case we use the simplest alignment constraint c1 defined
in Sec.2. Then, for a given word of our test set, we have only a
single grapheme sequence g defined by segmenting the word
into single letters, and thus we can find the optimum corre-
sponding phoneme sequence p∗ by maximizing over the pos-
terior probability of Eq.11 as follows:

p∗ = argmax
p

p(p|g). (12)

However, if we use the other more complex alignment con-
straints c2 or c3, then it becomes more difficult to find the op-
timum corresponding phoneme sequence to a given word. The
problem arises from the fact that there is no single segmenta-
tion of this word that can be used to deterministically define
the graphemic tokens at all time step. There are indeed many
valid grapheme sequences for a given word. Every grapheme
sequence corresponds to a different valid segmentation.

To solve this problem, we propose to get a list of all valid
segmentations that are defined over the grapheme vocabulary.
This vocabulary contains all the valid single and compound
graphemes collected from the aligned training data. The seg-
mentation algorithm uses a recursive tree building procedure.
Then, to find the optimum phoneme sequence for a given test
word, we actually need to find the most probable grapheme se-
quence and its corresponding phoneme sequence. Therefore,
we choose to maximize over the joint probability as follows:

p∗,g∗ = argmax
p,g

p(p,g) = argmax
p,g

p(p|g)p(g). (13)

The posterior probability of p(p|g) is computed from the
BLSTM neural network as in Eq.11. However, the prior proba-
bility of the grapheme sequence p(g) is modeled by a grapheme
LM trained on the segmented training words as defined by the
underlying alignment. This LM is given as:

p(g) = p(gT1) =

T∏

t=1

p(gt|gt−1
1). (14)

We use a long-span LSTM LM [24, 25] linearly interpolated
with a traditional n-gram backoff LM smoothed with modi-
fied Kneser-Ney (MKN) smoothing [26], and another n-gram
MaxEnt LM [27, 28]. Another useful score that can be used
to refine the optimization process of Eq.13 is the probability of
the phoneme sequence p(p) = p(pT1) as estimated by another
phoneme LM trained analogously to the grapheme LM.

3A phonemic token could be a phoneme or multi-phoneme, and a
graphemic token could be a grapheme or multi-grapheme.

5. Dataset
We perform our experiments on the CMUDict US English
dataset (release 0.6, 1998). We use the dataset partitioning that
comes with the Phonetisaurus distribution [4]. Therein, both the
training and test partitions are provided. The training set con-
tains 106,837 words (113,438 pronunciations), whereas the test
set contains 12,000 words (12,753 pronunciations). Form the
training set, we randomly select 2,670 words (2,835 pronunci-
ations) as a development set. This is the same evaluation setup
as in [1, 2, 4, 5, 14]. Thus, the results are directly comparable.

We report the word error rate (WER) and the phoneme error
rate (PER) for our best hypothesized pronunciation. In case we
have multiple reference pronunciations, a word error is counted
only if the hypothesized pronunciation does not match any ref-
erence pronunciation. For PER computation, the pronunciation
variant with the smallest edit distance is used. This strategy is
similar to the one adopted in most previous work [16].

In addition to WER/PER for our best hypothesized pro-
nunciation, we report the best WER/PER for all pronunciations
that correspond to segmentation variants of the same test words.
This gives an idea about the potential improvement.

Table 1 shows the number of unique grapheme and
phoneme tokens produced after applying the three alignment
constraints c1, c2 or c3 listed in Sec.2. In addition, we report
the average number of tokens per aligned sequence as well as
the average number of valid segmentations per test word. Here,
we should note that we use special start and end tokens for
grapheme and phoneme sequences, namely <is> and </is>
for graphemes, and <os> and </os> for phonemes.

Table 1: Statistics on the aligned CMUDict.
alignment

c1 c2 c3
number of unique grapheme tokens 29 170 679
number of unique phoneme tokens 176 188 193

average tokens per sequence 9 8 8
average segmentations per word 1 7 20

6. Experiments
In our initial set of experiments, we use BLSTM neural net-
works to perform G2P mappings without using any score from
grapheme or phoneme LMs. We use different numbers of hid-
den layers from 1 up to 3 layers. Each hidden layer consists of
500 or 1000 memory cells. The hidden layers are followed by
an output softmax layer with a cross-entropy error function and
momentum of 0.9. To speed up the training, we use sequence
level parallelization with 50 sequences without truncation. The
learning rate is set initially to 10−3 and then decreased gradu-
ally to 10−6. The training process is controlled by monitoring
the cross-entropy error on the development set. Table 2 shows
the WER results for the three alignment constraints.

Table 2: WERs [%] on CMUDict test set using BLSTMs with
different alignment constraints.

alignment
#hidden layers × layer size c1 c2 c3

1 × 500 35.84 33.02 33.18
1 × 1000 34.80 33.08 32.73
2 × 500 29.40 28.22 29.18
2 × 1000 29.33 28.90 28.88
3 × 500 28.16 27.64 28.00
3 × 1000 28.19 29.18 27.93

2838

The results of Table 2 show significant performance im-
provements in WERs when using the alignment constraints c2
and c3 compared to c1 (at the 95% statistical significance level
following the test in [29]). In addition, we see consistent WER
improvements when adding more hidden layers to the neural
networks. The best performances with alignment constraints c1
and c2 are achieved with 500 cells per hidden layer, whereas, for
alignment constraint c3, the best performance is achieved with
1000 cells per hidden layer. This is likely due to the remarkably
larger input layer size of 679 units in case of c3 compared to 29
units for c1 and 170 units for c2 (see Table 1).

Based on the results of Table 2, we decided to go further
with alignment constraints c2 and c3 using a larger number of
hidden layers and fixing the number of hidden cells to 500 for
alignment constraint c2, and 1000 for alignment constraint c3.
In addition, to select the best pronunciation sequence, we add
probability scores from a grapheme LM and a phoneme LM.
As previously discussed in Sec.4, both LMs are obtained by lin-
early interpolating probabilities from 3 types of models, namely
a long-span unidirectional LSTM LM, a 7-gram backoff MKN
smoothed LM and a 7-gram MaxEnt LM. The latter two mod-
els are estimated using the SRILM toolkit [30]. The interpola-
tion weights are optimized on the segmented development data.
Each of the two LSTM LMs uses a single hidden layer with
300 memory cells. All the uni- and bidirectional LSTM neural
networks in our work are trained and optimized using our own
actively developed CURRENNT4 toolkit [31]. Table 3 shows
the WER and PER results for this set of experiments.

Table 3: Results on CMUDict test set using BLSTMs with 3
to 6 hidden layers, grapheme/phoneme LMs and many-to-many
alignments (c2, c3). The dimension of each hidden layer is 500
for c2 alignment, and 1000 for c3 alignment.

alignment
c2 c3

hidden WER PER WER PER
layers [%] [%] [%] [%]

3 26.45 5.97 26.80 6.09
4 26.08 5.88 26.74 6.05
5 26.46 5.97 27.34 6.23
6 26.10 5.89 29.07 6.55

We can see in Table 3 that the best results are achieved with
the alignment constraint c2. The use of grapheme and phoneme
LMs helps to improve the performance with a significant mar-
gin. This can be observed by comparing the WERs at the first
row of Table 3 with the WERs at the last two rows of Table 2.
Moreover, the optimum number of hidden layers for this setup
is found to be 4 hidden layers for both c2 and c3 alignments.

For our best performing experiment in Table 3, we go a step
further and experiment with an additional linear projection layer
of dimension 100 units following the input layer that uses the 1-
hot encoding. In addition, we examine the influence of using an
input splicing window of size 3 graphemic tokens (1 token be-
fore and 1 token after) on the performance of the G2P BLSTM
network as well as the use of a decoding beam of size 10. This
delivers our best results as shown in Table 4 in comparison to
the previously reported results. In addition to the results for our
best hypothesized pronunciation, we report the oracle WER and
PER for all pronunciations that correspond to the valid segmen-
tations of test words.

4http://sourceforge.net/p/currennt; note that some improved features
for easier estimation of LMs are not yet available in this public version.

Table 4: Results on CMUDict test set using a 4 hidden layer
BLSTM of dimension 500, grapheme/phoneme LMs, many-to-
many alignments (c2), a linear projection layer of dimension
100, input splicing window of size 3, and a decoding beam of
size 10. Previous results are listed at the end of the table.

1st best oracle
experiment WER PER WER PER

[%] [%] [%] [%]
BLSTM: 4 × 500 26.08 5.88 23.46 4.66
+ projection layer 25.47 5.73 22.91 4.52
+ splicing window 25.10 5.66 22.38 4.45
+ decoding beam 23.23 5.37 3.37 0.62

Novak et al. [4] 33.55 8.24
Galescu & Allen [2] 28.50 7.00
Rao et al. [14] 25.80 -
Chen [5] 24.70 5.90
Bisani & Ney [1] 24.53 5.88

In Table 4, we can see improvement gains due to the use
of a linear projection layer. Also, a further improvement gain
can be obtained by using an input splicing window. Our best
results [WER: 23.23%, PER: 5.37%] are achieved by using
a decoding beam of size 10 at the BLSTM output layer. No
further gains are observed with larger beams. Our results are
considerably better than the best previously published results in
terms of both WER and PER. Moreover, our oracle WERs and
PERs over segmentation variants show a large room of potential
improvement. Here, it is important to note that we do not con-
sider comparisons with experiments that involve model combi-
nations, like in [14] (BLSTM-CTC + 5-gram WFST, WER =
21.3%), include the development set in training, like in [10]
(WER = 23.4%, PER = 5.5%), or use a different version of
CMUDict, like in [16]5 (WER = 23.55%, PER = 5.45%).

7. Conclusions
In this paper, we have introduced a novel approach to G2P con-
version that uses complex many-to-many alignments with deep
BLSTM RNNs. We have examined models with different num-
bers of hidden layers, linear projection layer, input splicing win-
dows, and varying alignment constraints. The models are en-
hanced by using grapheme level LMs based on unidirectional
LSTMs, backoff models and MaxEnt models. It has been found
that the many-to-many alignments allow for improved results on
the publicly available CMUDict US English dataset compared
to the 1-to-many alignments. Further improvements have been
achieved by decoding the output of the BLSTM by a phoneme
level LM using a beam search mechanism. Results of the pro-
posed models are compared to the previously published results
with similar setup. We have achieved a new state-of-the-art in
terms of both WER and PER. As a future work, we plan to
compare our approach with an alignment free approach using
encoder-decoder neural networks with attention mechanism.

8. Acknowledgements
The research leading to these results has received funding from
the European Unions Horizon 2020 Programme through the
Innovation Actions #644632 (MixedEmotions) and #645378
(ARIA-VALUSPA), and the German Federal Ministry of Edu-
cation, Science, Research and Technology (BMBF) under grant
agreement #16SV7213 (EmotAsS). We thank NVIDIA Corpo-
ration for supporting this research by Tesla K40 GPU donation.

5In the work of [16], CMUDict release 0.7 is used.

2839

9. References
[1] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-

phoneme conversion,” Speech Communication, vol. 50, no. 5, pp.
434 – 451, May 2008.

[2] L. Galescu and J. F. Allen, “Pronunciation of proper names with a
joint n-gram model for bi-directional grapheme-to-phoneme con-
version,” in Proc. Interspeech Conference of the International
Speech Communication Association, Denver, Colorado, USA,
September 2002, pp. 109 – 112.

[3] J. R. Novak, N. Minematsu, K. Hirose, C. Hori, H. Kashioka,
and P. R. Dixon, “Improving WFST-based G2P conversion with
alignment constraints and RNNLM n-best rescoring,” in Proc. In-
terspeech Conference of the International Speech Communication
Association, Portland, Oregon, USA, September 2012, pp. 2526–
2529.

[4] J. R. Novak, N. Minematsu, and K. Hirose, “Failure transitions
for joint n-gram models and g2p conversion,” in Proc. Interspeech
Conference of the International Speech Communication Associa-
tion, Lyon, France, August 2013, pp. 1821–1825.

[5] S. F. Chen, “Conditional and joint models for grapheme-to-
phoneme conversion,” in Proc. European Conference on Speech
Communication and Technology, Geneva, Switzerland, Septem-
ber 2003.

[6] H. Chen and A. F. Murray, “Continuous restricted Boltzmann ma-
chine with an implementable training algorithm,” Vision, Image
and Signal Processing, IEE Proc., vol. 150, no. 3, pp. 153 – 158,
2003.

[7] P. Lehnen, S. Hahn, A. Guta, and H. Ney, “Hidden conditional
random fields with m-to-n alignments for grapheme-to-phoneme
conversion,” in Proc. Interspeech Conference of the International
Speech Communication Association, Portland, OR, USA, Septem-
ber 2012, pp. 2554–2557.

[8] P. Lehnen, A. Allauzen, T. Lavergne, F. Yvon, S. Hahn, and
H. Ney, “Structure learning in hidden conditional random fields
for grapheme-to-phoneme conversion,” in Interspeech, Lyon,
France, August 2013, pp. 2326–2330.

[9] S. Jiampojamarn, C. Cherry, and G. Kondrak, “Joint processing
and discriminative training for letter-to-phoneme conversion,” in
Proc. Annual Meeting of the Association for Computational Lin-
guistics, Columbus, Ohio, USA, June 2008, pp. 905–913.

[10] K. Wu, C. Allauzen, K. B. Hall, M. Riley, and B. Roark, “Encod-
ing linear models as weighted finite-state transducers,” in Proc.
Interspeech Conference of the International Speech Communica-
tion Association, Singapore, Singapore, September 2014.

[11] P. Lehnen, S. H. Andreas, Guta, and H. Ney, “Incorporating align-
ments into conditional random fields for grapheme to phoneme
conversion,” in Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Prague, Czech Republic,
May 2011, pp. 4916–4919.

[12] S. Jiampojamarn, G. Kondrak, and T. Sherif, “Applying many-to-
many alignments and hidden markov models to letter-to-phoneme
conversion,” in Proc. Human Language Technology Conference of
the North American Chapter of the Association for Computational
Linguistics, Rochester, New York, USA, April 2007, pp. 372–379.

[13] E. B. Bilcu, “Text-to-phoneme mapping using neural networks,”
Ph.D. dissertation, Tampere University of Technology, Tampere,
Finland, October 2008.

[14] K. Rao, F. Peng, H. Sak, and F. Beaufays, “Grapheme-to-phoneme
conversion using long short-term memory recurrent neural net-
works,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, Brisbane, Australia, April 2015,
pp. 4225–4229.

[15] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. Interna-
tional Conference on Machine Learning, Pittsburgh, Pennsylva-
nia, USA, June 2006, pp. 369–376.

[16] K. Yao and G. Zweig, “Sequence-to-sequence neural net models
for grapheme-to-phoneme conversion,” in Proc. Interspeech Con-
ference of the International Speech Communication Association,
Dresden, Germany, May 2015.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. Neural Information Pro-
cessing Systems, Montreal, Canada, December 2014, pp. 3104–
3112.

[18] S. Jiampojamarn and G. Kondrak, “Letter-phoneme alignment:
An exploration,” in Proc. Annual Meeting of the Association for
Computational Linguistics, Uppsala, Sweden, July 2010, pp. 780–
788.

[19] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vancou-
ver, BC, Canada, May 2013, pp. 6645 – 6649.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, no. 323, pp.
533 – 536, 1986.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735 – 1780, 1997.

[22] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12,
no. 10, pp. 2451 – 2471, 1999.

[23] F. A. Gers, “Long short-term memory in recurrent neural net-
works,” Ph.D. dissertation, Department of Computer Science,
Swiss Federal Institute of Technology, Lausanne, EPFL, Switzer-
land, 2001.

[24] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudan-
pur, “Recurrent neural network based language model,” in Inter-
speech, Makuhari, Chiba, Japan, Sep. 2010, pp. 1045 – 1048.

[25] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in Interspeech, Portland, OR,
USA, Sep. 2012.

[26] R. Kneser and H. Ney, “Improved backing-off for M-gram lan-
guage modeling,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1, Detroit, Michi-
gan, USA, May 1995, pp. 181 – 184.

[27] J. Wu, “Maximum entropy language modeling with non-local de-
pendencies,” Ph.D. dissertation, John Hopkins University, Balti-
more, Maryland, USA, 2002.

[28] T. Alumäe and M. Kurimo, “Efficient estimation of maximum en-
tropy language models with N-gram features: an SRILM exten-
sion,” in Proc. Interspeech Conference of the International Speech
Communication Association, Makuhari, Chiba, Japan, September
2010, pp. 1820–1823.

[29] M. Bisani and H. Ney, “Bootstrap estimates for confidence inter-
vals in ASR performance evaluation,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 1,
Montreal, Canada, May 2004, pp. 409 – 412.

[30] A. Stolcke, “SRILM - an extensible language modeling toolkit,”
in Proc. International Conference on Spoken Language Process-
ing, vol. 2, Denver, Colorado, USA, Sep. 2002, pp. 901 – 904.

[31] F. Weninger, J. Bergmann, and B. Schuller, “Introducing CUR-
RENNT – the Munich open-source CUDA RecurREnt Neu-
ral Network Toolkit,” Journal of Machine Learning Research,
vol. 15, no. 99, Oct. 2014.

2840

