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Abstract

When humans learn a new concept, they might ignore exam-
ples that they cannot make sense of at first, and only later
focus on such examples, when they are more useful for learn-
ing. We propose incorporating this idea of tunable sensitivity
for hard examples in neural network learning, using a new
generalization of the cross-entropy gradient step, which can
be used in place of the gradient in any gradient-based training
method. The generalized gradient is parameterized by a value
that controls the sensitivity of the training process to harder
training examples. We tested our method on several bench-
mark datasets. We propose, and corroborate in our experi-
ments, that the optimal level of sensitivity to hard example is
positively correlated with the depth of the network. Moreover,
the test prediction error obtained by our method is generally
lower than that of the vanilla cross-entropy gradient learner.
We therefore conclude that tunable sensitivity can be helpful
for neural network learning.

1 Introduction

In recent years, neural networks have become empirically
successful in a wide range of supervised learning applica-
tions, such as computer vision (Krizhevsky, Sutskever, and
Hinton 2012; Szegedy et al. 2015), speech recognition (Hin-
ton et al. 2012), natural language processing (Sutskever,
Vinyals, and Le 2014) and computational paralinguistics
(Keren and Schuller 2016; Keren et al. 2016). Standard
implementations of training feed-forward neural networks
for classification are based on gradient-based stochastic op-
timization, usually optimizing the empirical cross-entropy
loss (Hinton 1989).

However, the cross-entropy is only a surrogate for the
true objective of supervised network training, which is in
most cases to reduce the probability of a prediction error
(or in some case BLEU score, word-error-rate, etc). When
optimizing using the cross-entropy loss, as we show be-
low, the effect of training examples on the gradient is lin-
ear in the prediction bias, which is the difference between
the network-predicted class probabilities and the target class
probabilities. In particular, a wrong confident prediction in-
duces a larger gradient than a similarly wrong, but less con-
fident, prediction.
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In contrast, humans sometimes employ a different ap-
proach to learning: when learning new concepts, they might
ignore the examples they feel they do not understand, and
focus more on the examples that are more useful to them.
When improving proficiency regarding a familiar concept,
they might focus on the harder examples, as these can con-
tain more relevant information for the advanced learner. We
make a first step towards incorporating this ability into neu-
ral network models, by proposing a learning algorithm with
a tunable sensitivity to easy and hard training examples.
Intuitions about human cognition have often inspired suc-
cessful machine learning approaches (Bengio et al. 2009;
Cho, Courville, and Bengio 2015; Lake et al. 2016). In this
work we show that this can be the case also for tunable sen-
sitivity.

Intuitively, the depth of the model should be positively
correlated with the optimal sensitivity to hard examples.
When the network is relatively shallow, its modeling capac-
ity is limited. In this case, it might be better to reduce sensi-
tivity to hard examples, since it is likely that these examples
cannot be modeled correctly by the network, and so adjust-
ing the model according to these examples might only de-
grade overall prediction accuracy. On the other hand, when
the network is relatively deep, it has a high modeling capac-
ity. In this case, it might be beneficial to allow more sensi-
tivity to hard examples, thereby possibly improving the ac-
curacy of the final learned model.

Our learning algorithm works by generalizing the cross-
entropy gradient, where the new function can be used instead
of the gradient in any gradient-based optimization method
for neural networks. Many such training methods have been
proposed, including, to name a few, Momentum (Polyak
1964), RMSProp (Tieleman and Hinton 2012), and Adam
(Kingma and Ba 2015). The proposed generalization is pa-
rameterized by a value k > 0, that controls the sensitivity
of the training process to hard examples, replacing the fixed
dependence of the cross-entropy gradient. When k = 1 the
proposed update rule is exactly the cross-entropy gradient.
Smaller values of k decrease the sensitivity during training
to hard examples, and larger values of k increase it.

We report experiments on several benchmark datasets.
These experiments show, matching our expectations, that in
almost all cases prediction error is improved using large val-
ues of k for deep networks, small values of k for shallow net-
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works, and values close to the default k = 1 for networks of
medium depth. They further show that using a tunable sen-
sitivity parameter generally improves the results of learning.

The paper is structured as follows: In Section 1.1 related
work is discussed. Section 2 presents our setting and nota-
tion. A framework for generalizing the loss gradient is de-
veloped in Section 3. Section 4 presents desired properties
of the generalization, and our specific choice is given in Sec-
tion 5. Experiment results are presented in Section 6, and we
conclude in Section 7. Some of the analysis, and additional
experimental results, appear in the full version of this paper
due to lack of space (Keren, Sabato, and Schuller 2016).

1.1 Related Work

The challenge of choosing the best optimization objective
for neural network training is not a new one. In the past, the
quadratic loss was typically used with gradient-based learn-
ing in neural networks (Rumelhart, Hinton, and Williams
1988), but a line of studies demonstrated both theoretically
and empirically that the cross-entropy loss has preferable
properties over the quadratic-loss, such as better learning
speed (Levin and Fleisher 1988), better performance (Go-
lik, Doetsch, and Ney 2013) and a more suitable shape of
the error surface (Glorot and Bengio 2010). Other cost func-
tions have also been considered. For instance, a novel cost
function was proposed in Silva et al. (2006), but it is not
clearly advantageous to cross-entropy. The authors of Bah-
danau et al. (2015) address this question in a different setting
of sequence prediction.

Our method allows controlling the sensitivity of the train-
ing process to examples with a large prediction bias. When
this sensitivity is low, the method can be seen as a form of
implicit outlier detection or noise reduction. Several previ-
ous works attempt to explicitly remove outliers or noise in
neural network training. In one work (Smith and Martinez
2011), data is preprocessed to detect label noise induced
from overlapping classes, and in another work (Jeatrakul,
Wong, and Fung 2010) the authors use an auxiliary neural
network to detect noisy examples. In contrast, our approach
requires a minimal modification on gradient-based training
algorithms for neural networks and allows emphasizing ex-
amples with a large prediction bias, instead of treating these
as noise.

The interplay between “easy” and “hard” examples during
neural network training has been addressed in the framework
of Curriculum Learning (Bengio et al. 2009). In this frame-
work it is suggested that training could be more successful if
the network is first presented with easy examples, and harder
examples are gradually added to the training process. In an-
other work (Kumar, Packer, and Koller 2010), the authors
define easy and hard examples based on the fit to the cur-
rent model parameters. They propose a curriculum learning
algorithm in which a tunable parameter controls the propor-
tions of easy and hard examples presented to a learner at
each phase. Our method is simpler than curriculum learning
approaches, in that the examples can be presented at random
order to the network. In addition, our method allows also a
heightened sensitivity to harder examples. In a more recent
work (Zaremba and Sutskever 2014), the authors indeed find

that a curriculum in which harder examples are presented in
early phases outperforms a curriculum that at first uses only
easy examples.

2 Setting and Notation

For any integer n, denote [n] = {1, . . . , n}. For a vector v,
its i’th coordinate is denoted v(i).

We consider a standard feed-forward multilayer neural
network (Svozil, Kvasnicka, and Pospichal 1997), where
the output layer is a softmax layer (Bridle 1990), with n
units, each representing a class. Let Θ denote the neural net-
work parameters, and let zj(x; Θ) denote the value of out-
put unit j when the network has parameters Θ, before the
applying the softmax function. Applying the softmax func-
tion, the probability assigned by the network to class j is

pj(x; Θ) := ezj/
n∑

i=1

ezi . The label predicted by the network

for example x is ŷ(x; Θ) = argmaxj∈[n] pj(x; Θ). We con-
sider the task of supervised learning of Θ, using a labeled
training sample S = {(xi, yi)}mi=1, , where yi ∈ [n], by

optimizing the loss function: L(Θ) :=
m∑
i=1

�((xi, yi); Θ). A

popular choice for � is the cross-entropy cost function, de-
fined by �((x, y); Θ) := − log py(x; Θ).

3 Generalizing the gradient

Our proposed method allows controlling the sensitivity of
the training procedure to examples on which the network
has large errors in prediction, by means of generalizing the
gradient. A naı̈ve alternative towards the same goal would
be using an exponential version of the cross-entropy loss:
� = −| log(py)k|, where py is the probability assigned to the
correct class and k is a hyperparameter controlling the sensi-
tivity level. However, the derivative of this function with re-
spect to py is an undesired term since it is not monotone in k
for a fixed py , resulting in lack of relevant meaning for small
or large values of k. The gradient resulting from the above
form is of a desired form only for k = 1, due to cancellation
of terms from the derivatives of l and the softmax function.
Another naı̈ve option would be to consider l = − log(pky),
but this is only a scaled version of the cross-entropy loss and
amounts to a change in the learning rate.

In general, controlling the loss function alone is not suf-
ficient for controlling the relative importance to the training
procedure of examples on which the network has large and
small errors in prediction. Indeed, when computing the gra-
dients, the derivative of the loss function is being multiplied
by the derivative of the softmax function, and the latter is
a term that also contains the probabilities assigned by the
model to the different classes. Alternatively, controlling the
parameters updates themselves, as we describe below, is a
more direct way of achieving the desired effect.

Let (x, y) be a single labeled example in the training set,
and consider the partial derivative of �(Θ; (x, y)) with re-
spect to some parameter θ in Θ. We have

∂�((x, y); Θ)

∂θ
=

n∑
j=1

∂�

∂zj

∂zj
∂θ

,
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where zj is the input to the softmax layer when the input
example is x, and the network parameters are Θ.

If � is the cross-entropy loss, we have ∂�
∂zj

= ∂�
∂py

∂py

∂zj
and

∂�

∂py
= − 1

py
,

∂py
∂zj

=

{
py(1− py) j = y,

−pypj j �= y.

Hence
∂�

∂zj
=

{
pj − 1 y = j

pj otherwise.

For given x, y,Θ, define the prediction bias of the network
for example x on class j, denoted by εj , as the (signed) dif-
ference between the probability assigned by the network to
class j and the probability that should have been assigned,
based on the true label of this example. We get εj = pj − 1
for j = y, and εj = pj otherwise. Thus, for the cross-
entropy loss,

∂�

∂θ
=

n∑
j=1

∂zj
∂θ

εj . (1)

In other words, when using the cross entropy loss, the effect
of any single training example on the gradient is linear in the
prediction bias of the current network on this example.

As discussed in Section 1, it is likely that in many cases,
the results of training could be improved if the effect of a
single example on the gradient is not linear in the prediction
bias. Therefore, we propose a generalization of the gradient
that allows non-linear dependence in ε.

For given x, y,Θ and for j ∈ {1, . . . , n}, define f :
[−1, 1]n → R

n, let ε = (ε1, . . . , εn), and consider the fol-
lowing generalization of ∂�

∂θ :

g(θ) :=
n∑

j=1

∂zj
∂θ

fj(ε). (2)

Here fj is the j’th component of f . When f is the identity,
we have fj(ε) ≡ ∂�

∂zj
, and g(θ) = ∂�

∂θ . However, we are now
at liberty to study other assignments for f .

We call the vector of values of g(θ) for θ in Θ a pseudo-
gradient, and propose to use g in place of the gradient within
any gradient-based algorithm. In this way, optimization of
the cross-entropy loss is replaced by a different algorithm of
a similar form. However, as we show in Section 5.2, g is not
necessarily the gradient of any loss function.

4 Properties of f
Consider what types of functions are reasonable to use for
f instead of the identity. First, we expect f to be monotonic
non-decreasing, so that a larger prediction bias never results
in a smaller update. This is a reasonable requirement if we
cannot identify outliers, that is, training examples that have a
wrong label. We further expect f to be positive when j �= y
and negative otherwise.

In addition to these natural properties, we introduce an
additional property that we wish to enforce. To motivate

this property, we consider the following simple example.
Assume a network with one hidden layer and a softmax
layer (see Figure 1), where the inputs to the softmax layer
are zj = 〈wj , h〉 + bj and the outputs of the hidden layer
are h(i) = 〈w′

i, x〉 + b′i, where x is the input vector, and
b′i, w

′
i are the scalar bias and weight vector between the in-

put layer and the hidden layer. Suppose that at some point
during training, hidden unit i is connected to all units j in
the softmax layer with the same positive weight a. In other
words, for all j ∈ [n], wj(i) = a. Now, suppose that the
training process encounters a training example (x, y), and
let l be some input coordinate.

Figure 1: Illustrating the state of the network discussed in
above.

What is the change to the weight w′
i(l) that this training

example should cause? Clearly it need not change if x(l) =
0, so we consider the case x(l) �= 0. Only the value h(i) is
directly affected by changing w′

i(l). From the definition of
pj(x; Θ), the predicted probabilities are fully determined by
the ratios ezj/ezj′ , or equivalently, by the differences zj −
zj′ , for all j, j′ ∈ [n]. Now, zj − zj′ = 〈wj , h〉 + bj −
〈wj′ , h〉 + bj′ . Therefore, ∂(zj−zj′ )

∂h(i) = wj(i) − wj′(i) =

a− a = 0, and therefore
∂(zj − zj′)

∂w′
i(l)

=
∂(zj − zj′)

∂h(i)

∂h(i)

∂w′
i(l)

= 0.

We conclude that in the case of equal weights from unit i to
all output units, there is no reason to change the weight w′

i(l)
for any l. Moreover, preliminary experiments show that in
these cases it is desirable to keep the weight stationary, as
otherwise it can cause numerical instability due to explosion
or decay of weights.

Therefore, we would like to guarantee this behavior also
for our pseudo-gradients. Therefore, we require g(w′

i(l)) =
0 in this case. It follows that

0 = g(w′
i(l)) =

n∑
j=1

∂zj
∂w′

i(l)
f(εj)

=
n∑

j=1

∂zj
∂h(i)

∂h(i)

∂w′
i(l)

f(εj) =

n∑
j=1

a · x(l) · f(εj).
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Dividing by a ·x(l), we get the following desired property
for the function f , for any vector ε of prediction biases:

fy(ε) = −
∑
j �=y

fj(ε). (3)

Note that this indeed holds for the cross-entropy loss, since∑
j∈[n] εj = 0, and in the case of cross-entropy, f is the

identity.

5 Our choice of f
In the case of the cross-entropy, f is the identity, leading to
a linear dependence on ε. A natural generalization is to con-
sider higher order polynomials. Combining this approach
with the requirement in Eq. (3), we get the following as-
signment for f , where k > 0 is a parameter.

fj(ε) =

⎧⎨
⎩
−|εy|k j = y,
|εy|k∑

i �=y

εki
· εkj otherwise. (4)

The expression |εy|k∑

i �=y

εki
is a normalization term which makes

sure Eq. (3) is satisfied. Setting k = 1, we get that g(θ) is the
gradient of the cross-entropy loss. Other values of k result in
different pseudo-gradients.

To illustrate the relationship between the value of k and
the effect of prediction biases of different sizes on the
pseudo-gradient, we plot fy(ε) as a function of εy for sev-
eral values of k (see Figure 2). Note that absolute val-
ues of the pseudo-gradient are of little importance, since in
gradient-based algorithms, the gradient (or in our case, the
pseudo-gradient) is usually multiplied by a scalar learning
rate which can be tuned.

As the figure shows, when k is large, the pseudo-gradient
is more strongly affected by large prediction biases, com-
pared to small ones. This follows since |ε|k

|ε′|k is monotonic
increasing in k for ε > ε′. On the other hand, when using
a small positive k we get that |ε|k

|ε′|k tends to 1, therefore, the
pseudo-gradient in this case would be much less sensitive to
examples with large prediction biases. Thus, the choice of
f , parameterized by k, allows tuning the sensitivity of the
training process to large errors. We note that there could be
other reasonable choices for f which have similar desirable
properties. We leave the investigation of such other choices
to future work.

5.1 A Toy Example

To further motivate our choice of f , we describe a very sim-
ple example of a distribution and a neural network. Consider
a neural network with no hidden layers, and only one input
unit connected to two softmax units. Denoting the input by
x, the input to softmax unit i is zi = wix+ bi, where wi and
bi are the network weights and biases respectively.

It is not hard to see that the set of possible prediction
functions x �→ ŷ(x; Θ) that can be represented by this net-
work is exactly the set of threshold functions of the form
ŷ(x; Θ) = sign(x− t) or ŷ(x; Θ) = −sign(x− t).

Figure 2: Size of fy(ε) for different choices of k. Lines are
in the same order as in the legend.

For convenience assume the labels mapped to the two
softmax units are named {−1,+1}. Let α ∈ ( 12 , 1), and sup-
pose that labeled examples are drawn independently at ran-
dom from the following distribution D over R× {−1,+1}:
Examples are uniform in [−1, 1]; Labels of examples in
[0, α] are deterministically 1, and they are −1 for all other
examples. For this distribution, the prediction function with
the smallest prediction error that can be represented by the
network is x �→ sign(x).

However, optimizing the cross-entropy loss on the distri-
bution, or in the limit of a large training sample, would re-
sult in a different threshold, leading to a larger prediction er-
ror (for a detailed analysis see Keren, Sabato, and Schuller,
2016). Intuitively, this can be traced to the fact that the ex-
amples in (α, 1] cannot be classified correctly by this net-
work when the threshold is close to 0, but they still affect
the optimal threshold for the cross-entropy loss.

Thus, for this simple case, there is motivation to move
away from optimizing the cross-entropy, to a different up-
date rule that is less sensitive to large errors. This reduced
sensitivity is achieved by our update rule with k < 1. On
the other hand, larger values of k would result in higher sen-
sitivity to large errors, thereby degrading the classification
accuracy even more.

We thus expect that when training the network using our
new update rule, the prediction error of the resulting network
should be monotonically increasing with k, hence values of
k which are smaller than 1 would give a smaller error. We
tested this hypothesis by training this simple network on a
synthetic dataset generated according to the distribution D
described above, with α = 0.95.

We generated 30,000 examples for each of the training,
validation and test datasets. The biases were initialized to
0 and the weights were initialized from a uniform distribu-
tion on (−0.1, 0.1). We used batch gradient descent with a
learning rate of 0.01 for optimization of the four parame-
ters, where the gradient is replaced with the pseudo-gradient
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Table 1: Experiment results for single-layer networks

TEST ERROR TEST CROSS-ENTROPY LOSS
DATASET LAYER SIZE MOMENTUM SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0.5 0.5 1.76% 1.74% 0.078 0.167
MNIST 800 0.5 0.5 1.67% 1.65% 0.072 0.150
MNIST 1100 0.5 0.5 1.67% 1.65% 0.071 0.145
SVHN 400 0.5 0.25 16.88% 16.16% 0.661 1.576
SVHN 800 0.5 0.125 16.09% 15.64% 0.648 3.108
SVHN 1100 0.5 0.25 16.04% 15.53% 0.626 1.525

CIFAR-10 400 0.5 0.25 48.32% 47.06% 1.430 3.034
CIFAR-10 800 0.5 0.125 46.91% 46.01% 1.388 5.645
CIFAR-10 1100 0.5 0.25 46.43% 45.84% 1.410 2.820

CIFAR-100 400 0.5 0.25 75.18% 74.41% 3.302 6.931
CIFAR-100 800 0.5 0.25 74.04% 73.78% 3.260 7.449
CIFAR-100 1100 0.5 0.125 73.69% 73.11% 3.239 13.557

Table 2: Toy example experiment results

k Test error Threshold CE Loss

4 8.36% 0.116 0.489
2 6.73% 0.085 0.361
1 4.90% 0.049 0.288

0.5 4.27% 0.037 0.299
0.25 4.04% 0.030 0.405

0.125 3.94% 0.028 0.625
0.0625 3.61% 0.022 1.190

from Eq. (2), using the function f defined in Eq. (4). f is
parameterized by k, and we performed this experiment us-
ing values of k between 0.0625 and 4. After each epoch,
we computed the prediction error on the validation set, and
training was stopped after 3000 epochs in which this error
was not changed by more than 0.001%. The values of the
parameters at the end of training were used to compute the
misclassification rate on the test set.

Table 2 reports the results for these experiments, averaged
over 10 runs for each value of k. The results confirm our hy-
pothesis regarding the behavior of the network for the differ-
ent values of k, and further motivate the possible benefits of
using k �= 1. Note that while the prediction error is mono-
tonic in k in this experiment, the cross-entropy is not, again
demonstrating the fact that optimizing the cross-entropy is
not optimal in this case.

5.2 Non-existence of a Cost Function for f

It is natural to ask whether, with our choice of f in Eq. (4),
g(θ) is the gradient of another cost function, instead of the
cross-entropy. The following lemma demonstrates that this
is not the case.

Lemma 1. Assume f as in Eq. (4) with k �= 1, and g(Θ) the
resulting pseudo-gradient. There exists a neural network for
which the g(Θ) is not a gradient of any cost function.

The proof of is lemma can be found in Keren, Sabato,
and Schuller (2016). Note that the above lemma does not

exclude the possibility that a gradient-based algorithm that
uses g instead of the gradient still somehow optimizes some
cost function.

6 Experiments

For our experiments, we used four classification benchmark
datasets from the field of computer vision: The MNIST
dataset (LeCun et al. 1998), the Street View House Numbers
dataset (SVHN) (Netzer et al. 2011) and the CIFAR-10 and
CIFAR-100 datasets (Krizhevsky and Hinton 2009). A more
detailed description of the datasets can be found in Keren,
Sabato, and Schuller (2016).

The neural networks we experimented with are feed-
forward neural networks that contain one, three or five hid-
den layers of various layer sizes. For optimization, we used
stochastic gradient descent with momentum (Sutskever et al.
2013) with several values of momentum and a minibatch
size of 128 examples. For each value of k, we replaced
the gradient in the algorithm with the pseudo-gradient from
Eq. (2), using the function f defined in Eq. (4). For the multi-
layer experiments we also used Gradient-Clipping (Pascanu,
Mikolov, and Bengio 2013) with a threshold of 100. In the
hidden layers, biases were initialized to 0 and for the weights
we used the initialization scheme from Glorot and Bengio
(2010). Both biases and weights in the softmax layer were
initialized to 0.

In each experiment, we used cross-validation to select the
best value of k. The learning rate was optimized using cross-
validation for each value of k separately, as the size of the
pseudo-gradient can be significantly different between dif-
ferent values of k, as evident from Eq. (4). We compared
the test error between the models using the selected k and
k = 1, each with its best performing learning rate. Addi-
tional details about the experiment process can be found in
Keren, Sabato, and Schuller (2016).

We report the test error of each of the trained models for
MNIST, SVHN, CIFAR-10 and CIFAR-100 in Tables 1, 3
and 4 for networks with one, three and five layers respec-
tively. Additional experiments are reported in Keren, Sabato,
and Schuller (2016). We further report the cross-entropy val-
ues using the selected k and the default k = 1.

2091



Table 3: Experiment results for 3-layer networks

TEST ERROR TEST CE LOSS
DATASET LAYER SIZES MOM’ SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0.5 1 — — — —
MNIST 800 0.5 1 — — — —
SVHN 400 0.5 2 16.52% 16.52% 1.604 0.968

SVHN 800 0.5 1 — — — —
CIFAR-10 400 0.5 2 46.81% 46.63% 3.023 2.121

CIFAR-10 800 0.5 1 — — — —
CIFAR-100 400 0.5 0.5 75.20% 74.95% 3.378 4.511
CIFAR-100 800 0.5 1 — — — —

Table 4: Experiment results for 5-layer networks

TEST ERROR TEST CE LOSS
DATASET LAYER SIZES MOM’ SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0.5 0.5 1.71% 1.69% 0.113 0.224
MNIST 800 0.5 0.25 1.61% 1.60% 0.118 0.390
SVHN 400 0.5 4 17.41% 16.49% 1.436 0.708

SVHN 800 0.5 0.5 17.07% 16.61% 1.343 2.604
CIFAR-10 400 0.5 2 48.05% 47.85% 2.017 1.962

CIFAR-10 800 0.5 4 44.21% 44.24% 4.610 1.677

CIFAR-100 400 0.5 2 75.69% 75.48% 3.611 3.228

CIFAR-100 800 0.5 2 74.10% 73.57% 4.650 4.439

MNIST 400 0.9 1 — — — —
MNIST 800 0.9 4 1.58% 1.60 0.098 0.060

SVHN 400 0.9 4 17.89% 16.54% 1.284 0.718

SVHN 800 0.9 2 16.24% 15.73% 1.647 0.998

CIFAR-10 400 0.9 4 47.91% 47.57% 2.202 1.648

CIFAR-10 800 0.9 2 45.69% 44.11% 3.316 2.171

CIFAR-100 400 0.9 1 — — — —
CIFAR-100 800 0.9 4 74.32% 74.62% 3.872 3.432

Several observations are evident from the experiment re-
sults. First, aligned with our hypothesis, the value of k se-
lected by the cross-validation scheme was almost always
smaller than 1, for the shallow networks, larger than one
for the deep networks, and close to one for networks with
medium depth. Indeed, the capacity of network is positively
correlated with the optimal sensitivity to hard examples.

Second, for the shallow networks the cross-entropy loss
on the test set was always worse for the selected k than for
k = 1. This implies that indeed, by using a different value
of k we are not optimizing the cross-entropy loss, yet are
improving the success of optimizing the true prediction er-
ror. On the contrary, in the experiments with three and five
layers, the cross entropy is also improved by selecting the
larger k. This is an interesting phenomenon, which might be
explained by the fact that examples with a large prediction
bias have a high cross-entropy loss, and so focusing training
on these examples reduces the empirical cross-entropy loss,
and therefore also the true cross-entropy loss.

To summarize, our experiments show that overall, cross-
validating over the value of k usually yields improved results
over k = 1, and that, as expected, the optimal value of k
grows with the depth of the network.

7 Conclusions
Inspired by an intuition in human cognition, in this work we
proposed a generalization of the cross-entropy gradient step
in which a tunable parameter controls the sensitivity of the
training process to hard examples. Our experiments show
that, as we expected the optimal level of sensitivity to hard
examples is positively correlated with the depth of the net-
work. Moreover, the experiments demonstrate that selecting
the value of the sensitivity parameter using cross validation
leads overall to improved prediction error performance on a
variety of benchmark datasets.

The proposed approach is not limited to feed-forward
neural networks — it can be used in any gradient-based
training algorithm, and for any network architecture. In fu-
ture work, we plan to study this method as a tool for improv-
ing training in convolutional and recurrent neural networks,
as well as experimenting with different levels of sensitivity
to hard examples in different stages of the training proce-
dure, and combining the predictions of models with different
levels of this sensitivity.
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