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Abstract

Continuous dimensional emotion recognition from
audio is a sequential regression problem, where the
goal is to maximize correlation between sequences
of regression outputs and continuous-valued emo-
tion contours, while minimizing the average devi-
ation. As in other domains, deep neural networks
trained on simple acoustic features achieve good
performance on this task. Yet, the usual squared
error objective functions for neural network train-
ing do not fully take into account the above-named
goal. Hence, in this paper we introduce a tech-
nique for the discriminative training of deep neu-
ral networks using the concordance correlation co-
efficient as cost function, which unites both corre-
lation and mean squared error in a single differen-
tiable function. Results on the MediaEval 2013 and
AV+EC 2015 Challenge data sets show that the pro-
posed method can significantly improve the evalua-
tion criteria compared to standard mean squared er-
ror training, both in the music and speech domains.

1 Introduction
Continuous dimensional emotion recognition from audio is a
sequential learning problem that has attracted increasing at-
tention in the past few years [Coutinho and Cangelosi, 2010;
Schmidt and Kim, 2011; Metallinou et al., 2013; Soleymani
et al., 2013; Wang et al., 2015]. There, sequences of acoustic
features have to be mapped to emotion contours in several di-
mensions that represent the emotion communicated by means
of audio, e.g., speech utterances or excerpts of music. Typi-
cal emotion dimensions comprise arousal and valence [Rus-
sell, 1980], as explored in this study, although other dimen-
sions such as dominance and expectation can be added [Ey-
ben et al., 2012]. Defining the target labels as real-valued
mappings from time instants to targets helps capturing the
temporal dynamics of emotion, which cannot be assumed to
be constant over time [Schmidt and Kim, 2011]. To learn
such mappings, deep recurrent neural networks are a promis-
ing model [Coutinho and Cangelosi, 2010], as they take into
account temporal dependencies in inputs and outputs and can
handle correlated features.

Continuous emotion recognition is typically evaluated in
terms of the correlation between the learner’s outputs and
the target values (such as by the correlation or determina-
tion coefficient), as well as the average deviation of outputs
and targets, such as by the mean linear or mean squared error
(MLE/MSE) [Schuller et al., 2012; Jenke et al., 2013]. Since
neural networks are usually trained using criteria such as the
(root) MSE, this only takes into account the latter while ne-
glecting the former. Further, although it is well known that the
minimization of the MSE and the maximization of the (Pear-
son) correlation coefficient (CC) are equivalent if the outputs
and targets are standardized, such standardization cannot be
assumed in emotion regression, as the emotional intensity,
and hence the mean and variance, is of crucial importance.

Moreover, the CC is insensitive to scaling and shifting,
which is problematic for training neural networks with this
metric. Imposing a cost function based on CC may lead to an
infinite number of local minima with different prediction be-
havior. In fact, a neural network trained on CC cannot learn
the correct scales and offsets from the target values (‘gold-
standard’) because the CC is not sensitive to such variations.
We illustrate those issues on different variants of the same
time-series in Figure 1. Because CC is insensitive to scal-
ing and shifting, it always provides the same perfect predic-
tion score (CC = 1.00) on different versions (shifted and/or
scaled) of the same time-series, although such variations are
actually far from a perfect prediction. As a result, the CC
is not sufficient as evaluation criterion in practice, and addi-
tional measures such as mean squared error need to be taken
into account.

From the above considerations, we can conclude that
firstly, the usual objective functions for neural network re-
gression do not fully match the evaluation criteria used for
continuous dimensional emotion recognition, and secondly,
the use of CC as objective function cannot lead to satisfying
results. To alleviate these problems, we propose to use the
concordance correlation coefficient (CCC) [Lin, 1989] as a
differentiable objective function that unites both correlation
and mean squared error, and can be thought of as a CC that
enforces the correct scale and offset of the outputs. As a re-
sult, CCC takes into account the effects of shifting and scaling
the prediction when computing the performance (cf. Fig. 1),
and can thus be used as an objective function to train neural
networks for time-continuous prediction tasks.
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Figure 1: Illustration of the effects of shifting and scaling a gold-standard time-series (arousal) on a subject from the training
partition of the RECOLA database) on the Pearson’s correlation coefficient (CC) and the concordance correlation coefficient
(CCC). The gold-standard y time-series is plotted as a thick blue line; a shifted version (ysh = y + 1) gives CC = 1 and CCC
= 0.07, a scaled version (ysc = 2 ⇤ y) provides CC = 1 and CCC = 0.78, and a shifted and scaled version (ysh,sc = 2 ⇤ y � 1)
returns CC = 1 and CCC = 0.15.

In the following, we will show that the choice of objec-
tive function (sum of CCCs per sequence, overall CCC, or
MSE) for network training significantly influences the evalua-
tion outcome on standard corpora for continuous dimensional
emotion recognition from music and speech.

The remainder of this paper is as follows: we describe
some related work on task-specific discriminative objective
functions for neural network training in section 2, we intro-
duce different discriminative objectives for emotion regres-
sion in section 3, and the optimization of CCC by stochastic
gradient descent in section 4, we evaluate the performance in
dimensional emotion recognition tasks (arousal and valence)
for different objective functions on two different corpora (mu-
sic and speech) in section 5, and provide a conclusion in sec-
tion 6.

2 Related Work
Task-specific discriminative objective functions for neural
network training are well known. For example, in train-
ing networks for automatic speech recognition, the minimum
phoneme error or minimum Bayes risk objectives are used in
place of the standard cross entropy objective [Veselý et al.,
2013; Kingsbury et al., 2012]. In [Weninger et al., 2014],
it is proposed to optimize the prediction of time-frequency
masks for acoustic source separation based on local signal-
to-noise ratio rather than MSE. Joint optimization of masking
functions and deep recurrent neural networks has been inves-
tigated for monaural source separation tasks by [Huang et al.,
2015], with a discriminative criterion designed to enhance the
source to interference ratio.

Regarding neural network approaches for emotion recog-
nition, most of the existing work has been focused on classi-
fication tasks. Deep Neural Network Hidden Markov Mod-
els (DNN-HMMs) were investigated with discriminative pre-
training and restricted Boltzmann Machine (RBM) based un-
supervised pre-training by [Li et al., 2013]. Experimen-
tal results have shown the superiority of the hybrid DNN-
HMMs with discriminative pre-training in comparison with
other models, such as GMM-HMMs and MLP-HMMs. An-
other hybrid architecture combining DNN with an Extreme

Learning Machine (ELM) was also successfully utilized for
classifying emotion from utterances in [Han et al., 2014].

Continuous prediction of dimensional emotion was inves-
tigated with a Deep Belief Network in [Schmidt et al., 2012].
[Eyben et al., 2012] dealt with multi-task recurrent neu-
ral network based speech emotion regression. The winning
team of the last edition of the Audio-Visual Emotion recog-
nition Challenge [Ringeval et al., 2015b] employed bidi-
rectional long short-term memory recurrent neural networks
(DBLSTM-RNN) to perform unimodal emotion recognition
and multimodal fusion [He et al., 2015]. While these works
use a similar learning framework as in our paper, none of
them uses the discriminative objective based on correlation
coefficients as introduced below.

3 Discriminative objectives for emotion
regression

In the following, we will introduce two different objectives,
one based on the CCC for each sequence, and one based on
the overall CCC. We will denote by yif the regression out-
puts for sequence i and target variable f (in case of neural
networks, the sequences of activations of unit f of the out-
put layer), while yif

⇤ denotes the corresponding training tar-
gets (i.e., gold-standard). The standard sum of squared errors
(SSE) training objective for a mini-batch B is given by

X

i2B,f2F

X

t

(yif,t � yif,t
⇤
)

2, (1)

where F is the set of target variables (e.g., arousal, valence,
etc. in the case of emotion recognition) and t denotes the in-
dex of a time step at which the target variable is annotated.

While the above objective is discriminative, it is not dis-
criminative on the sequence level. Let us thus introduce the
proposed objective function based on the CCC per training
sequence. The total cost function O is:

O = �
X

i2B,f2F
CCC

i
f , (2)

This objective will be denoted by ⌃CCC below, as it is com-
puted on all training sequences i available in the mini-batch
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Figure 2: Illustration of the difference between CCC and
P

CCC on training targets yit
⇤ for two sequences from the training

partition of the RECOLA database (arousal) and predictions corresponding to the mean of each sequence: yit =
1
Ni

PNi

t yit
⇤.

Because CCC is not a linear function, its computation between the predictions and the gold-standards provides different results
whether we sum it over the two sequences (

P
CCC = 0), or compute it on the two concatenated sequences (CCC = 0.37).

B. The CCC per sequence i and target f is defined in accor-
dance with [Lin, 1989] as:

CCC

i
f =

2Cov(yif , y
i
f
⇤
)

Var(yif ) + Var(yif
⇤
) +

⇣
E(yif )� E(yif

⇤
)

⌘2 ,

(3)
where E, Var, and Cov denote sample mean, variance, and
covariance, respectively.

Let us consider the mean squared error, E{(yif � yif
⇤
)

2},
which is equivalent to Var{yif � yif

⇤} + E{yif � yif
⇤}2 =

Var{yif} + Var{yif ⇤} + E{yif � yif
⇤}2 � 2Cov{yif , yif ⇤}.

Based on this observation, we can rewrite the CCC as:

CCC

i
f =

Qi
f

Si
f +Qi

f

, (4)

defining N i as the length of sequence i, the covariance-
related quantity as:

Qi
f := N i

Cov{yif , yif
⇤} (5)

= N i
⇣
E{yifyif

⇤}� E{yif}E{yif
⇤}
⌘

(6)

=

NiX

t=1

yif,ty
i
f,t

⇤ � E{yif
⇤}

NiX

t=1

yif,t, (7)

and the sum of squared errors (SSE) related quantity as:

Si
f :=

1

2

NiX

t=1

⇣
yif,t � yif,t

⇤⌘2
. (8)

An alternative objective to maximize (denoted simply by
CCC below) is the ‘total’ CCC on the training set. This can
be achieved by simply considering the entire training set as
a single sequence i in (3). As shown in Fig. 2, the ⌃CCC
objective differs from the CCC objective in that it necessarily
enforces accurate prediction of the target contour within each
sequence, while the CCC objective could assign a good score
to over-smoothed regression outputs that only predict the av-
erage label right. Conversely, if the target label has low vari-
ance within the sequences, the ⌃CCC objective is hard to op-
timize and might emphasize on noise in the ‘gold-standard’,

which is often given in emotion recognition. Thus, which ob-
jective is preferable certainly depends on the application.

Note that since the CCC on two partitions of the training
set is not equivalent to the sum (or average) of the CCCs on
these two partitions, it is not directly possible to optimize the
total CCC on the training set, unless the mini-batch size com-
prises the total training set, which might be impractical. This
is in contrast to SSE training and the ⌃CCC maximization,
where batch learning can be implemented by summing up the
gradients from the mini-batches.

In the case of mini-batch learning with |B| = 1 (one se-
quence per mini-batch), the optimization of ⌃CCC and CCC
is equivalent. However, in case of recurrent neural network
training as considered here, |B| � 1 is required for efficiency
[Weninger et al., 2015].

Further, we could also define an objective in analogy to (2)
yet based on the Pearson’s CC,

�
X

i2B,f2F
CC

i
f = �

X

i2B,f2F

Cov(yif , y
i
f
⇤
)

�i
f�

i
f
⇤ , (9)

where � denotes the standard deviations of outputs and targets
in analogy to the above. However, since the Pearson CC is
invariant w.r.t. the scale of the network outputs (in contrast
to the CCC, cf. Fig. 1), this function has infinitely many
minima, making its minimization hardly feasible.

4 Training algorithm
In this study, optimization of the discriminative objectives
is performed by stochastic gradient descent. For the pro-
posed CCC objective, we compute the gradient ryO =

(@O/@yif,t)i,f,t. Using the quotient rule, the partial deriva-
tive for a sequence i, target f and time step t is computed
as:

@O
@yif,t

= �
@Qi

@yi
f,t

· (Si
f +Qi

f )�Qi
f

⇣
@Si

f

@yi
f,t

+

@Qi
f

@yi
f,t

⌘

⇣
Si
f +Qi

f

⌘2 (10)

with the partial derivatives
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@Qi
f

@yif,t
= yif,t

⇤ � E{yif
⇤}, (11)

@Si
f

@yif,t
= yif,t � yif,t

⇤
. (12)

With this, the desired derivative @O/@yif,t is obtained as

(yif,t
⇤ � E{yif ⇤})(Si

f +Qi
f )�Qi

f (y
i
f,t � E{yif ⇤})⇣

Si
f +Qi

f

⌘2

(13)

=

(yif,t
⇤ � E{yif ⇤})Si

f � (yif,t � yif,t
⇤
)Qi

f⇣
Si
f +Qi

f

⌘2 . (14)

Having obtained the output gradient as above, the gradient
w.r.t. the weights, @O/@w is determined by backpropagation
through time as usual.

Discriminative training is implemented on top of the open
source, GPU-enabled neural network training software CUR-
RENNT [Weninger et al., 2015], which supports deep feed-
forward and recurrent neural networks. The additional code
which minimizes the proposed objectives will be made avail-
able upon publication of this manuscript.

During the forward pass, we compute and store the target
means E{yif ⇤}, as well as Si

f and Qi
f in |F| ⇥ |B| matrices.

The summations are computed using an outer loop over time
steps, and using matrix addition for all i and f in parallel.
For sequence lengths which are large in comparison to the
number of target features and the batch size, this might still
get inefficient. However, in our experiments, the speed of
network training using the ⌃CCC, CCC, or the standard SSE
cost function was in the same ballpark. The backward pass
is similar to the calculation of the SSE backward pass. The
output gradient can be computed for all i, f , and t in parallel.

In case of optimizing CCC rather than ⌃CCC, sequence
boundaries need not be taken into account (i = 1). Con-
sequently, the computation of the quantities S1

f and Q1
f for

each f is much simpler and similar to the SSE calculation.

5 Experiments and Results
We present in this section the results of time-continuous di-
mensional emotion (arousal and valence) prediction tasks on
two different corpora from different domains (speech and mu-
sic). The objective of those experiments is to empirically
demonstrate the benefits of using CCC as cost function for
network training, in comparison to the traditional SSE, for
emotion recognition from speech and music.

5.1 Emotions from music: MediaEval
Experiments on emotion recognition from music are done on
the ‘Emotion in Music Database’ which was used in the Me-
diaEval 2013 evaluation campaign [Soleymani et al., 2013].
The task is to recognize time-varying emotion contours in the
arousal and valence dimensions at a rate of 1 Hz from mu-
sic signals. The data set includes excerpts of 45 seconds ran-
domly selected (uniform distribution) from 744 songs taken

Table 1: Partitioning of the RECOLA database into train,
dev(elopment), and test sets for continuous emotion recog-
nition.

Train Dev Test
Female 10 9 8
Male 6 6 7
French 11 11 11
Italian 3 2 3
German 2 1 1
Portuguese 0 1 0
Age µ (�) 22.3 (3.4) 21.6 (2.1) 21.2 (2.0)

from the online library Free Music Archive1, and split be-
tween a development set (619 songs) and an evaluation set
(125 songs). Ratings of emotion were performed on a crowd-
sourcing platform (MTurk) by a pool of 100 selected workers
(57 male, 43 female, mean age is 32 years and standard de-
viation of 10 years) from different countries (72% from the
USA, 18% from India and 10% from the rest of the world).

Both features extraction and machine learning steps are
based on the setup reported in [Weninger et al., 2013].
The 6 373-dimensional ComParE set of generic affective fea-
tures, and the Long Short-Term Memory (LSTM) [Gers et
al., 2000] architecture for deep recurrent neural networks
(DRNNs) are used. LSTM networks have two hidden lay-
ers with 192 or 256 hidden units. The ComParE set con-
sists of supra-segmental acoustic features, i.e., summarization
of frame-level features over segments of constant length. In
the present study, supra-segmental features are extracted from
non-overlapping segments of 1 second length, in accordance
with the time resolution of the emotion contours.

The training parameters are preserved from [Weninger et
al., 2013]. Input noise with � = 0.6 is added to help gen-
eralization, and an early stopping strategy is used to alleviate
overfitting. Stochastic gradient descent with a batch size of
25 sequences is used in all experiments. The learning rate
⌘ is determined in a preliminary cross-validation experiment
for each objective function. Note that the objective functions
are on different scales and hence the optimal step size varies
between various objectives.

Both the sum of CCC and total CCC objectives are inves-
tigated. As baseline, standard SSE training is used. In accor-
dance with the MediaEval challenge, the evaluation metrics
comprise the overall Pearson’s correlation coefficient (CC)2

as well as the average Kendall’s rank correlation coefficient
per sequence (E{⌧}), which is related to our ⌃CCC objec-
tive function but not differentiable. Furthermore, we report
the average CCC (E{(CCC)}) per sequence, which directly
corresponds to the ⌃CCC objective.

1
http://www.freemusicarchive.org

2Note that MediaEval uses the determination coefficient, which
is the square of the CC, but we report CC as it is in the same order
of magnitude as the CCC, which is the focus of our evaluation.
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Table 2: Emotion recognition performance on the MediaEval 2013 test set (music domain). The best achieved Challenge
metric (E{⌧}) is highlighted. Obj. denotes the objective function in network training and ⌘ the learning rate, determined in
cross-validation.

Arousal Valence
Layers Obj. ⌘ CC CCC E{CCC} E{⌧} MLE CC CCC E{CCC} E{⌧} MLE
192-192 SSE 10

�5 .795 .778 .148 .221 .136 .637 .632 .118 .189 .149
256-256 SSE 10

�5 .732 .724 .119 .174 .152 .623 .609 .109 .151 .142
192-192 CCC 10

�2 .792 .790 .149 .224 .140 .653 .648 .119 .199 .156
256-256 CCC 10

�2 .764 .761 .128 .161 .149 .648 .646 .130 .191 .154
192-192 ⌃CCC 10

�4 .723 .719 .166 .251 .158 .547 .546 .136 .198 .168
256-256 ⌃CCC 10

�4 .720 .717 .153 .211 .158 .587 .582 .130 .198 .158

5.2 Emotions from speech: RECOLA
Time-continuous prediction of emotional dimensions
(arousal and valence) has also been investigated on speech
data by using the RECOLA database [Ringeval et al., 2013]3;
the full dataset was used for the purpose of this study, which
corresponds to speech recordings from 46 French-speaking
participants (27 female, 19 male, mean age is 22 years
and standard deviation of 3 years) with 5 minutes for each.
Ratings of emotion were obtained by 6 French-speaking
research assistants (3 female, 3 female) using the ANNEMO
annotation toolkit. Traces were then interpolated at a 40 ms
frame rate and averaged as a gold-standard, using the same
procedure as described in [Ringeval et al., 2015a]. The
dataset was split equally in three partitions – train (16
subjects), development (15 subjects) and test (15 subjects)
– by stratifying (i.e., balancing) the gender, the age and the
nationality of the speakers. Details on those partitions are
provided in Table 1. The same procedure as the one used in
the latest edition of the Audio-Visual Emotion Recognition
Challenge (AV+EC 2015) [Ringeval et al., 2015b] has been
used to extract acoustic features from the speech recordings:
the extended Geneva minimalistic acoustic feature set
(eGeMAPS – 102 features) [Eyben et al., 2015] has been
applied at a rate of 40 ms (to match the sampling frequency of
the gold-standard) using overlapping windows of 3 seconds
length.

For the prediction task, we used LSTM-DRNNs with three
hidden layers with 128 units each. Input noise with � = 0.1
is added and early stopping is also used to prevent overfit-
ting. The networks were trained with stochastic gradient
descent on a batch size of 5 sequences with a fixed mo-
mentum of 0.9, at different values of learning rate ⌘ =

{10�2, 10�3, . . . , 10�7}. An optimal learning rate ⌘ was
chosen based on the CCC on the development set for each
emotional dimension and objective function. The CCC met-
ric was computed on the gold-standard and prediction val-
ues concatenated over all recordings, in accordance with the
AV+EC challenge. In addition, we also report the average
CCC (E{CCC}) per sequence in analogy to the experiments
on music.

For all the networks (regardless of the training objective),
a chain of post-processing was applied to the predictions ob-

3
http://diuf.unifr.ch/diva/recola/

tained on the development set: (i) median filtering (with size
of window ranging from 0.4 second to 20 seconds) [Ringeval
et al., 2015b], (ii) centring (by computing the bias between
gold-standard and prediction) [Kächele et al., 2015], (iii)
scaling (using the ratio of standard-deviation of gold stan-
dard and prediction as scaling factor) and (iv) time-shifting
(by shifting the prediction forward in time with values rang-
ing from 0.04 second to 10 seconds), to compensate for de-
lays in the ratings [Mariooryad and Busso, 2015]. Any of
these post-processing steps was kept when an improvement
was observed on the CCC of the development partition, and
applied then with the same configuration on the test partition.

5.3 Results
Table 2 shows the results on the MediaEval 2013 test set
(music). We can observe that the evaluation metrics exactly
reflect the choice of the objective function: SSE training
works best for minimizing the MLE, while CCC based train-
ing yields the best CCC on the test set.

The official Challenge evaluation metric, E{⌧}, is signifi-
cantly (according to a z-test, ↵ = .05) improved by using the
⌃CCC objective function (.221 ! .251) for arousal but only
slightly (.189 ! .199) for valence. Generally, it is observed
that the larger network with 256 hidden units performs worse
on the test set, which can be attributed to the relatively small
data set which causes over-fitting. The discrepancy between
E{CCC} and CCC on this data set is astonishing; we found
that for some test sequences, the variance in the annotated
emotion contours is very low, which makes it hard to achieve
good CC on these. One may further notice that the best per-
formance measured as CC on valence is obtained with the
CCC objective. The improvement over the SSE objective is
significant (.637 ! .653). Regarding the optimization of the
network, results show that each objective function requires a
specific learning rate to perform best.

Next, in Table 3 we report the metrics on the RECOLA
database (speech). Here, we observe a significant improve-
ment in the CC, CCC and E{CCC} metrics by using the
⌃CCC objective function, particularly on the test set, where
SSE training does not deliver useful results in the arousal di-
mension: CCC = .097 with SSE training and .350 with ⌃CCC
training. Since this difference is less pronounced on the de-
velopment set, for which the network is tuned, we have some
evidence that the ⌃CCC objective function leads to better
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Table 3: Emotion recognition performance on the RECOLA development and test partitions (speech domain). The best achieved
Challenge metric (CCC) is highlighted. Obj. denotes the objective function in network training and ⌘ the learning rate, deter-
mined on the development results.

Arousal Valence
Partition Obj. ⌘ RMSE CC CCC E{CCC} ⌘ RMSE CC CCC E{CCC}
DEV SSE 10

�4 .117 .412 .397 .227 10

�4 .105 .210 .201 .066
TEST SSE 10

�4 .128 .109 .097 .161 10

�4 .108 .133 .131 .052
DEV CCC 10

�3 .193 .373 .373 .294 10

�2 .133 .179 .179 .112
TEST CCC 10

�3 .193 .257 .254 .212 10

�2 .130 .155 .155 .080
DEV ⌃CCC 10

�5 .217 .412 .412 .313 10

�2 .188 .249 .242 .150
TEST ⌃CCC 10

�5 .200 .351 .350 .268 10

�2 .192 .227 .199 .139

generalization. In fact, when training using the SSE crite-
rion, we observed a bias of the network towards predicting
the mean annotation on the training set, which leads to good
RMSE but low correlation; conversely, the RMSE is signifi-
cantly increased by using the CCC-based criteria. This result
can also be observed on the CC evaluation metric, where a
significant improvement over the SSE objective function is
obtained when using

P
CCC for both arousal and valence.

One may also note that the same results hold for the opti-
mization of the network: each objective function requires a
specific learning rate in order to provide the best performance.

6 Conclusions
We have demonstrated that the SSE objective in neural net-
work regression can be effectively replaced by a criterion de-
rived from the CCC, which has a significant impact on per-
formance in continuous dimensional emotion recognition of
arousal and valence from speech and music. Indeed, the CCC
is an elegant solution to the issue of scaling and shifting time-
continuous predictions, as it is sensitive to both of these varia-
tions and thus alleviates the problem of local minima in neu-
ral network training. Still, the observed increase in MSE-
related criteria indicates that further investigations need to be
performed in order to find an appropriate trade-off between
MSE- and CC-like criteria.

Furthermore, note that the proposed approach based on
CCC optimization can be applied to any sequence regression
task where the correlation between the regression outputs and
the ground truth should be maximized. There are no assump-
tions made on the underlying problem, other than that there
be one or more continuous-valued target labels and that the
regression model can be effectively trained by a first-order
method such as stochastic gradient descent. Thus, we will
verify its efficiency on other recognition tasks involving time-
continuous measurements.

Finally, there are many more areas in emotion recognition
and related fields where usage of the CCC can be explored,
including the definition of the ‘gold-standard’ by computing
the agreement of the raters, estimating an annotation delay, or
the selection of features by using CCC instead of CC.
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