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1 Introduction

The question of how to design an interface in order to maximize driver safety has
been extensively studied over the past two decades [13]. Numerous publications
seek to aid designers in the creation of in-vehicle interfaces that limit demands
placed upon the driver [10]. As such, these efforts aim to improve the likelihood
of driver’s to multi-task safely. Evaluation questions usually take the form of “Is
HCI system A better than HCI system B, and why?”. Rarely do applied evalua-
tions of vehicle systems consider the emotional state of the driver as a component
of demand that is quantified during system prove out, despite of numerous stud-
ies that show the importance of affect and emotions in hedonics and aestetics to
improve user experience [8]. The work in this paper is motivated by a vision for
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(a) Class 1: Satisfied with Voice-Based In- (b) Class 2: Frustrated with Voice-Based
teraction Interaction

Fig. 1. Representative video snapshots from voice navigation interface interaction for
two subjects. The subject (a) self-reported as not frustrated (satisfied) with the inter-
action and the (b) subject self-reported as frustrated (frustrated).

an adaptive system that is able to detect the emotional response of the driver
and adapt, in order to aid driving performance. The critical component of this
vision is the detection of emotion in the interaction of the human driver with
the driver vehicle interface (DVI) system. We consider the binary classification
problem of a “frustrated” driver versus a “satisfied” driver annotated based on
a self-reported answer to the following question: “To what extent did you feel
frustrated using the car voice navigation interface?” The answers were on a scale
of 1 to 10 and naturally clustered into two partitions as discussed in Sect. 2. As
presented in Fig. 1, the “satisfied” interaction is relatively emotionless, and the
“frustrated” interaction is full of affective facial actions.

The task of detecting drivers’ frustration has been researched in the past [1].
Boril et al. exploited the audio stream of the drivers’ speech and discriminated
“neutral” and “negative” emotions with 81.3 % accuracy (measured in Equal
Accuracy Rate — EAR) across 68 subjects. This work used SVMs to discrimi-
nate between classes. The ground truth came from one annotation sequence. A
“humored” state was presented as one of the 5 “neutral” (non-negative) emo-
tions. This partitioning of emotion contradicts our findings that smiling and
humor are often part of the response by frustrated subject.

Contributions. We extend this prior work by (a) leveraging audiovisual data
collected under real driving conditions, (b) using self-reported rating of the frus-
tration for data annotation, (¢) fusing audio and video as complimentary data
sources, and (d) fusing audio and video streams across time in order to charac-
terize the trade-off between decision time and classification accuracy. We believe
that this work is the first to address the task of detecting self-reported frustration
under real driving conditions.

2 Dataset for Detecting Frustration

The dataset used for frustration detection was collected as part of a study for
multi-modal assessment of on-road demand of voice and manual phone calling
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and voice navigation entry across two embedded vehicle systems [9]. Partici-
pants drove one of two standard production vehicles, a 2013 Chevrolet Equinox
(Chevy) equipped with the MyLink system and a 2013 Volvo XC60 (Volvo)
equipped with the Sensus system.

For the frustration detection task we selected 20 subjects from the initial
dataset of 80 such that our selection spanned both vehicles, gender (male, female)
and four age groups (18-24, 25-39, 40-54, 55 and older). This pruning step was
made for two reasons. First, a significant amount of videos had poor lighting
conditions where extraction of facial expressions was not possible or was very
difficult. To address this issue, we discarded subjects where less than 80 % of
video frames contained a successfully detected face. We applied the face detector
described in [4] that uses a Histogram of Oriented Gradients (HOG) combined
with a linear SVM classifier, an image pyramid, and a sliding window detection
scheme. Second, a substantially higher proportion of subjects self-reported low
frustration level (class “satisfied”), thus we had to select our subjects viligantly
to keep the dataset balanced and have both classes represented equally.

It is important to note that all subjects drove the same route and all tasks
were performed while driving. For this paper, we focused in on the navigation
task. After each task, subjects completed a short written survey in which they
self-reported the workload and rated an accomplished task, including their frus-
tration level on a scale from 1 to 10, with 1 being “not at all” and 10 “very”. The
question that the subjects were asked to answer is as follows: “To what extent did
you feel frustrated using the car voice navigation system?”. We found that the
navigation system task had a clustering of responses for self-reported frustration
that naturally fell into two obvious classes, after removing the minority of “neu-
tral” responses with self-reported frustration level from 4 to 6. The “frustrated”
class contained all subjects with self-reported frustration level between 7 and 9,
and “satisfied” class contained all subjects with self-reported frustration level
from 1 to 3. There are two different types of epochs: (1) audio epochs, where
subjects are dictating commands to the machine, and (2) video epochs, where
subjects are listening to a response from the machine and signaling frustration
through various facial movements.

3 Methods

3.1 Audio Features

In contrast to large scale brute-force feature sets [11], a smaller, expert-
knowledge based feature set has been applied. In fact, a minimalistic standard
parameter set reduces the risk of over-fitting in the training phase as compared
to brute-forced large features sets, which in our task is of great interest. Recently,
a recommended minimalistic standard parameter set for the acoustic analysis of
speaker states and traits has been proposed in [2]. The proposed feature set is
the so-called Geneva Minimalistic Acoustic Parameter Set (GeMAPS). Features
were mainly selected based on their potential to index affective physiological
changes in voice production, for their proven value in former studies, and for
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their theoretical definition. Acoustic low-level descriptors (LLD) were automat-
ically extracted from the speech waveform on a per-chunk level by using the
open-source openSMILE feature extractor in its 2.1 release [3].

3.2 Video Features

We used automated facial coding software to extract features from the videos.
The software (Affdex - Affectiva, Inc.) has three main components. First, the
face is detected using the Viola-Jones method [14] (OpenCV implementation).
Thirty-four facial landmarks are then detected using a supervised descent based
landmark detector and an image region of interest (ROI) is segmented. The
ROI includes the eyes, eyebrows, nose and mouth. The region of interest is
normalized using rotation and scaling to 96 x 96 pixels. Second, histogram of
oriented gradient (HOG) features are extracted from the ROI within each frame.
Third, support vector machine classifiers are used to detect the presence of each
facial action. Details of how the classifiers were trained and validated can be
found in [12]. The facial action classifiers return a confidence score from 0 to
100. The software provided scores for 14 facial actions. In addition to facial
actions we used the three axes of head pose and position of the face (left and
right eye corners and center of top lip) as observations from which to extract
features. For each epoch the mean, standard deviation, minimum and maximum
values for each action, head pose and position metric were calculated to give 60
video features ((14 actions + 3 head pose angles + 3 landmark positions)*4).

3.3 Classifier

We used a Weka 3 implementation of Support Vector Machines (SVMs) with the
Sequential Minimal Optimization (SMO), and audio and video features described
in Sect. 3 [5]. We describe a set of SMO complexity parameters as:

Ce{107%,5x107% 10735 x107%,...,1}. (1)

For each SMO complexity parameter C' from (1) we upsampled the feature vec-
tors (one per epoch) from the original datasets to balance the number of epochs
per class by calculating the upsampling factors. An average upsampling factor
across four folds is 1.03 for the “frustrated” class and 1.24 for the “satisfied”
class. We kept the original datasets, and produced an additional upsampled
dataset for further experiments. We then (a) normalized and (b) standardized
both upsampled and original datasets for each SMO complexity parameter C,
and obtained 36 different configurations per fold. We carried out 144 experiments
across four folds, computed accuracy, and selected the configuration that gave
us the best average result. The term “accuracy” stands for Unweighted Average

Recall (UAR).
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4 Results

We used features and a classifier as described in Sect. 3 and achieved an accuracy
of 77.4% for “audio” epochs and 81.2% for “video” epochs as presented in
Table 1. The epoch type column indicates whether the human or the machine are
speaking and data source indicates the source of the signal which is being used
for extracting features. The presented results are the average accuracy for the
subject-independent cross-validation over four folds.

Table 1. Results for predicting frustration from a single epoch of audio and video.

Epoch type Data source | C Acc. (%)
Machine speaking | Video le 3 |81.2
Human speaking | Audio 5e™3 | 77.4

In order to characterize the tradeoff between classification accuracy and the
duration of the interaction, we fused the predictions from consecutive epochs
for both video and audio using a majority vote fusion rule [7]. The interaction
of the driver with the voice-based system is a sequence of mostly-alternating
epochs of face video data and voice data. In presenting the results, we consider
two measures of duration: (1) d. is the duration in the number epochs and (2)
ds is the duration in the number of seconds. Both measures are important for
the evaluation of systems performance, since classifier decisions are made once
per epoch (as measured by d.) but the driver experiences the interaction in real-
time (as measured by ds). The fused results for up to 17 epochs are presented
in Fig. 2 where duration d. is used. The average accuracy is shown with the red
line and the accuracy for each of the four folds is shown with the gray line. The
average accuracy does not monotonically increase with the number of predictions
fused. Instead, it slightly fluctuates due to a broad variation in complexity of the
underlying subtasks. An average accuracy of 88.5 % is achieved for an interaction
that lasts approximately 1 min but a lower average accuracy of 82.8 % is achieved
for an interaction that lasts approximately 2 minutes. Evaluation over one of the
folds in Fig.2 achieves 100 % accuracy after 9 epochs. This is possible due to
the fact that the number of epochs for total interaction varies between subjects,
and the reported accuracy for a specific duration d. is averaged over only the
interactions that last at least that long. It follows that with the longer durations
d. (x-axis), the number of subjects over which the accuracy is averaged decreases
and the variance of the accuracy increases.

We used a Weka implementation of the Information Gain (IG) feature eval-
uation to rank video features [6]. Then, we grouped features into the feature
categories by summing corresponding category IG ranking values for mean,
maximum, minimum and standard deviation. Each feature category represents
one action, 4. e., inner brow rise, nose wrinkle or lip depressor. The 5 best dis-
criminating feature categories are: (1) horizontal location of the left eye corner,
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Fig. 2. Trade-off between fused prediction accuracy and the number of epochs per
interaction (de).

(2) horizontal location of the top of the mouth, (3) horizontal location of the
right eye corner, (4) the angle of head tilt (i.e. rotation of the head about an
axis that passes from the back of the head to the front of the head), and (5)
smile confidence (on a scale of 0-100). We ranked only video features to select
the most interesting epochs for our presentation video: http://lexfridman.com/
driverfrustration.

5 Conclusion

We presented a method for detecting driver frustration from 615 video epochs
and 596 audio epochs captured during the driver’s interaction with an in-vehicle
voice-based navigation system. The data was captured in a natural driving con-
text. Our method has been evaluated across 20 subjects that span over differ-
ent demographic parameters and both cars that were used in our study. This
method resulted in an accuracy of 81.2% for detecting driver frustration from
the video stream and 77.4 % from the audio stream. We then treated the video
and audio streams as a sequence of interactions and achieved 88.5 % accuracy
after 9 epochs by using decision fusion. Future work will include additional data
streams (i. e., heart rate, skin conductance) and affective annotation methods
to augment the self-reported frustration measure.
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