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ABSTRACT
We propose a novel method to learn multiscale kernels with
locally penalised discriminant analysis, namely Multiscale-
Kernel Locally Penalised Discriminant Analysis (MS-KLPD
A). As an exemplary use-case, we apply it to recognise emo-
tions in speech. Specifically, we employ the term of locally
penalised discriminant analysis by controlling the weights of
marginal sample pairs, while the method learns kernels with
multiple scales. Evaluated in a series of experiments on emo-
tional speech corpora, our proposed MS-KLPDA is able to
outperform the previous research of Multiscale-Kernel Fish-
er Discriminant Analysis and some conventional methods in
solving speech emotion recognition.

CCS Concepts
•Information systems→Multimedia information sys-
tems; •Human-centered computing→ HCI theory, con-
cepts and models; •Theory of computation → Kernel
methods;

Keywords
Locally penalised discriminant analysis; Multiscale kernels;
Multiple kernel learning, Speech emotion

1. INTRODUCTION
With increasing requirements of advanced intelligent hu-

man-computer multimodal interaction, recognising affect and
emotions on the basis of spoken signals has shown broad po-
tential such as analysing speaker states [17,18]. The research
in the field of Speech Emotion Recognition mainly focus-
es on exploring suitable feature sets based on prior knowl-
edge [2,13,20], while few works [6,7,21] shed light on mining
compact emotional representation from given features.

In order to extract efficient factors from a fixed feature
set, common dimensionality reduction methods, including
Principal Component Analysis (PCA), Fisher Discriminant
Analysis (FDA), Locally Discriminant Embedding (LDE) [5],
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Linear Discriminant Projections (LDP) [4], or Locally Lin-
ear Embedding (LLE) [14], have been considered, which
can be generally transformed into Graph Embedding (GE)
frameworks [22,23].

In previous research [21], Multiscale-Kernel Fisher Dis-
criminant Analysis (MS-KFDA) has been proposed to ex-
tract efficient features for emotion recognition and general
paralinguistics. It has been shown that, learning FDA em-
bedding graphs combined with Gaussian kernels using mul-
tiple scaling parameters are beneficial for the task of speech
emotion recognition, based on the theory of Multiple Ker-
nel Learning (MKL) [12, 19]. However, the method ignored
the marginal penalised information, which has been raised
in LDE [5] and Marginal Fisher Analysis (MFA) [23]. It
may, however, reduce the robustness of the recognition sys-
tem, since the sample pairs corresponding to outliers hold
the same weights as any other pairs.

Inspired by the deficiencies above, we propose a novel
algorithm, namely MS-KLPDA (Multiscale-Kernel Locally
Penalised Discriminant Analysis), and demonstrate its suc-
cessful application for recognising emotions in speech. MS-
KLPDA employs a locally penalised structure in a penal-
ty embedding graph, which increases the weights of the
marginal sample pairs. As in MS-KFDA, the same structure
of the intrinsic embedding graph and multiscale Gaussian k-
ernels appears in MS-KLPDA.

In contrast to existing related works, the research in this
paper contains novelty as follows: Compared to [21], our re-
search adds a locally penalised term in the structure of the
penalty embedding graph, which is more suitable for the
considered task of emotion recognition in speech. In [12],
MKL dimensionality reduction has been proposed by a large
amount of kernels, while our research focuses on adopting a
kernel with multiple scales and the specifically designed opti-
misation form for emotion recognition in speech. Compared
with [19], the proposed method dispenses utilising the local
intrinsic structure to avoid effects from ‘disturbing’ features
and tuning in neighbourhood.

The remainder is structured as follows: Section 2 presents
the theory of the proposed MS-KLPDA. Then, experiments
and results are discussed aimed to evaluate the proposed
method in Section 3.

2. METHODOLOGY
In previous research using FDA by multiscale kernels [21],

the embedding graphs only contain supervised information,
which ignores the between-class marginal structure of the
penalty graph [5, 23]. Here, we propose a novel algorith-
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m, namely MS-KLPDA, by adopting Locally Penalised Dis-
criminant Analysis (LPDA) as the critical section for op-
timisation. On the basis of the FDA embedding graphs,
the marginal penalty term of LPDA is added in the penalty
graph, aiming to penalise local between-class sample pairs.

However, compared with existing methods [5, 23], LPDA
avoids to take the neighbouring intrinsic graph into con-
sideration, since the neighbouring information may lead to
unfavourable structures in some conditions of computational
paralinguistics. In addition, the performance of neighbour-
ing information largely depends on parameters to be tuned.
Further, LPDA leads to a convenient control of the marginal
sample pairs. This takes advantage of the penalty term by
flexibly regulating its weight.

Then, multiscale kernels [21] are learnt by combining the
locally penalised embedding graphs and multiple kernel learn-
ing, in order to achieve a more optimised value by means of
bilateral iterations. Afterwards, the subspace features are
fed into the decision maker (i. e., classifiers) to obtain the
recognition result. We show the detailed methodology as
follows.

2.1 Multiscale Kernels
It is assumed that N n-dimensional training samples X =

[x1, x2, . . . , xN ] ∈ <n×N are given along with their corre-
sponding labels Y = [y1, y2, . . . , yN ] ∈ <d×N . The Re-
producing Kernel Hilbert Space (RKHS) of X is represent-
ed as φ(X) = [φ(x1), φ(x2), . . . , φ(xN )], which leads to the
Gram matrix as K = φT (X)φ(X). For any sample x with
φ(x) in RKHS, the Gram mapping of x is defined as Kx =
φT (X)φ(x).

When multiple kernels [12] are used, Kx can be written
as the linear combination of M different kernels, namely

Kx =

M∑
m=1

βmφ
T
m(X)φm(x) = Ωxβ, (1)

where the multiple kernel coordinate matrix is

Ωx = [φT
1 (X)φ1(x), φT

2 (X)φ2(x), . . . , φT
M (X)φM (x)], (2)

with Ωx ∈ <N×M . β ∈ <M×1 is the column vector with
corresponding elements βm for the kernel m. The number
of kernels is M . Each column of Ωx is the corresponding
coordinate for a sample x.

We utilise Gaussian kernels with multiple scales in the
proposed MS-KLPDA. The mth element (corresponding to
scale m) of Ωx is

Ωxi,m = φT
m(xi)φm(x) = e

− (xi−x)
2

σ2m , (3)

where m = 1, 2, . . . ,M and i = 1, 2, . . . , N . φm(x) is the col-
umn vector in RKHS corresponding to kernel m and sample
x. σm > 0 are the scaling parameters of Gaussian kernels.

2.2 MS-KLPDA
Suppose for any sample x, we hope to learn its optimal

subspace representation ATx by calculating the mappings
A. Then for each pair of training samples xi and xj , the
squared distance of ATKxi and ATKxj can be weighted in
order to make the sum of the weighted values minimal or
maximal. Explicitly represented by graphs, these weights
depends on the relation between training samples. In accor-
dance with GE, the weights are written as the corresponding
elements of the adjacency matrices belonging to the intrinsic

(in minimal case) and penalty (in maximal case) embedding

graphs, namely W (I) and W (P ).
Thus, combining Eq. (1), the optimisation form of MS-

KLPDA is shown as

arg
A,β
min

N∑
i,j=1

‖ AT Ωxiβ −A
T Ωxjβ ‖

2 W
(I)
ij

s.t.

N∑
i,j=1

‖ AT Ωxiβ −A
T Ωxjβ ‖

2 W
(P )
ij = γ,

βm ≥ 0, m = 1, 2, . . . ,M,

(4)

using the multiple optimised mapping directions A = [α1, α2,
. . . , αd] ∈ <N×d, we obtain multiple mappings by solving the
optimisation problem, where d stands for the dimensionali-
ty of the dimensionality-reduced feature space. αi is the ith
mapping vector with i = 1, 2, . . . , d and the γ > 0 represents
a constant value.

In [21], the embedding graphs only include supervised in-
formation, in which the neighbouring between-class sample
pairs are not weighted. Consequently, we use the embedding
graphs with an additional penalty term, in order to penalise
marginal pairs.

The adjacency matrices of the intrinsic and penalty em-
bedding graphs are defined as W (I) = ST (SST )−1S,

W (P ) = 1
N
eeT + δ

(
(eeT − STS)�Wk0NN

)
,

(5)

where each column of S = [s1, s2, . . . , sN ]∈<c×N indicates
the label information of every corresponding training sam-
ple, where c is the number of classes. Sij = 1 when sample
j belongs to class i, otherwise Sij = 0, where i = 1, 2, . . . , c
and j = 1, 2, . . . , N . Every element of e ∈ <N×1 is equal
to 1. The operator � represents the element-wise product
between two matrices.
Wk0NN is the k0 nearest-neighbour adjacency matrix of

training samples, where the elements (Wk0NN )ij = 1 (in

the current approach) or e−
‖xi−xj‖

2

t (for an improved ap-
proach), when xi is among k0 nearest-neighbours of xj or
vice versa, with i, j = 1, 2, . . . , N and the constant value
t > 0. Otherwise, (Wk0NN )ij = 0. δ > 0 denotes the weight
of the locally penalised discriminant term.

It is worth noticing that, in Eq. (5) the intrinsic graph
and the first term of the penalty graph here are the same
as in FDA, while the second term of the penalty graph is
similar to the penalty graph in LDE [5] and MFA [23].

Accordingly, the proposed MS-KLPDA can be solved by
alternative iteration of Eq. (6) (solving kernel mappings A),
and Eq. (7) (solving nonnegative linear weights β of multi-
scale kernels).

arg
A

min tr
(
ATQ(I)(β)A

)
s.t. tr

(
ATQ(P )(β)A

)
=γ,

Q(I)(β) =

N∑
i,j=1

(Ωxi − Ωxj )ββ
T (Ωxi − Ωxj )

TW
(I)
ij ,

Q(P )(β) =

N∑
i,j=1

(Ωxi − Ωxj )ββ
T (Ωxi − Ωxj )

TW
(P )
ij ,

(6)

which can be approximately changed into the ratio-trace for-
m and therefore it can be calculated as Generalised Eigen-
value Problem (GEP). In order to avoid theoretical minimal
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zero values in calculating the GEP, a diagonal matrix with
small weights can be added on the Laplacian matrix of W (I).

arg
β

min βTQ(I)(A)β

s.t. βTQ(P )(A)β = γ, βm ≥ 0, m = 1, 2, . . . ,M,

Q(I)(A)=

N∑
i,j=1

(Ωxi − Ωxj )
TAAT (Ωxi − Ωxj )W

(I)
ij ,

Q(P )(A)=

N∑
i,j=1

(Ωxi − Ωxj )
TAAT (Ωxi − Ωxj )W

(P )
ij ,

(7)

which is calculated according to Semi-Definite Programming
(SDP) relaxation. The total computational cost is similar
as in [12,21].

3. EXPERIMENTS

3.1 Corpora and Features
Two emotional corpora, namely ‘Speech Under Simulated

and Actual Stress’ (SUSAS) [11] and the ‘GEneva Multi-
modal Emotion Portrayals’ (GEMEP) [3] are used in the
experiments, in order to show the performance in various
conditions.
SUSAS is mainly utilised to analyse stress levels containing
the four emotional categories of high stress (hist), medium
stress (meds), neutral (neut), and screaming (scre) in (US)
English. On arousal neut is low, while the other categories
are high. The categories of neut and scre are both positive
on valence – the other two negative. 3 593 utterance samples
by seven speaker (three female) in English are contained in
the corpus. The numbers of samples in the four emotional
categories are 1 202, 1 276, 701, and 414, respectively. In
the experiments, the training set of the corpus contains four
speakers (two female) with 2 027 samples, while the testing
set includes all the remaining speakers with 1 566 samples.
GEMEP is a French spoken language corpus with 18 de-
tailed emotional categories and 1 260 utterance samples. We
chose the 12 categories as used in INTERSPEECH Com-
ParE 2013, namely (amusement, pride, joy, relief, interest,
pleasure, hot anger, panic fear, despair, irritation, anxiety,
and sadness) [9, 18] in the experiments. In total, these are
1 080 samples by ten speakers, which leads to 90 samples per
emotion. We divide the corpus into two folds, including five
speakers in each fold (three female for the first fold / two
female for the second fold). One fold is for training and the
other is for testing, and vice versa. This leads to a 2-fold
Cross-Validation (CV).

The key information of the corpora used in the experi-
ments is presented in Table 1.

Table 1: Description of the emotional speech cor-
pora GEMEP and SUSAS used in the experiments,
where ‘Tr.’ means training set and ‘Te.’ means test-
ing set.

Corpus # Classes # Speakers # Samples

SUSAS
Tr.

4
4 (2 female) 2 027

Te. 3 (1 female) 1 566

GEMEP
Tr./Te.

12
5 (2 female) 540

Te./Tr. 5 (3 female) 540

In the experiments, the open-source paralinguistic tool
openSMILE [8, 10] is chosen as the feature extractor. We

employ the configuration of the INTERSPEECH 2013 Com-
putational Paralinguistics Challenge (ComParE) [18], which
also has been used in INTERSPEECH 2014 to 2016 Compu-
tational Paralinguistics Challenges [15, 16]. Hence, the fea-
ture set with the original dimensionality of 6 373 is obtained
for each utterance. This set mainly includes the features of
low-level descriptors covering different acoustic characteris-
tics, with various statistical functionals.

3.2 Experimental Setup
As in [21], the number of scales is set as M = 10, with

the Gaussian scaling parameters σm (m = 1, 2, . . . ,M) (in
Eq. (3)) chosen as 0.001n, 0.005n, 0.01n, 0.03n, 0.05n, 0.1n,
0.3n, 0.5n, 0.75n, and n, respectively. The dimensions d
of the dimensionality-reduced feature space are selected no
larger than 7 for SUSAS, and 15 for GEMEP. The neigh-
bouring penalty parameter k0 is chosen as 30.

At the stage of classification, a k Nearest-Neighbour (kN-
N) classifier, which is shown in [21], is adopted to show the
basic performance of the proposed methods. Further, we ap-
ply generalised Ridge Regression (RR), which was proposed
for face recognition in [1], since the kNN classifier requires
memory to store all the training samples.

3.3 Results

3.3.1 Experiments on SUSAS
First, we consider the unbalanced SUSAS corpus. Fig-

ure 1 shows the changes of Unweighted Accuracy (UA) for
MS-KLPDA with the parameters δ equal to 0.0001, 0.001,
0.01, 0.05, and 0.1, respectively, compared with MS-KFDA.
For the kNN classifier, the best performance can be ob-
tained with δ = 0.05, while for RR, it seems more likely
to achieve better performance with lower δ values. Overall,
the proposed MS-KLPDA is capable of achieving better per-
formance given suitable selections of δs.
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Figure 1: Unweighted accuracy of MS-KFDA and
MS-KLPDA with various parameters δ on SUSAS.
(a) with kNN, (b) with RR.

The UA and Weighted Accuracy (WA) comparison be-
tween the proposed MS-KLPDA and conventional methods,
including PCA, LDA (Linear Discriminant Analysis) / F-
DA, LDP, LDE, kNN, RR, and Support Vector Machines
(SVM), as well as MS-KFDA, are also shown in Table 2
according to the experiments on SUSAS. One learns from
the table that MS-KLPDA with kNN classifier gives best
performance among all the evaluated methods.

To better compare the performance of the proposed MS-
KLPDA with the ‘conventional’ methods, the results of a
one-tail z-test [24] show that MS-KLPDA is significantly
better than SVM at the significance level of 0.05.
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Table 2: Recognition rates by UA and WA (%),
of conventional methods and the proposed MS-
KLPDA on SUSAS and GEMEP.

Corpora SUSAS GEMEP

Methods \ Accuracy UA WA UA WA

PCA 54.4 46.6 26.5 26.4

LDA / FDA 55.1 46.3 33.8 33.5

LDP [4] 55.3 46.2 33.1 32.8

LDE [5] 40.3 37.5 35.5 35.4

kNN (Baseline) 53.0 46.5 25.2 25.2

RR (Baseline) [1] 51.1 45.2 33.3 33.2

SVM 56.2 46.6 38.4 38.2

MS-KFDA (with kNN) [21] 59.0 51.5 38.8 38.2

MS-KFDA (with RR) 56.7 54.3 31.0 29.4

MS-KLPDA (with kNN) 59.5 55.4 39.1 38.5

MS-KLPDA (with RR) 58.7 52.7 40.2 40.1

Table 3 shows the comparison of the recalls (%) of each
category by the methods of MS-KFDA and the proposed
MS-KLPDA. In designing embedding graphs (5), the num-
bers of neighbouring marginal samples are set as k0 = 5,
30, and 60 to investigate the tendency of MS-KLPDA. It is
concluded from Table 3 that for the states of high stress and
medium stress (with a large sum of samples), the perfor-
mances keep rising as k0s increase. However, for the state
of neutral (with fewer samples), the recall drops, while it
remains stable for screaming.

Table 3: Recalls (%) of MS-KFDA and MS-KLPDA
(with the numbers of neighbours k0 = 5, 30, and 60)
on SUSAS.

Methods \ Species hist meds neut scre

MS-KFDA (k0 = 0) 43.2 66.2 39.5 98.6

MS-KLPDA (k0 = 5) 44.8 68.8 38.3 98.6

MS-KLPDA (k0 = 30) 47.1 75.4 31.0 97.8

MS-KLPDA (k0 = 60) 48.8 85.6 21.9 97.1

3.3.2 Experiments on GEMEP
Next, for further comparison, we show the experiments on

GEMEP with 12 emotional classes, which demonstrate the
case of more fine-grained emotional modelling.

Similar as in the experiments on SUSAS, the ‘convention-
al’ methods of subspace learning (PCA, LDA/ FDA, LDP,
LDE), kNN, RR, and SVM are chosen for comparison in the
right part of Table 2. The proposed MS-KLPDA with RR is
able to achieve the best performance among these methods,
while the MS-KLPDA with kNN is also competitive.

The recognition rates of the proposed MS-KLPDA on
GEMEP, represented by UA and WA, are presented in Fig-
ure 2, with the parameters δ equal to 0, 10−5, 10−4, 10−3,
10−2, and 10−1, respectively, using kNN and RR. Note that
the MS-KLPDA with δ = 0 represents MS-KFDA marked
by dotted lines in Figure 2. It can be drawn from Figure 2
that, the proposed MS-KLPDA methods generally outper-
form MS-KFDA. The best performance is observed for the
parameter δ = 10−2 using RR.

Let us now focus on the comparison between the MS-
KLPDA and MS-KFDA in the right part of Table 2, which
shows that, MS-KLPDA with RR provides a relatively good
increase on the basis of MS-KFDA compared with the meth-
ods using kNN on GEMEP.
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Figure 2: Recognition rates (UA and WA) of MS-
KFDA and MS-KLPDA with various parameters δs
using kNN and RR on GEMEP. (a) UA, (b) WA.

Table 4: Recognition rates by UA and WA (%),
of the top-three-performance KLPDA and MS-
KLPDA variants on GEMEP.

Classifier with kNN with RR

Methods UA WA UA WA

KLPDA (σ(1)) 37.8 37.4 40.9 40.7

KLPDA (σ(2)) 37.5 37.0 40.1 40.0

KLPDA (σ(3)) 36.9 36.6 39.1 39.0

MS-KLPDA 39.1 38.5 40.2 40.1

To show the performance of learning multiscale kernels,
we present the comparison between MS-KLPDA and KLP-
DA (with single Gaussian kernels) in Table 4, where the UA
and WA of the top-three-performance KLPDA variants are
listed, denoted with the scaling parameters σ(1), σ(2), and
σ(3), respectively. According to the table, for the kNN clas-
sifier, MS-KLPDA provides ‘dominant’ performance, while
for RR, the multiscale approach is still competitive though
it fails to outperform the best single-kernel way.

4. CONCLUSIONS
A novel algorithm of multiscale-kernel locally penalised

discriminant analysis was proposed in this paper. The key
idea of this algorithm is adopting locally penalised embed-
ding graphs by learning multiscale kernels in the framework
of graph embedding. The extensive experimental results on
emotional speech corpora show a performance improvement
of the proposed MS-KLPDA compared with MS-KFDA and
conventional alternative algorithms.

In our future work, more suitable embedding graphs are
expected to be designed in order to better describe the struc-
tures of training samples. In addition, a wider scope of scal-
ing parameters for kernels can be utilised in optimisation to
obtain a more optimal object over the iterations.
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