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Abstract
Coping with scarcity of labeled data is a common problem in sound classification tasks.

Approaches for classifying sounds are commonly based on supervised learning algo-

rithms, which require labeled data which is often scarce and leads to models that do not

generalize well. In this paper, we make an efficient combination of confidence-based Active

Learning and Self-Training with the aim of minimizing the need for human annotation for

sound classification model training. The proposed method pre-processes the instances

that are ready for labeling by calculating their classifier confidence scores, and then deliv-

ers the candidates with lower scores to human annotators, and those with high scores are

automatically labeled by the machine. We demonstrate the feasibility and efficacy of this

method in two practical scenarios: pool-based and stream-based processing. Extensive

experimental results indicate that our approach requires significantly less labeled instances

to reach the same performance in both scenarios compared to Passive Learning, Active

Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved

in both of the pool-based and stream-based scenarios on a sound classification task con-

sidering 16,930 sound instances.

Introduction
Sound classification is a relatively recent topic in the audio analysis research community when
compared to speech and music analysis. Yet, it has a wide range of applications such as multi-
media data search, context awareness and activity detection [1–4], security surveillance [5, 6],
military interest tracking [7], assistive devices for independent living [8], healthcare monitor-
ing [9, 10], among others.

In Table 1, we show an overview of state-of-the-art research in sound classification. Notice-
ably, two main features characterize this area of research. Firstly, statistical classifiers and fully
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supervised learning algorithms are the most common approaches to sound classification. This
means that large amounts of training data (typically labeled by human annotators) are
required to create robust classification systems. Secondly, prototypical databases with size less
than 10,000 instances are employed in most case. Indeed, and although the largest database
mentioned in Table 1 comprises as many as 10,500 instances, the average size of each sound
class is as small as 100 instances. In comparison with automatic speech recognition research
where typical corpora comprise hundreds of hours of transcribed speech, annotated data in
sound classification is scarce. Therefore, there is a gap between the desirability of sufficient
labeled data for training robust models and the scarcity of annotated corpora.

While the development of web technology has allowed free access to vast amounts of
sound media data for research usage, the shortage of labeled data remains an important issue
that compromises the development of robust sound classification systems, which in turn lim-
its their performance in practical scenarios [12–14]. To our best knowledge, even the largest
environmental sound database ESC-US [15] so far contains only a limited number of labeled
instances (2,000 instances) and a large amount of unlabeled instances (250,000 instances).
This situation can be attributed to the burdensome and costly annotation process that requires
assigning a predefined label to each of the various sound samples, which is especially critical
for large databases [15]. Given this scenario, it is of extreme importance to develop techniques
that allow the development of sound classification systems using databases with only partial
human annotations available. This issue is addressed in this paper, and our proposal to over-
come the above mentioned limitations is to combine Active Learning (AL) and Semi-Super-
vised Learning (SSL). With this approach, we target real-use scenarios whereby machines are
required to make sense of the acoustic world surrounding them in meaningful ways by learn-
ing autonomously (SSL), through interacting with humans (AL), and by continuously adapt-
ing to a specific environment. Additionally, it also reduces the need for human labeled data
for the development of robust sound classification systems.

The best of two worlds: AL and SSL
AL [16] is a Machine Learning technique that aims at achieving greater accuracy with fewer
training labels by (actively) choosing the data from which it learns. In contrast with the most
commonly used Passive Learning (PL) techniques that randomly select instances from data
pools to be labeled, AL algorithms select those instances that are the ‘most informative’ (with
respect to a given measure function), and subsequently query human or machine annotator
for labeling. The informativeness of the instances to be selected concerns their potential to
improve the model’s performance by selecting the best examples during training. There are
various strategies by which the informativeness of unlabeled samples can be processed (as

Table 1. Overview of state-of-the-art research in sound classification. For features, BoAP: bag-of-audio-phrases descriptor, UFL: unsupervised feature
learning, E: energy, SF: spectral features, ZCR: zero-crossing rate, TFB-ED: triangle filter bank and eigen-decomposition, MFCC: mel-frequency cepstral
coefficients, STE: subband temporal envelopes, and for classifiers, SVM: support vector machines, RF: random forest, KFDA: kernel Fisher discriminant
anlysis, HMM: hidden Markov models, for learning methods, FS: fully supervised learning.

Work #Clips #Classes Features Classifiers Learning methods Domains

[1] 1,479 22 BoAP SVM FS human activity

[2] 8,732 10 UFL RF FS urban environment

[3] 5,949 62 E+SF+ZCR SVM FS surveillance

[6] 650 3 TFB-ED KFDA FS environment

[9] 115/10,500 7/105 MFCC HMM FS healthcare

[11] 705 10 STE SVM FS canteen

doi:10.1371/journal.pone.0162075.t001
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detailed in the next section), and the effectiveness of AL has been shown in typical classifica-
tion tasks such as automatic speech recognition [17], multimedia retrieval [18], speech emo-
tion recognition [19], among others.

As a result of employing an certainty-based AL query strategy, especially when it comes to
a large scale raw data collection, a considerable number of unlabeled instances will be left out
because of their high confidence scores (i. e., low informativeness). Here, we consider to fur-
ther exploit this remaining set of instances (which are not selected for the human to label)
with a traditional SSL method. These instances, and their corresponding labels automatically
annotated by the machine classifier, will be added to the human-labeled set to create a new,
larger training set. As a result, we will combine AL and SSL methods to reduce the amount of
human-labeled data. Specifically, human annotators are required to label only those instances
with the lowest certainty as determined by the AL algorithm, while the remaining instances
(those with the highest certainty) are automatically labeled by a machine annotator. Then,
both groups of instances are fused and used to re-train the classifier. We will refer to this
approach as Semi-Supervised Active Learning (SSAL) throughout this paper. The effectiveness
of SSAL in reducing the amount of data to be labeled by human annotators will be validated
in a sound database with a size of 16,930 instances.

The major contribution of this work is the application of a hybrid method combining AL
and SSL in the field of sound classification, which is of extreme importance to the field given
the scarcity of labeled data and the need to minimise the costs associated with human annota-
tions. Furthermore, we provide a detailed operationalization of the proposed method in two
target scenarios: pool-based (all data is available at once) and stream-based (a practical sce-
nario whereby instances are gathered sequentially from actual distributions) scenarios.

Related work

Active Learning
One of the most promising approaches proposed in the literature to efficiently exploit unla-
beled data for model development is AL [20–22]. By estimating the informativeness of the
unlabeled instances, AL selects only those with high potential to improve the model’s perfor-
mance for annotation. There are various strategies by which such informativeness can be pro-
cessed (aka, query strategies), and, according to the different types of feedback considered, at
least three categories can be generalized from previous work [16]: 1) certainty-based sampling,
2) query-by-committee, 3) expected error reduction. In the first type of strategy, the model (or
active learner) determines the certainty of the predictions on unlabeled data based on a previ-
ously trained model, and queries an annotator for the labeling of those with the least certain
classification. This is perhaps the most commonly used query strategy. For instance, it has
been applied in text classification [22], automatic speech recognition [17], speech emotion
classification [19], audio retrieval [23], among others. The second type of strategy (query-by-
committee) involves two or more classifiers and the selection of those instances about which
the various models disagree the most, which are then delivered for human annotation. This
strategy can also be employed in regression tasks by measuring disagreement as the variance
among the committee members [24]. The third type of strategy (expected error reduction) is a
decision-theoretic approach that aims to estimate how much the model’s generalization error
is likely to be reduced. The instances estimated to have a high impact on the expected model’s
error are selected for human annotation. This strategy has been adopted for text classification
task with Naive Bayes models [25], and leads to a dramatic improvement over certainty-based
and query-by-committee strategies. Unfortunately, the expected error reduction method is also,
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in most cases, the most computationally expensive [16]. The effectiveness of AL and the vari-
ous query strategies has been shown in typical classification tasks [16, 19, 22–25].

Semi-Supervised Learning
Similarly to AL, the goal of SSL techniques is to exploit the availability of unlabeled data for
model training and improvement. Two broad categories of SSL have been investigated to date:
self-training [26] and co-training [27, 28]. Self-training is a technique that permits to automat-
ically annotate unlabeled data by using a preexisting model trained on a smaller set of labeled
data. Usually, those instances of the unlabeled data set that are predicted with the highest
degree of confidences are added to the training set (together with the respective labels), and
the classifier is re-trained with the new (larger) set. This procedure is then repeated iteratively
until a certain target performance is achieved (or until no more unlabeled candidate data is
available). This approach is very attractive and useful to enhance the robustness of existing
classifiers, because it does not require the intervention of human annotators [29, 30]. The
effectiveness of self-training has been demonstrated in various areas, including spoken lan-
guage understanding [31], handwritten digit and text classification [32], and sound event clas-
sification [33].

Another set of algorithms with the potential to exploit unlabeled data pools is multi-view
learning [30, 34, 35].Multi-view learning techniques focus on improving the learning process
by training different models for the same task concurrently, but using different feature sets
(aka, “views”) [16]. Co-training is one of the earliest schemes for multi-view learning proposed
in the literature. In this method, two models are initially trained with two distinct different
feature sets of the same labeled data set. Then, the most confident predictions of each model
on the unlabeled data are added to the training set to train each other. The algorithm relies on
three assumptions or conditions: (a) sufficiency: each “view” is sufficient for classification on
its own, (b) compatibility: the target functions in both “views” predict the same labels for co-
occurring features with high probability, and (c) conditional independence: the “views” are
conditionally independent given the class label [27].

Combining Active and Semi-Supervised Learning
AL strategies can greatly reduce the time-consuming and expensive human labeling work and
lead to excellent performance improvements [16]. Nevertheless, AL is still inadequate for
some situations in which obtaining a large amount of human annotations is unpractical (or
not possible at all), and therefore needs to be minimized. Given that SSL also aims at using
unlabeled data in an efficient way, but without the intervention of human annotators, it is nat-
ural to think about combining both techniques. Indeed, various examples can be found in the
literature and are summarized in Table 2. One of the first works exploring combinations of
AL and SSL algorithms was reported in [36]. Later, [34] proposed a variant of query-by-com-
mittee method, which is known as co-testing. In this method, two classifiers were trained sepa-
rately on two different views (similarly to co-training), and the unlabeled instances in which
the classifier disagree the most (‘contention points’) were selected for human annotation. Co-
testing was then combined with co-training using an expectation maximization (co-EM) algo-
rithm to automatically label instances that showed a low disagreement between the two classi-
fiers. The combined method proposed in [34] clearly outperformed co-EM, general co-testing
and co-training in Web pages and pictures classification. [37] also achieved significant perfor-
mance improvements by combining co-testing and co-training methods in image retrieval
compared to either co-testing or co-training retrieval method. Certainty-based AL has been
also used alongside self-training to significantly reduce the human labeling effort in spoken
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language understanding [31] and natural language processing [38]. In the work presented in
this paper, we will tandem certainty-based AL and self-training methods for sound
classification.

Active Learning in two scenarios
In this paper we adopt an certainty-based AL approach. Moreover, we consider two target sce-
narios: pool-based scenario and stream-based scenario. The focus on the first scenario tackles
situations where a large pool of unlabeled data can be gathered at once (the most common in
previous work; cf. Table 2). In this case, before deciding which instances should be selected in
each training iteration, every instance in the pool can be evaluated in terms of their informa-
tiveness. The second scenario fits a practical scenario in which unlabeled instances are gath-
ered sequentially from actual distributions (e.g., an online sound processing system). In this
case, the (active) learner decides whether to keep or discard each instance individually. Unlike
the pool-based scenario, the stream-based scheme is more appropriate for situations in which
memory or processing power may be limited (e.g., mobile and embedded devices) [16].

A detailed description of the AL strategies used in this paper are shown in Tables 3 and 4.
In both strategies we start with a small set of labeled instances Sl for training an initial classi-
fier M. With this classifier, we estimate the confidence scores Cs for the instances that are can-
didates for labeling. In the pool-based scenario, the entire pool of unlabeled instances Su is
estimated, and only those instances with confidence scores equal to or lower than the pre-
defined threshold tha are selected for human annotation. In the stream-based scenario, the

Table 2. Overview of previous work combining Active and Semi-Supervised Learning techniques, and the work proposed in this paper. AL: Active
Learning, SSL: Semi-Supervised Learning, QBC: Query-By-Committee, EM: Expectation Maximization, SBC: Similarity-based Classifier, CRFs: Conditional
Random Fields, SVM: Support Vector Machines.

Article AL method SSLmethod Scenario Classifier Domain Year

[36] QBC EM pool naive Bayes text classification 1998

[34] Co-Testing Co-EM pool naive Bayes Web pages & pictures classification. 2002

[37] Co-Testing Co-Training pool SBC content-based image retrieval 2004

[31] Certainty-based Self-training fixed & dynamic pool Boosting spoken language understanding 2005

[38] Certainty-based Self-training stream CRFs natural language processing 2009

this work Certainty-based Self-training pool & stream SVM sound classification 2015

doi:10.1371/journal.pone.0162075.t002

Table 3. Certainty-based Active Learning algorithm in a pool-based scenario.

Input:

Sl: a small set of labeled instances

Su: a large pool of unlabeled instances

M: an initial classifier trained on Sl

tha: the confidence threshold

Do:

Classify each instance in Su using classifierM and calculate the confidence score C for each selected
instance.

Select those instances with Cs that are equal to or lower than threshold tha, and submit them to human
annotation.

Refer to the new labeled set as Snew.

Sl = Sl [ Snew, Su = Su − Snew.

Re-train classifierM using new Sl.

Until Su = ;/labeler is unavailable/model training converges

doi:10.1371/journal.pone.0162075.t003
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instances are analyzed sequentially and selections are made individually. At each iteration, the
buffer B is send to human for annotation as soon as it is full filled with instances with confi-
dence scores less than the pre-defined threshold tha. The threshold tha is determined by the
human labeling resources available or by the performance of the current classifier.

Semi-supervised Learning
As mention, in order to further reduce the need for human annotation and enhancing the
classification performance, we complement the AL phase with self-training. A detailed
description of this strategy is presented in Table 5. First, we train an initial model M using an
initial (small) set of human-labeled data Sl. Then, we classify the unlabeled instances Su and

Table 4. Certainty-based Active Learning algorithm in a stream-based scenario.

Input:

Sl: a small set of labeled instances

Su: a large stream of unlabeled instances

M: an initial classifier trained by Sl

B: a fixed buffer

tha: the confidence threshold

Do

Classify current instance from Su using classifierM and calculate the confidence score C.

if C < tha
Retain current instance in buffer B.

otherwise

Discard current instance.

end if

if buffer B is full

Submit instances in B to human annotation.

Refer to the new labeled set as Snew.

Sl = Sl [ Snew, Su = Su − Snew.

Re-train classifierM using new Sl.

end if

Until Su is interrupted/labeler is unavailable/model training converges

doi:10.1371/journal.pone.0162075.t004

Table 5. Semi-Supervised Learning strategy.

Input:

Sl: a small set of labeled instances

Su: a large pool of unlabeled instances

M: an initial classifier trained by Sl

ths: the confidence threshold

Do:

Classify every instance in Su using classifierM and calculate the corresponding confidence score C.

Select those instances with Cs that are equal to or higher than threshold ths, and label them with
corresponding predicted categories.

Refer to the machine-labeled set as Snew.

Sl = Sl [ Snew, Su = Su − Snew.

Re-train classifierM using the new set Sl.

Untilmodel training converges/unlabeled data is unavailable

doi:10.1371/journal.pone.0162075.t005
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calculate the confidence scores (as it will be defined later in this paper). Finally, we select
those unlabeled instances with confidence scores equal to or greater than a given threshold
ths, and add them (together with the respective machine-annotated labels) to the training set
for the next iteration.

There are two parameters that need to be set in this strategy: the confidence threshold ths
and the size of the initial human-labeled data set |Sl|. Regarding the first, which defines the
amount of unlabeled data to be selected at each iteration of the algorithm, we have to find a
compromise between the impact of adding noisy instances (low ths) and adding less informa-
tive ones (high ths). Regarding the second, we have to consider that if the set is too small the
initial model will have a high classification error rate, and if the set is too large no improve-
ment over the initial model can be expected because there is nothing to be learned. In this
paper, we will optimize these parameters as it will be described in experimental section.

Combining Active and Semi-supervised Learning
As discussed above, active and semi-supervised learning share the common goal to reduce the
amount of human annotation effort by means of selective data sampling. However, they fur-
ther share the same criteria for data sampling—the confidence score. The difference is that
they achieve their goals from opposite ‘ends’: active learning samples data with low classifier
confidence, while semi-supervised learning samples the data with high confidence. Thus, it
comes naturally to combine them for more efficient model learning. Our proposed approach
is as follows.

By using two given confidence thresholds thssaL and thssaH, the candidate instances that are
evaluated for labeling can be sampled to generate two subsets: one subset containing instances
whose confidence scores are lower than thssaL, and another subset containing those instances
whose confidence scores are equal to or higher than thssaH. It follows that the former subset of
instances is selected for human labeling, and the latter for machine labeling. This approach
can be referred to as Semi-Supervised Active Learning (SSAL), since it tandems the standard

Table 6. Semi-Supervised Active Learning in a pool-based scenario.

Input:

Sl: small set of labeled instances

Su: large pool of unlabeled instances

M: initial classifier trained by Sl

thssaL, thssaH: confidence thresholds

Do:

Classify every instance in Su using classifierM and calculate the corresponding confidence score C.

Select instances with Cs lower than thssaL from Su and submit them to human annotation.

Refer to the new labeled set as Sa
new.

Sl ¼ Sl [ Sa
new; Su ¼ Su � Sa

new:

*Re-train the classifierM using the new Sl.

Select those instances with Cs equal to or higher than thssaH, and add the corresponding predicted labels.

Refer to the machine-labeled set as Ss
new.

Sl ¼ Sl [ Ss
new; Su ¼ Su � Ss

new:

*Re-train the classifierM using the new Sl.

Until Su = ;/labeler is unavailable/model training converges

* Note that the model is re-trained twice at each learning iteration.

doi:10.1371/journal.pone.0162075.t006
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fully supervised AL strategy with a bootstrapping strategy SSL, (i.e., self-training). SSAL is for-
mally described in Tables 6 and 7 for pool-based and stream-based scenarios, respectively.

In the pool-based scenario, at every learning iteration, we incrementally increase the initial
training set with a set of human-labeled instances (those with confidence scores lower than
the threshold thssaL), and a variable number of machine-labeled instances (those with confi-
dence scores equal to or higher than the threshold thssaH. As can be observed from Table 6,
there are twice as many model re-training operations in each learning iteration compared to
the individual AL and self-training approaches. In our approach, we first re-train the model
with the human-labeled date set Sanew (AL phase), and then produce the machine-labeled data
set Ssnew (SSL phase). The purpose of this design aims at improving the quality of the data set
Ssnew by making use of a model previously trained with reliable (human) labels. This is very
important for the SSL phase, since having the model trained first with reliable annotations
from the AL phase will decrease the amount of noisy data (instances with potentially wrong
labels assigned). This will avoid the deterioration of the performance that can occur in the SSL
phase. The same approach for avoiding noisy data is adopted in the stream-based scenario,
see Table 7. Additionally, we continuously fill the buffer B with new instances. Once the buffer
is full, two confidence thresholds thssaL and thssaH are adopted for data splitting.

Database and Acoustic Features
For the purpose of this work, we use the FindSounds database (http://www.findsounds.com/
types.html—accessed on 25 July 2011), which provides a large amount of varied real life
sounds already categorized. In order to better suit our study and avoid very unbalanced class
distributions, we discarded those categories with only a few instances (insects, with 7 subsets,

Table 7. Semi-Supervised Active Learning in a stream-based scenario.

Input:

Sl: small set of labeled instances

Su: large stream of unlabeled instances

M: initial classifier trained by Sl

B: fixed buffer

thssaL, thssaH: confidence thresholds

Do

Classify current instance from Su using classifierM and calculate its confidence score C.

Retain current instance in buffer B.

if Buffer B is full

Select those instances with Cs lower than thssaL from B and submit them to human annotation.

Refer to the human-labeled set as Sa
new.

Sl ¼ Sl [ Sa
new; Su ¼ Su � Sa

new

*Re-train classifierM using the new set Sl, and re-classify the remaining instances in B.

Automatically label those instances with Cs higher than thssaH in B with predicted labels.

Refer to the machine-labeled set as Ss
new.

Sl ¼ Sl [ Ss
new; Su ¼ Su � Ss

new:

*Re-train the classifierM using the new Sl.

end if

Until Su is interrupted/labeler is unavailable/model training converges

* Note that the model is re-trained twice at each learning iteration.

doi:10.1371/journal.pone.0162075.t007
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and holidays, with 5 subsets) and combined “birds” and “animals” categories in to a single cat-
egory (“Animals”). The database used in this study comprises seven categories (out of sixteen)
of sounds: 1) People: sounds resultant from 45 different human behaviors, such as coughing,
laughing, moaning, kissing, baby’s cry; 2) Animals: sounds from 69 different non-bird ani-
mals (e.g., cat, frog, bear, lamb, blackbird) and 16 kinds of birds. 3) Nature: 19 kinds of nature
sounds (e.g. earthquake, ocean waves, flame, rain, wind); 4) Vehicles: sounds produced by 34
different types of vehicles (e.g., car, motorbike, helicopter) and related actions (e.g., braking,
closing door); 5) Noisemakers: comprising 13 types of sound events (e.g., alarm, bell, whistle,
horn); 6) Office: original office space sound events (e.g, typing, printing, phone calls, mouse
clicking) 7)Musical Instruments: sounds from 62 different musical acoustic and electronic
instruments (e.g., bass, drum, synthesizer).

In total, there are 16,930 sound instances in our database with durations ranging from 1 to
10 seconds, which correspond to (approximately) 15 hours of environmental sounds. All
sound files were converted into raw 16 bit encoding, mono-channel, and 16 kHz sampling
rate, as various formats and rates were used in the original versions retrieved from the web.
The details of the database and categories used are shown in Table 8. Throughout this paper
we will refer to the database as FINDSOUNDS. (The whole database together with corre-
sponding labels can be downloaded for research and academic purpose from https://www.
dropbox.com/sh/nmw4ef7ma5ok8df/AACnx63TtkrwXyHyiJ0FpSw8a?dl=0.)

In order to evaluate the effectiveness of the new method proposed in this paper, we
adopted the baseline audio feature set used in the Audio/Visual Emotion Challenge (AVEC)
2012. This feature set comprises 1,841 features that result from a systematic combination 25
energy- and spectral-related low-level descriptors (LLDs) with 42 functionals, 6 voicing-
related LLDs with 32 functionals, 25 delta coefficients of energy/spectral-related LLDs with 23
functionals, 6 delta coefficients of voicing-related LLDs with 19 functionals, and 10 voiced/
unvoiced durational features (for full details on the feature set please refer to [39]). All features
and functionals were extracted with the OpenSMILE toolkit [40].

Experiments and Results
In this section, we describe a series of experiments conducted with the purpose of empirically
investigating the effectiveness of three learning methods in the context of sound classification:
1) certainty-based AL; 2) SSL; and 3) our proposed method, SSAL.

Experimental Setup
For every experiment presented in this paper, we run a 10-fold cross validation (the split is
90% for train, 10% for test) to obtain stable estimates of the algorithm’s performance. We

Table 8. Description of the subset of the FindSounds database used in this paper.

Category # Subsets # Clips Duration [h]

People 45 2,540 2 h 09 min

Animals 85 2,834 2 h 42 min

Nature 19 937 1 h 17 min

Vehicles 34 2,166 2 h 47 min

Noisemakers 13 2,010 1 h 56 min

Office 18 1,769 1 h 01 min

Musical Instruments 62 4,674 3 h 49 min

Total 276 16,930 15 h 41 min

doi:10.1371/journal.pone.0162075.t008
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compute unweighted average recalls (UARs), the sum of the accuracies per class divided by
the number of classes without considerations of instances per class, as evaluation metric. For
result representation in figures below, the UARs over 10 rounds along with the standard devi-
ation bar are used. All experiments use the FINDSOUNDS corpus introduced in previous sec-
tion. In order to deal with the imbalance between the number of instances in each category
(or class distributions), we employ data oversampling in the training set in order to add more
instances belonging to the less represented classes. Oversampling is performed in WEKA [41]
using the Synthetic Minority Over-sampling Technique (SMOTE) [42] (WEKA defaults set-
tings are used).

Specifically, SMOTE does oversampling by creating “synthetic” examples for minority
class. It takes each minority class sample and produces synthetic examples making use of all
of the k minority class nearest neighbors. Depending upon the amount of oversampling
required, neighbors from the k nearest neighbors are randomly chosen. Our experimental
setup currently uses 5 nearest neighbors. Synthetic samples are generated in the following
way: Take the difference between the feature vector (sample) under consideration and its
nearest neighbor. Multiply this difference by a random number between 0 and 1, and add it to
the feature vector under consideration. This approach effectively forces the decision region of
the minority class to become more general.

As classifier we use Support Vector Machines (SVM) [43] with linear kernels and pairwise
multi-class discrimination sequential minimal optimization (implemented in the WEKA
framework [41]). SVMs are supervised learning models based on the concept of decision
hyperplanes that define decision boundaries—hyperplanes in a multidimensional space that
separate sets of elements based on class memberships. The output value of SVMs is the dis-
tance of a specific point from the separating hyperplane, but a central aspect of our AL
approach is the calculation of the confidence scores. To convert these distances to probability
estimates within the range of [0, 1] there are various parametric and nonparametric
approaches. In this work, we employed a parametric method of logistic regression proposed
in [44], which is one of the most frequently used approaches to transform the output distances
of SVMs into (pseudo) probabilistic values [23, 45, 46]. This method assumes that the poste-
rior probability consists of finding the parameters A and B for a form of sigmoid function:

Pðyjf ðxÞÞ ¼ 1

1þ expðAf ðxÞ þ BÞ ; ð1Þ

mapping the value f(x) into probability estimates P(y|f(x)). For each instance, the sum of the
posterior probability for all classes is equal to 1. This probability indicates the classifier’s confi-
dence about the predicted label given. We then define the confidence score of x as follows:

CðxÞ ¼ Pðyjf ðxÞÞ: ð2Þ

Additionally, in the context of pool-based AL, and AL phase in SSAL experiments, instead
of using a threshold mechanism for data splitting as described in Tables 3, 6 and 7, we select
500 instances with lowest confidence scores for human annotation in each learning round.
And for stream-based AL as described in Table 4, we set the instances buffer size as 500 for
the sake of consistency. The reason behind is to fix the number of human labeled instances in
each learning iteration to further make an unified performance comparison platform for dif-
ferent learning methods.
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Confidence Scores Evaluation and Distribution
The learning methods proposed in this paper are based on two assumptions. First, the confi-
dence scores (cf. Eq (2)) are good indicators of the classifier’s output certainty level. This is
essential to ensure that the instances with the lowest classification certainty (low confidence
scores) are selected to be delivered for human annotation, and the instances with high classifi-
cation certainty (high confidence scores) are directly added to training data set with labels
automatically given by the machine annotator. Second, only a small portion of the unlabeled
instances are classified with low certainty, otherwise human effort cannot be dramatically
reduced.

Before starting our experiments, it is relevant to evaluate whether these two assumptions
are in fact supported. To do so, we train a SVM classifier with 500 and 5,000 instances

Fig 1. Relationship between classifier’s classification UARs and confidence scores for 500 and 5,000 initial
training instances.

doi:10.1371/journal.pone.0162075.g001
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(randomly selected from a training set considering class balance), and test it on the remaining
(unlabeled) instances (14,737 and 10,237, respectively). In Fig 1, we show the relation between
the test instances’ confidence scores and corresponding UARs, and in Fig 2, we show the dis-
tribution of the confidence scores falling in different ranges (i.e., [0.1, 0.4), [0.4, 0.7), [0.7,
1.0]) over unlabeled instances. As it can be seen in Fig 1, an increase in the UAR of the classi-
fier is matched by an increase in the confidence scores. Moreover, when the classifier is
trained with more labeled instances, the confidence scores tend to reflect better the classifier’s
UAR. Hence, the classifier confidence scores seem to reflect well the classifier’s certainty level
regarding the corresponding classification results. In relation to the second assumption, as
shown in Fig 2, the majority of unlabeled instances are classified with high confidence values.
It is also evident that the classifier initially trained with more labeled instances, tends to

Fig 2. Distribution percentage of classifier confidence scores for 500 (blue) and 5,000 (red) training instances.
(There is no instance assigned with confidence score falling in the range of [0.0, 0.1].)

doi:10.1371/journal.pone.0162075.g002
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classify more unlabeled instances with higher confidence levels. Therefore, only a small por-
tion of the unlabeled data is classified with low certainty.

Active Learning Experiments
In the certainty-based AL pool-based scenario, we use the same set of 500 samples as pre-
selected in above section to train the initial classifier. Then, in order to study the evolution of
classification performance, we incrementally select, and manually label, 500 instances per iter-
ation from the pool of remaining data (14,737 instances) for model re-training until all data is
labeled. The learning curves (UAR vs. number of instances added) for the AL method are
shown in Fig 3. Additionally, we also show the results for a passive learning (PL) method (i.e.,
randomly select instances for labeling) for the sake of comparison.

Fig 3. Learning curves for using active and passive learning method in pool-based scenario.

doi:10.1371/journal.pone.0162075.g003
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As it can be observed from Fig 3, the AL method effectively reduces the amount of human
annotations needed to achieve a given UAR. For instance, the PL method achieves a top classi-
fication UAR up to statistical significance of 68.5% when using 11,500 instances (75.5% of the
total number of instances in the data pool), while the AL approach reaches the same UAR
with 43.5% less labeled data (6,500 instances). The best UAR up to statistical significance with
AL, 69.3%, is achieved with only 7,500 manually labeled instances (49.2% of the total number
of instances in the data pool), which is statistical significantly higher than that of PL with p-
value = 0.0326 for two sample Kolmogorov-Smirnov test.

In order to simulate the stream-based scenario, we continuously sample instances from the
candidate set, one by one, in a random fashion. We decide to accept or discard the selected
instance immediately after sampling. Those with confidence scores lower than the given
threshold are accepted and added to the buffer. As soon as the buffer is full (500 instances),
the selected instances are delivered to human annotation, and finally added to the training

Fig 4. Learning curves for using active and passive learning method in stream-based scenario.

doi:10.1371/journal.pone.0162075.g004
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data set (together with respective label). The model is then re-trained and the same process
repeated. However, in most cases, the buffer can not be filled up in last iteration. The selected
instances are still manually labeled by human for model training. Based on the analysis of the
confidence score distribution shown earlier in Fig 2, which shows that only a few instances
fall in the interval between 0.0 and 0.4, we decided to test five different thresholds thas: 0.5,
0.6, 0.7, 0.8, and 0.9. Additionally, for the sake of comparison, we also tested the PL method,
whereby instances are randomly selected (which can be considered as a stream-based AL pro-
cess with 1.0 as confidence threshold). The results are shown in Fig 4.

From Fig 4, we can see that the AL approach with any of the five threshold levels leads to
better classification performances with a smaller amount of labeled instances (compared to
the PL approach). Furthermore, AL with lower threshold performs better than with higher
threshold, which indicates that selecting instances that are more informative can lead to better
performance with less annotation effort. However, lower threshold also means a larger
amount of discarded unlabeled instances, which is why the learning curves with lower thresh-
olds stop earlier—less instances are used for training. Therefore, the value of threshold should
carefully be tuned according to the specific application. Quantitatively, in the best case sce-
nario, to achieve the top classification UAR up to statistical significance of PL (68.5%, with
11,500 instances labeled), the AL method with a threshold of 0.9 requires only 6,500 instances
to be annotated (43.5% less than PL). Therefore, AL efficiently reduces the need for human
annotations while achieving the same performance as PL.

Semi-supervised Learning Experiments
In this section, we evaluate the SSL method described in Table 5. Four initial training data
sizes (i.e., 500, 1,000, 2,000, and 5,000) and six thresholds thss (i.e., 0.6, 0.7, 0.8, 0.9, 0.95, and
1.0) are considered here. Note that with a threshold of 1.0, no machine-labeled instances are
added to the initial training data set. Additionally, in each case, those learning iterations are
going on until no more unlabeled data is available.

The classification UAR figures for the different tests are depicted in Fig 5. As it can be
seen, the best UAR with 500 human-labeled instances is achieved with a threshold of 0.95,
while for other initial numbers of instances used the best UARs are achieved with a threshold
of 0.8. This result may indicate that using less data to train the initial classifier may require a
higher confidence threshold in order to guarantee the quality of machine labeling. With more
data to train the initial classifier, the UAR of the classifier is likely to increase and lower confi-
dence thresholds seem to ensure the informativeness of the instances.

Semi-supervised Active Learning Experiments
The effectiveness of active and semi-supervised learning methods has been separately evalu-
ated in the previous two sections. Both methods showed advantages in boosting the initial
classification performance, while reducing manual labeling effort. In this section, we focus on
assessing the combination of the two learning methods—the new method proposed in this
paper—for both pool-based and stream-based scenarios.

In the pool-based scenario, we use the same 500 instances as in previous active learning
experiments for initial model training, and then incrementally select new instances from the
remaining pool (14,737 instances) for either human or machine annotation. Specifically, in
each round 500 instances are selected for human labeling and a variable number of instances
with confidence scores above a given threshold are selected for machine labeling. In last itera-
tion, once less than 500 instances are available for selecting, human annotators label them all
for model re-training. Fig 6 shows the classification performance of the SSAL method with a
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threshold of 0.95, as well as that of the AL and PL methods. As it can be observed in Fig 6, the
SSAL method achieves similar classification UAR with AL (69.4% (SSAL) vs 69.3% (AL)), and
outperforms the PL by circa 0.9% (69.4% (SSAL) vs 68.5% (PL)) with p-value = 0.0173 for
two-sample Kolmogorov-Smirnov test. Moreover, the classification performance curve for
SSAL stops earlier than other two since a larger amount of instances are labeled at each itera-
tion. In order to achieve the best performance of the PL method (68.5%; 11,500 human labeled
instances), SSAL requires only 5,500 human labeled instances, 52.2% less than PL and 15.4%
than AL (6,500).

In order to evaluate the impact of the confidence thresholds on SSAL in the pool-based sce-
nario, we tested three values: 0.60, 0.80, and 0.95. The results are shown in Fig 7. With a
threshold of 0.60 many selected instances are labeled by machine and the classification perfor-
mance is worst compare to other two cases. A threshold of 0.80 leads to a similar classification

Fig 5. Semi-supervised learning results for varying sizes of the initial training set (different number of human
labeled instances) in combination with different confidence thresholds.

doi:10.1371/journal.pone.0162075.g005
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performance curve to that of 0.95, but its curve stops earlier with lower performance level for
more instances are delivered to machine for annotation. Therefore, a threshold of 0.95 is pre-
ferred in our experiments. Furthermore, these tests indicate that the tuning of the threshold
level is critical for the optimization of the learning process.

In relation to the stream-based scenario, we started once more with 500 instances for the
training of the initial model. In order to simulate a steady stream of incoming data, we ran-
domly sampled new instances from the remaining set (14,737 instances) until the buffer was
full (1,000 instances) in a sequential process. At this point, we selected the 500 instances with
lowest confidence scores for human annotation, and the 100 instances with the highest confi-
dence scores for machine annotation.

Fig 8 depicts the classification performance figures of the SSAL, AL and PL methods in the
stream-based scenario. As it can be seen, the SSAL method outperforms both the AL and the

Fig 6. Learning curves for semi-supervised active learning (in each round 500 instances with lowest confidence
scores are selected for human annotation and a variable number of instances with confidence scores above the
threshold 0.95 are selected for machine annotation), active learning, and passive learning in the pool-based
scenario.

doi:10.1371/journal.pone.0162075.g006
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PL approaches. In particular, for the same number of human labeled instances (6,000
instances), SSAL leads to a 10.0% increase in UAR up to statistic significance in relation to AL
with p-value = 0.0446 for two-sample Kolmogorov-Smirnov test. Moreover, it reaches the best
performance of PL (68.5%) with less 52.2% human effort (i.e., using only 5,500 labeled
instances).

In Table 9, we summarize the best performances in a statistically significant way for all
methods evaluated (SSAL, AL, and PL) in the pool-based and stream-based scenarios, as well
as the number of human-labeled instances needed to achieve that performance. Specifically, in
each learning iteration, AL and AL phase of SSAL in both scenarios are all parameterized with
a selection of 500 instances for human annotation, the SSL phase of pool-based SSAL selects a
number of instances with confidence scores higher than 0.95 for machine annotation, and the
SSL phase of stream-based SSAL selects 100 instances with highest confidence scores for
machine annotation. As it can be observed, the SSAL effectively reduces the human labeling
effort.

Fig 7. Learning curves for semi-supervised active learning with different thresholds in pool-based scenario.

doi:10.1371/journal.pone.0162075.g007

Semi-Supervised Active Learning for Sound Classification

PLOS ONE | DOI:10.1371/journal.pone.0162075 September 14, 2016 18 / 23



Table 9. Best performances up to statistic significance achieved using semi-supervised active learn-
ing (SSAL), active learning (AL), and passive learning (PL) in pool-based and stream-based scenar-
ios, as well as the number of human-labeled instances (#HLI) needed to achieve that performance.

Pool-based scenario

Learning methods SSAL AL PL

Best UAR (%) 69.4 69.3 68.5

#HLI 6,500 7,500 11,500

Stream-based scenario

Learning methods SSAL AL PL

Best UAR (%) 68.7 68.7 68.5

#HLI 6,000 7,000 11,500

doi:10.1371/journal.pone.0162075.t009

Fig 8. Learning curves for semi-supervised active learning (in each round 500 instances with lowest confidence
scores are selected for human annotation, and 100 instances with the highest confidence scores are selected for
machine annotation), active learning, and passive learning in stream-based scenario.

doi:10.1371/journal.pone.0162075.g008
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Conclusion
In this paper, we proposed to tandem Active Learning and Self-Training with the aim of
bridging the gap between the desire of sufficient amounts of training data and the scarcity of
labeled data in the context of sound classification. In this method, we exploited human and
machine labeling with the goal of minimizing the human labeling effort: humans were asked
to selectively label those instances that the machine was most uncertain about, and the
machine automatically labeled those instances that it could predict with a high confidence
level. In order to evaluate the certainty of the labels predicted by the machine annotator, we
used a classifier confidence score to determine the informativeness of the labeled instances,
which, as demonstrated is a good indicator of the classifier’s certainty about the classification
results.

Our proposed method was evaluated on a database with 16,930 instances in both pool-
based and stream-based scenarios. Furthermore, we compared our method to Active Learning,
Self-Training and Passive Learning. Results show that Active Learning requires significantly
less human-labeled data compared to Passive Learning to achieve the same UAR, and that
Semi-Supervised Active Learning outperforms both these methods in terms of classification
performance and number of human labeled instances necessary to achieve such performance.
In both of the pool-based and stream-based scenarios, the Semi-Supervised Active Learning
approach allowed us to reduce by 52.2% the amount of human annotations necessary to
achieve the best performance of all other methods tested.

While demonstrating the effectiveness of our method, it became also evident that for a suc-
cessful application of Semi-Supervised Active Learning, the tuning of the confidence threshold
is crucial. As we have shown, performance deterioration can occur due to the inclusion of
noisy machine-labeled data in the training set. Also, if too many instances are machine-
labeled, the classifier performance may never reach a satisfactory level given that very few
instances are left for human labeling (considered to be more reliable). Therefore, an optimiza-
tion process for searching an appropriate threshold is fundamental for the application of
Semi-Supervised Active Learning. This tuning is certainly task-specific as it will depend on
the complexity of the classification problem (and respective confidence levels), and the objec-
tivity of the ground truth or golden standard (which affects the quality of the labels). While
the current fixed threshold strategy may not be suitable in other classification tasks, one can
refer to [47], [48] and the references therein for more sophisticated thresholding and selection
criteria that delicately balance the trade-off between asking for human labeling versus receiv-
ing machine labels.

Finally, and while in this paper we demonstrated the effectiveness of Semi-Supervised
Active Learning in largely reducing the need for human annotations in the context of sound
classification. Given the non task-specific nature of the algorithm proposed, our method can
also be applied to other classification scenarios. In particular, this methodology fits applica-
tions in hybrid learning environments where the machine is required to continuously increase
and adapt its knowledge about the acoustic environment as well as being able to learn in coop-
eration with humans.
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