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Abstract Multi-stream automatic speech recognition (MS-
ASR) has been confirmed to boost the recognition perfor-
mance in noisy conditions. In this system, the generation
and the fusion of the streams are the essential parts and
need to be designed in such a way to reduce the effect of
noise on the final decision. This paper shows how to
improve the performance of the MS-ASR by targeting two
questions; (1) How many streams are to be combined, and
(2) how to combine them. First, we propose a novel
approach based on stream reliability to select the number of
streams to be fused. Second, a fusion method based on
Parallel Hidden Markov Models is introduced. Applying
the method on two datasets (TIMIT and RATS) with dif-
ferent noises, we show an improvement of MS-ASR.
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1 Introduction

How to build an automatic speech recognition (ASR)
system that is robust in noisy environments has been a
long-lasting research topic. Previous studies can be gen-
erally classified into two categories, i. ., feature based and
model based noise robustness. Feature based methods try to
produce features that are invariant to noise [e. g., applying
Phase Auto Correlation (Ikbal et al. 2012), RASTA filter-
ing (Hermansky and Morgan 1994) and deep long short
term memory networks (LSTM) (Weninger et al. 2014)],
while model based methods try to build classifiers that are
robust to the variability of the signals, for example by
applying multi-condition training (Furui 1992), LSTM
networks (Geiger et al. 2014), non-negative matrix fac-
torisation (Wollmer et al. 2013), and a multi-stream speech
recognition system (MS-ASR) (Hermansky and Morgan
1994; Sharma 1999; Mesgarani et al. 2011; Bourlard et al..
1997; Hermansky 2013).

Our approach is toward the MS-ASR, which emulates
the parallel processing in the human auditory system.
Studies on human speech perception (Fletcher 1953) indi-
cate that the phoneme error rate of fullband speech, e, can
be approximated by

e = e1e)...e, (l)

where e; is the phoneme error rate of the ith subband
speech signal (Allen 1994). This approximation suggests
that multiple frequency subbands form independent chan-
nels for speech communication, and the total recognition
error are dominated by the channel that gives the lowest
error rate. Inspired by this study, Hermansky et al. pro-
posed a MS-ASR with 2 and 7 frequency bands (Her-
mansky et al. 1996). Each of the subband classifiers is a
phoneme-based multi-layer perceptron/hidden Markov
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model (MLP/HMM) hybrid recognizer using subband
perceptual linear prediction (PLP) features as inputs and
phoneme likelihood as outputs. They used a linear
(weighted sum of likelihoods) and non-linear MLP fusion
to combine classifier decisions. In turn, Bourlard and
Dupont proposed a MS-ASR system with 4 frequency
bands (Bourlard and Dupont 1997). A hybrid MLP/HMM
system is built for each subband, and the state likelihoods
are combined to give a more reliable decision. In a fol-
lowing study, a 7-band system is developed with a MLP
trained for stream fusion (Tibrewala and Hermansky 1997).
It was shown that, the multi-stream system outperforms
conventional single-stream systems for moderate noise
levels. In another study, the 7-band system was extended to
produce all possible combinations of 7 subbands giving
127 streams and combine them with a majority voting
(Sharma 1999). However, in the situations where the test
data is prone to noise, the performance of the system may
be degraded due to the inclusion of the noisy streams.
Therefore, in these situations, for each test instance, the
most efficient streams out of all the streams should be
selected dynamically for the fusion [similar to Giacinto and
Roli (2000)]. A dynamic selection approach is proposed in
(Variani et al. 2013) to exclude the subbands that are
corrupted by noise. They used a 7-band system and gen-
erated all the 127 combinations (processing streams) of
them. Then, the 127 streams are ranked based on a measure
called Mean temporal distance (M measure) (Hermansky
et al. 2013). Finally, the top N (default N = 10) classifiers
are fused to generate the final hypothesis. In another study,
the combination of the streams are done through weight-
ning each stream (Mallidi and Hermansky 2016). The
weights are obtained based on the reconstruction errors of
DNN activations using auto-encoders.

In this study, we aim to improve the MS-ASR system
from (Variani et al. 2013) by proposing solutions to the
following two questions: (a) What is the optimum number
of processing streams N to be selected; and (b) How to fuse
the decisions of the N selected classifiers.

2 Method

The proposed MS-ASR is comprised of four main com-
ponents (refer to Fig. 1): Generation of the streams, mon-
itoring performance of each stream, selection of the
number of the streams to be combined (&), and the fusion
of the N best streams. In this case, each stream is a clas-
sifier (trained on certain frequency subbands) providing
decisions (phonemes’ likelihood). Here, we are dealing
with the particular implementation proposed in (Variani
et al. 2013) to create the streams and monitor the stream
performance. The novelty in this paper is the automatic and

dynamic selection of the number of streams (V) to be fused
at each time interval (Sect. 2.3) and the fusion of the
streams by a Parallel HMM (Sect. 2.4) in order to improve
the phoneme recognition performance.

2.1 Stream formation

Frequency domain linear prediction (FDLP) features which
characterise the temporal evolution of the signal’s Hilbert
envelope in a frequency subband over 200 ms are extracted
(Ganapathy and Hermansky 2012). Each subband is cre-
ated by bandpass filtering of the frequency spectrum.
Features of neighbouring bands are combined to form
subband streams. These streams separately feed one deep
neural network (DNN) classifier, each. Each classifier i
provides a posterior probability vector reflecting the level
of uncertainty at which the data can be assigned to any of
the target phonemes. Then, the logarithm is taken from the
posteriors to produce a normal distribution and we reduce
the dimensions into a 25-d vector, o;, using Karhunen—
Loeve transform (KLT) in order to reduce the number of
parameters at the second stage. Next, all possible combi-
nations of the classifiers at the first stage are created
{lo1],- -+, [0102], ..., [01...0¢]}, and for each of them, the
concatenation of o;s serves as the input of the DNNs at the
second stage. For example, in case there are 7 classifiers at
the first stage, there will be 27 — 1 = 127 DNN classifiers
(processing streams) at the second stage, each of them may
have a different input vector length considering how many
classifiers of the first stage are combined. At the second
stage, again, each classifier produces a probability vector of
the same size of the phoneme list. Finally, we need to
measure the performance of each classifier and select the
ones which are more informative and fuse their decisions.
The selection process is done by monitoring performance
of each stream (classifier outputs) and is described in the
next section.

2.2 Performance monitoring

We assume that, noise is not stationary and at each window
of time we need to select dynamically the best streams
(dynamic ensemble selection). Out of all available classi-
fiers at the 2nd stage, not all of them have the same per-
formance; Some channels may be exposed to noise or some
may not have high performance inherently. Hence, a set of
N promising streams should be selected and fused. In this
section, we describe a performance monitoring method
based on the posteriorgram analysis (Hermansky et al.
2013). The method provides a measure, M, indicating that a
classifier is performing well if (a) it is able to produce a
high posterior probability for most of the phonemes, (b) it
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where P, (i) is the ith element (phoneme) of the posterior
probability vector P at time ¢. Finally, M is defined as the
average of distance over time t:

r ()At D(PT7PI+AI) (3)
T — At ’

where T is the length of the utterance. For the results shown
later, since the utterances are already segmented, T is the
length of the sentence utterance. Setting Az to 250 ms is
reasonable, because the effect of coarticulation is low after
this duration. Hence, for all experiments we set it to this
value. M implicitly measures the following criteria:

Classifier accuracy If a classfier is able to produce sharp
decisions (high value of one posterior element and low
values for others) and able to produce suffciently different
posteriors for different phonemes, then the classifier is
most probably accurate and M is high.

Classifier bias If a classifier is biased, only some of the
elements of the posterior vector are active and the rest are
close to zero most of the times. Consequently, the distance
between two posteriors at the interval $$\Delta$$t is low.

M(At) =
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Fig. 2 The effect of the noise level on the M measure. Averaged over
1344 test utterances. X axis is the At

Phonemes per second An intelligible speech comprises
about 15—20 phonemes per second. Having a posterior-
gram which presents a low phoneme rate, decreases the
value of M because the interval $$\Delta$$t may not be
large enough to capture two consecutive distinct phonemes.

Level of noise If a classifier is fed with noisy data, we
found that the posteriors tend toward uniform distribution.
This effect results in similar posteriors for different pho-
nemes, and consequently M degrades. Figure 2 shows an
example of M measure when the signal is exposed to
Babble noise with different SNRs[13].

To rank the classifiers, M is extracted from the poste-
riorgram of all the classifiers, and the classifiers with the
highest values are selected.

2.3 Ensemble creation

How many classifiers are needed to get the most out of the
fusion? Selecting only the classifier (V = 1) with the
highest M may not be sufficient and more classifiers are
needed to collect more evidence. On the other hand, if we
combine the decisions of all the classifiers at the second
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stage (2K — 1), the effect of noise and low performance
classifiers dominates and degrades the final performance.
Furthermore, since we assume the noise is not stationary, at
each time interval, different numbers of classifiers are to be
fused to yield a high accuracy. Therefore, we propose an
approach for dynamic selection of N instead of choosing a
static number. As we observed, the level of M is correlated
with the performance, and noise degrades it. Obviously, in
noisy conditions we need to gather more evidence to
achieve higher reliability, while in the clean condition a
lower number of classifiers could be sufficient to carry
enough information. This expectation brings the idea of
setting a threshold, TH, on the cumulative summation of
sorted M values:

X
N = max(X) suchthat ZM;) <TH, (4)
i=1

where M} is the ith value of the sorted M vector in
descending order, M°. TH can be obtained by cross vali-
dation on training data, or by using a validation set.

2.4 Stream fusion

Once the classifiers are ranked and N is set, we combine the
decisions of the N best classifiers. First, we use a phoneme-
level HMM model to decode the posteriors. This model is
trained on the transcribed speech training data. The hidden
states correspond to the phonemes, and at each state only a
specific phoneme is observable. This is because for the
training we only have the sequence of phoneme labels, and
there is no observation. However, while decoding, we assign
the observation probability by the classifier posteriors. The
transition probability between phonemes i and j are esti-
mated from the transcribed speech in the training data:

aj = P(v; = jlvi1 =), (5)

where v, and v,_; are two consequent phonemes. This
model is copied for all the selected classifiers to obtain the
posteriors and to extract the Viterbi path on each posteri-
orgram. The forward probabilities are assigned as:

PIG) = aP}G) 3 P ()ay, (©)

where o is the normalization factor and P/ (j) is the pos-
terior probability of phoneme j of classifier n at time 7, and
P = Pi. The sequence of phonemes for each posterior-
gram is extracted using Viterbi decoding. The Viterbi path
can be obtained by backtracking from time t = T (end of
utterance or observing window) and starting with the
phoneme with the highest likelihood P%.. Once the Viterbi
path is extracted for each of the selected classifiers, the
majority voting at each time 7 is taken as the final decision.

3 Experiments

We tested the methods on two datasets. The first database,
TIMIT, consists of transcribed speech of different speakers
and sex for English language (Garofolo et al. 1988). The
average utterance length is about 4.5 s, equivalent to 450
decisions. Data are partitioned into 3000 utterances for
training, 696 for validation (and setting Threshold TH), and
1344 for testing. Different types of noise are added to the
test utterances to emulate possible distortions in the speech
in different environments. They are Car noise at 0 dB,
Exhibition hall noise at 5 dB, Factory noise at 10 dB,
Restaurant noise at 10 dB, Street noise at 5dB. The Car
noise is a band-limited noise concentrated around low
frequencies, while the other noises are scattered over all the
frequencies.

The second database, RATS, was created by the Lin-
guistic Data Consortium for the DARPA Robust Automatic
Transcription System (RATS) project. It contains about 40
h of Levantine Arabic. The whole database includes a clean
channel src and eight distorted channels A-H created to
simulate various communication channels under adversary
environments. The narrow-band speech has been down-
sampled to 8 kHz. For this dataset, we used the data of
channel G for the test and designed a 5-band MS-ASR, so
there are 31 deep neural netowrks (DNNs) at the second
stage. The dataset is partitioned into 60,741 utterances for
training and 30,371 utterances for test.

All DNNSs in both stages have 3 layers of 1000 nodes in
the hidden layer and 40 nodes in their output layer corre-
sponding to the 40 phonemes to be recognized.' The input
layer in the first stage has 84 nodes corresponding to the
number of features, and in the second layer they are dif-
ferent depending on the combination of the classifiers made
on the first stage (varies between 25-175 for TIMIT and
25-125 for RATS).

4 Results

In Table 1, the phoneme error rate for conventional full-
band, 7-Stream, and best oracle are provided. The fullband
approach trains one DNN on all the FDLP features while
the 7-Stream approach trains 7 DNNs on 7 subbands and
combine them with another DNN (Tibrewala and Her-
mansky 1997). Finally, best oracle is a supervised hand-
picked selection of the best stream for each utterance. The
latter one is not applicable online, since the labels are not
available. On the clean condition and band-limited noise

! We used the Quicknet toolbox developed at the International
Computer Science Institute (http://www l.icsi.berkeley.edu/Speech/
qn.html).
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Table 1 The phoneme error

rate of the conventional full- TIMIT Fullband 7-Stream (Tibrewala Best oracle

band and multi-band methods and Hermansky 1997)

beside best oracle Clean 31.35 31.27 23.78
Car (0 dB) 54.32 48.76 34.30
Exhall (5 dB) 70.67 71.36 61.85
Factory (10 dB) 68.91 69.87 59.91
Restaurant (10 dB) 63.14 65.03 55.18
Street (5 dB) 67.26 68.47 58.08
RATS Fullband 5-Stream Best oracle
Channel G 57.55 58.71 52.08

Supervised selection of the best stream on each utterance

Table 2 Comparing phoneme error rate with static and dynamic number of classifiers and with the two methods; averaging posteriorgram

(AVG) or Parallel HMM (PHMM)

Fusion Static N Dynamic N
AVG PHMM AVG (Variani et al 2013) PHMM AVG (Sharma 1999) PHMM AVG (N) PHMM

TIMIT 1 10 127 TH = 180

Clean 3232 2989  29.76 28.81 31.42 28.88  29.79 (10.12 + 1.26) 28.82

Car (0 dB) 45.00 4244  39.71 39.15 4449 44.41 39.84 (12.66 £ 1.61) 39.11

Exhall (5 dB) 7324 69.92  68.67 68.49  69.10 68.62  68.19 (21.21 £ 3.33) 67.76

Factory (10 dB) 70.24 68.23 67.22 66.58 68.49 67.63 67.11 (19.58 £+ 2.98) 66.33

Restaurant (10 dB) 65.83 63.14 61.80 61.01 63.12 62.42 61.56 (17.72 £ 2.58) 60.59

Street (5 dB) 68.64 6823 6543 64.65  66.73 6597  65.17 (19.80 £+ 4.50) 64.53

RATS 1 5 31 TH = 80

Chanel G 59.99 58.48 58.13 57.53 58.77 58.21 57.86 (10.72 &+ 4.46) 57.31

The minimum phoneme error rate for each corpus is bold typed

Table 3 Effect of TH on TH 120 150 180 210 240 270 300

phoneme error rate for different

noises on TIMIT dataset Validation 26.91 26.77 26.71 26.73 26.69 29.69 26.69
Clean 28.88 28.91 28.82 28.81 28.81 28.80 28.81
Car (0 dB) 39.03 38.98 39.11 39.11 39.17 39.34 38.43
Exhall (5 dB) 68.04 67.78 67.76 67.61 67.71 67.66 67.61
Factory (10 dB) 66.61 66.44 66.32 66.36 66.36 66.30 66.40
Restaurant (10 dB) 60.85 60.70 60.59 60.64 60.65 60.68 60.75
Street (5 dB) 64.66 64.54 64.53 64.52 64.46 64.47 64.64

The minimum phoneme error rate for each corpus is bold typed

(Car), the error rate is lower for 7-Stream than for Full-
band. However, for the other noises 7-Stream is slightly
worse.

Table 2 provides the comparison of phoneme error rate
for static and dynamic choice of N using the proposed
approach. Furthermore, we compare the PHMM decision
fusion with the averaging of the posteriors (AVG). We
chose TH = 180 for TIMIT and TH = 80 for the RATS
databases. The effect of TH will be discussed later. When

the noise is band-limited, such as Car noise, there is about
15 % absolute improvement with respect to the conven-
tional Fullband and about 9 % with respect to the 7-Stream
approaches. However, for wide-band noise, the relative
improvement is around 3 % absolute with respect to the
conventional Fullband and about 4 % with respect to the 7-
Stream.

Furthermore, dynamic N performs slightly better than
static N in the noisy conditions and is performing the same
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in the clean condition. As expected, on the noisy conditions
more classifiers (~19) are selected (due to the low M
values) while for the clean condition and band-limited car
noise the value N is low (~ 10) close to the preselected
value (chosen on the validation set), which is justifiable
since many classifiers are still unaffected by the noise.
Moreover, comparing the PHMM and AVG fusion
approaches, on average the PHMM produces a 1.14 %
lower phoneme error rate.

The effect of the chosen TH on the IMIT database is
provided in Table 3. In general, a high TH results in a
larger N, and consequently, a lower performance on noisy
data. According to the error rates on the validation set, the
value of TH = 240 appears reasonable. Nevertheless, not a
specific value is optimal in all the conditions, suggesting
for further improvement. However, setting any value
between 120 and 300 for TH yields lower phoneme error
rate with respect to the other approaches (cf. Table 2).

5 Discussion

In this work, we improved the performance of MS-ASR by
using an automatic selection of the number of the classi-
fiers and a phoneme-level language model.

Note that, in our experiments, we have used DNNs as
the base classifiers without applying enhancement tech-
niques such as dropout to achieve higher accuracy.
Therefore, the base performance on TIMIT is not as good
as state-of-the-art methods [e.g., using Deep Belief Net
(Mohamed et al. 2012)].

In terms of compputational cost, MS-ASR can be run in
a parallel mode, where each stream is processed on one
computation node. The additional cost of MS-ASR appeals
during the training phase which is done offline. In addition,
the dynamic or static selection of the number of classifiers
helps to reduce the computational cost of the fusion of the
posteriorgrams (fusing a limited number of posteriorgrams
instead of all of them).

The future work is to evaluate the approach on other
datasets as well as to enhance the performance of the base
classifiers. On the other hand, as it is observed in Tables 1
and 2, there is still a gap between the obtained results and
the oracle selection. This suggests more investigation on
the performance monitoring to improve it. To do so, one
way is to improve M by weighting according to some
statistics on the training data (such as probability of being
chosen as the best stream). Also, we found that one-point
M (i. e., only with Ar =250 ms) is not robust and there-
fore, not sufficiently reliable. Taking an average of Ms in a
window (e. g., 200-800 ms) could yield higher perfor-
mance. Furthermore, an improved version of M proposed in
(Mallidi et al. 2015) can be used for more robust ranking.

Alternatively, we may improve the fusion of streams after
extracting the most likely path by choosing another com-
bination method such as naive Bayesian fusion rather than
simple majority voting or by using language models for
each selected classifier.

6 Conclusion

In this paper, we proposed an approach to select the best
N classifiers from an ensemble of classifiers which are
trained on subbands of speech signals for improved ASR.
The approach is based on the ‘M value’ which represents
the performance of a classifier at runtime. Additionally, a
bigram phoneme model was used to obtain the phonemes
in an utterance for each classifier output (posteriorgram),
and we combine the results through majority voting. We
applied our approach on two speech datasets (TIMIT and
RATS) and we yield improvements comparing to the
existing MS-ASR systems (Tibrewala and Hermansky
1997; Variani et al. 2013) as well as conventional Fullband
ASR.
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