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ABSTRACT

As emotion recognition from speech has matured to a de-
gree where it becomes suitable for real-life applications, it is
time for developing techniques for matching different types of
emotional data with multi-dimensional and categories-based
annotations. The categorical approach is usually applied for
acted ‘full blown’ emotions and multi-dimensional annota-
tion is often preferred for spontaneous real life emotions. A
particularly realistic task we consider in this contribution is
cross-corpus emotion recognition and its evaluation. General
and phoneme-level emotional models on acted and sponta-
neous emotions (‘very intense’ and ‘intense’) are used in our
experimental study. The emotional models were trained on
spontaneous emotions from the complete VAM dataset and
subsets with variable emotional intensities and evaluated on
acted emotions from the Berlin EMO-DB dataset. We ob-
serve a significant classification performance gap for general
models trained on very intense spontaneous emotions. As a
consequence, we address the importance of collecting large
corpora with very intense emotional content for training more
reliable phoneme-level emotional models.

Index Terms— emotion recognition, cross-corpus evalu-
ation, phoneme-level emotional models, turn-level emotional
models, emotional intensity

1. INTRODUCTION

Emotion classification and detection are playing an increas-
ingly important role in user-friendly human-machine inter-
action. It has been shown in [1, 2] that recognising the
user’s affective state is an important issue for development
of intelligent human-computer interaction systems. Most
of these, however, require sufficient reliability, which may
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not be achieved, yet. When evaluating performance of emo-
tion classification techniques, obtainable accuracies are often
overestimated. The main simplification that characterises
almost all emotion recognition performance evaluations is
that systems are usually trained and tested using the same
dataset. Within speaker-independent evaluations, all kinds
of potential mismatches between training and test data, such
as different languages, acoustic channels, noises, or types
of observed emotions, arc usually not considered. Address-
ing such typical sources of mismatch all at once is hardly
possible; however, we believe that a good impression of the
generalisation ability of today’s emotion classification en-
gines can be obtained by cross-corpora evaluations. Further,
the affective computing community could not yet specify
emotional standard units which can be easily classified and
determined by any ‘non-advanced’ and ‘advanced’ annota-
tor of emotional content [3]. As a consequence, there is no
unique methodology which defies required professional skills
of an ‘advanced’ emotion annotator. Hence, one can argue
that using training and test sets which are at least annotated
by different groups of labellers and types of annotation tech-
nique (multi-dimensional, categorical) is an important issue
of realistic scenarios. In our present research we are using
turn-level and phoneme-level emotional models trained on
spontaneous emotions as presented in the VAM [4] emotional
speech samples and evaluated on acted emotions presented in
the EMO-DB [5] database.

A comparably small number of the training samples for
positive valence was the main reason why we have trained
our classifier just for the arousal discrimination task. In or-
der to train reliable emotional classification techniques one
should have sufficient amount of training data with reliable
emotional annotation. In the case of acted data as presented
in the EMO-DB database, one could use acoustic perception
measures (naturalness and recognisability) for selection of
the most reliable data. By implementing robust classifica-
tion techniques for emotional speech samples with reliable



annotation, one should obtain applicable classification per-
formance within a cross-corpus experimental setup. In [3], it
is assumed that the usage of training and test sets annotated
with different annotation techniques, namely dimensional
(the VAM database) and categorical (the EMO-DB database)
could make real-world application setups more realistic.

Fragopanagos et al. [6] state that, most research efforts
investigated the affective speech processing on the level of
complete utterances, words, or phonetic transcription inde-
pendent chunks. A comparably smaller number of methods
are based on phonetic pattern modelling within emotion clas-
sification [7, 8,9, 10, 11, 12, 13, 14, 15]. Still, most of the
aforementioned phoneme-level modelling emotion classifica-
tion techniques used forced alignment or manual annotation
for the extraction of the phoneme borders. Just some studies
faced real-life conditions by using automatic speech recog-
nition (ASR) engines for generating the phoneme alignment
[16, 15, 17]. Current ASR techniques are not able to pro-
vide as good phoneme alignment on emotional speech sam-
ples as manual annotation or forced alignment do. To prop-
erly address real-world conditions, a phoneme-level emotion
processing method presented in this contribution relies on the
phoneme alignment obtained by using an ASR system which
applies acoustic models adapted on affective speech samples.
Several studies already reported accuracies on multiple cor-
pora — however, only very few consider training on one and
testing on a different one (e.g., [18] and [19], where two
and four corpora are employed, respectively). The exper-
imental results reported in [3, 20] showed that, a phonetic
pattern dependent modelling technique provides significantly
better classification performance within cross-corpus evalu-
ations. Bone et al. [21] present a multi-corpora study on
a robust, unsupervised (rule-based) method for providing a
scale-continuous, bounded arousal rating operating on the vo-
cal signal.

2. SELECTED DATABASES

For our experiments we used two emotional databases which
contain recordings of adult German native speakers: the
Berlin EMO-DB [5] set and the also German VAM [4] cor-
pus.

The EMO-DB database provides speech samples with
anger;, boredom, disgust, fear, joy, sadness, and neutral as
speaker emotions. Ten (in gender balance) professional ac-
tors speak ten German sentences with emotionally neutral
linguistic meaning. For our experiment, we selected utter-
ances which have a level of recognisability not less than 80 %
and a level of naturalness not less than 60 %. For specifica-
tion of the emotional categories which can be modelled on the
speech material presented in both datasets, we investigated
possibilities to map the emotional states to the predominant
type of general emotion categories, namely, high- and low-
arousal. We consider two plots which reflect the possible

location of some emotion categories in valence-arousal (VA)
space [22, 23]. The first plot [23] was created by the mapping
of the terms Russell [24] uses as markers for his claim of an
emotion circumplex. On the second plot [22], the authors
presented sympathetic forms of activation for the 24 emotion
terms in the valence-arousal space. Due to the various pos-
sible locations of disgust (in positive arousal sub-space for
the first plot (see [23]) and negative arousal sub-space for the
second plot (see [22])), we decided to eject disgust instances
from our experimental subset.

Hence, for experiments on the EMO-DB dataset we used
neutral (78 utterances), low arousal emotions (boredom (79),
sadness (53)), and high arousal emotions (anger (127), fear
(55), and joy (64)). Within our emotion classification ex-
periments, we combined neutral with low-arousal emotional
speech samples and later obtained a combined cover class re-
ferred to as low-arousal emotion.

Table 1. Overview of the emotional instances in the evaluated

datasets
Dataset low high type of emotion
arousal arousal
EMO-DB 210 246 acted
VAM 502 445 mixed spontaneous
VAM 1 244 234 very intense spont.
VAM 11 258 211 intense spont.

The VAM database consists of 12 hours of audio-visual
recordings taken from a German TV talk show. The cor-
pus contains 947 utterances with spontaneous emotions from
47 guests of the talk show, recorded from unscripted, au-
thentic discussions. The VAM databasc contains two parts:
VAMI (19 speakers who had been roughly classified as “very
good” with respect to the emotions conveyed) and VAM II
(28 speakers who had been roughly classified as ““good” with
respect to the emotions conveyed) [4]. In our research we
use the terms “very intense” instead of very good and “in-
tense” instead of “good”. The speech extracted from the di-
alogues contains a large number of colloquial expressions as
well as non-linguistic vocalisations and partly covers differ-
ent German dialects. For annotation of the speech data, the
audio recordings were manually segmented to the utterance
level, where each utterance contained at least one phrase. A
large number of human labellers was employed for annotation
(17 labellers for VAM 1, six for VAM II). The labelling bases
on a discrete five point scale for three dimensions (valence,
arousal, dominance) mapped onto the interval of [-1,1]. Emo-
tional labels generalised with the evaluator weighted estima-
tor (EWE) [25] were used for our experiments. An overview
of emotional instances in the utilised speech datasets is pre-
sented in Table 1. The Kiel Corpus of Read Speech [26] was
used for training basic ASR acoustic models (for more details
see [3]).



3. EMOTION RECOGNITION METHODS

In our research, we applied general (turn-level) phonetic pat-
tern independent and phoneme level emotion classifiers. For
our experiments, we used equal priors for the emotion cate-
gories: P(“higharousal”) = P(“low arousal”) = 1/2.

3.1. Acoustic feature extraction

The two considered classification techniques base on simi-
lar acoustic features. The speech signal is processed using a
25 ms Hamming window, with a 10ms shift. A 39 dimen-
sional feature vector consisting of 12 MFCC and the zero-
order cepstral coefficient plus delta (speed) and delta-delta
(acceleration) coefficients is employed. Cepstral Mean Sub-
traction (CMS) is applied to better cope with channel charac-
teristics.

3.2. General emotion classification: turn-level analysis

We consider using a statistical analysis applied to ASR to
recognise emotions from speech introduced in [27]. Instead
of the common task to deduce the most likely word sequence
hypothesis 2, from a given vector sequence O of acoustic
observations o, the task is to recognise the current speaker’s
emotional state.

The applied classification criteria can be expressed as:

P(O[)P()
P(O)
= arg maxlog P(O|Q, M) (1)
Q

Q) = arg max log
Q

where: €2 is one of all system known emotions (“low arousal”,
“high arousal”, “neutral” emotional state); P(O|Q) is the
emotion acoustic model; P(2) is the prior user-behaviour in-
formation. M is a HMMs’ parameter set [3]. For estimation
parameters M we used forward-backward and Baum-Welch
re-estimation algorithms included in the HTK toolkit [28].
For evaluations, we use configurations with different num-
bers of Gaussian mixtures (from two to 120).

3.3. Phonetic pattern dependent emotion classification:
emotional phoneme classes

The implemented classification technique is based on a two-
stages classification process. On the first stage, German pho-
netic transcriptions with corresponding phoneme alignments
are generated for each test utterance. During the second stage,
we use the corresponding phoneme alignment for phoneme-
level emotion classification.

The applied classification criteria can be expressed as:

P(O|Wq)P(Wq)
= 1 o
Wa, arg);/\f;lax og P(0)

= arg max log P(O|Wq, Mpho)
Wa

= argmaxlogZp(O,s|WQ,Mpho), 2)
Wo Vs

where Wq, is an emotional phoneme sequence build from
phonemes of €2;, — the emotional class, My, is a phoneme
level HMM/GMM’s parameter set, s = [s1, S2,...,87] iS
a state sequence associated with the observation vector se-
quence O = [01,09,...,07], Wq is a possible phoneme
emotion sequence for 2y =“low arousal” or Qs =“high
arousal” as emotional state in our case; P(O|Wg) is an emo-
tion acoustic model for the emotion phoneme states sequence
Wa; and P(Wq) is a priori knowledge about the affective
state frequency of occurrence for the phonetic units sequence
Wa.

The HMM’s parameter set M, consists of parameters
which specify “low-arousal” and “high-arousal” emotion
phonemes. Namely, the full lists of phonemes are modelled
for “low-arousal” and “high-arousal” emotions, indepen-
dently. Hence, 2 x 36 = 72 emotional phoneme models are
implemented for the EMO-DB database.

In order to simplify the emotion classification process, we
decided to use a fixed phoneme sequence W with a corre-
sponding optimal state sequence w = [s77*, s57*, ..., sy =
[w1,wa, ..., wr]|. To specify a fixed phoneme sequence, we
used an ASR engine to recognise phoneme sequences. A
more detailed specification of the applied ASR engine can
be found in the following section. Taking into account that
the implemented ASR system and the phoneme level emotion
recognition system use an identical HMM architecture (left-
to-right monophone models with three emitting states), we
could use an optimal state sequence for our phoneme level
emotion modelling. With a defined optimal state sequence,
we could simplify the maximisation task represented in equa-
tion 2 by estimating p(O, s|Wq, My,) just for the optimal
state sequence. In this case, implemented in our present re-
search, the classification criteria can be expressed as:

O = argénaxlog {p(w|WQ,Mpho)p(0|w, Mpho)}

T T
= arg max {log T, + Z log by, (o)) + Z log aw, 4w, } ,
Q@ t=1 t=1
(3)

where W, is an optimal phoneme sequence W build from
emotional phonemes from an emotional class €2.
Considering an initial state distribution 7;, state trans-
action probabilities a;;, and observation generation proba-
bility distributions b;(0;), we estimate two main multipliers



p(w|WQ,Mpho) and p(O|w, Mpho). The first one is the
probability of passing through the optimal state sequence w,
the second one is the probability of observing the acoustic
feature vector sequence O given the state sequence w. These
multipliers will be estimated for both emotional phoneme
classes.

The estimation of the HMM’s parameters is implemented
in two steps. In the first step, we estimate a basic HMM'’s
parameter set Mgﬁg” on emotionally neutral speech samples
from the Kiel Corpus of Read Speech [26]. In the second
step, we adapt Mg};@n with combined Maximum Likelihood
Linear Regression (MLLR) (32 regression class trees) + Max-
imum a Posteriori (MAP) adaptation (hyper-parameter 7 =
2), (a similar setup provided an optimal recognition perfor-
mance in [3, 29]). The acoustic models adapted with cor-
responding adaptation parameters’ configuration showed the
best spontaneous emotional speech recognition performance.
For evaluations, we use configurations with a different num-
ber of mixtures (from 2 to 32). We evaluated these classifiers
and present classification performance as a function of the
number of mixtures (denoted as GMMs) in Section 4.

3.3.1. Automatic speech recognition engine

For our ASR engine we applied a continuous density HMM
technique based on multivariate GMMs with 32 mixture com-
ponents. In order to compensate the mismatch of acoustic
characteristics between neutral speech samples and affec-
tive speech material, we applied two model-based transfor-
mations: a ‘basic’ Maximum Likelihood Linear Regression
(MLLR) with 32 regression ‘classes’ and Maximum a Poste-
riori (MAP) with 7 = 2. Phoneme level bi-gram language
models are applied in the ASR engine for specification of the
optimal state sequences w as in equation 3.

4. EXPERIMENTAL RESULTS

As the numbers of emotional instances in the selected speech
corpora (see Table 1) are unbalanced, we selected unweighted
average recall (UA) as suited measure for emotion-recognition
performance. UA is calculated as the sum of all class accu-
racies, divided by the number of classes, thus (intentionally)
ignoring the number of instances per class.

During the first experimental phase, we employed general
emotion classification techniques as described in Section 3.2.
Two sets of emotional models have been trained on the VAM
I and VAM II dataset, accordingly. These sets of emotional
models have been evaluated within intra-corpus speaker in-
dependent evaluations on the same datasets (VAM I, VAM
ID). For our first experiment we used the Leave-One-Speaker-
Group-Out (LOSGO) strategy.

Figure 1 displays recognition rates for phonetic-pattern
independent non-optimised (arbitrary number of GMM mix-
tures in a range from 2 to 120) emotion classifiers trained
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Fig. 1. UA rates for intra-corpus evaluation. Phonetic-

pattern independent (general) models trained on VAM II and

evaluated on VAM I (blue dashed line); and trained on VAM

I and evaluated on VAM II (red dashed line). Baseline results

correspond to a LOSGO evaluation with the optimal mixture
(GMMs) number.

on different VAM subsets and evaluated on the complemen-
tary subsets of the VAM database (e. g., trained on VAM 1,
evaluated on VAM II). The solid black line depicts the base-
line results corresponding to Leave-One-Speaker-Group-Out
(LOSGO) evaluation with optimal mixture (GMMs) number
[30].

During the second experimental phase, we also employed
general emotional models. The different sets of emotional
models have been trained on the complete VAM dataset, and
the VAM I and VAM 1I subsets. The obtained sets of emo-
tional models have been evaluated within cross-corpus evalu-
ations on the EMO-DB set.
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Fig. 2. UA rates for cross-corpus evaluations. Phonetic-
pattern independent (general) models trained on a subset or

the complete VAM dataset and evaluated on the EMO-DB
dataset.

Figure 2 displays recognition rates for phonetic-pattern
independent non-optimised (an arbitrary number of mixtures



in a range {rom 2 to 120) emotion classifiers trained on emo-
tional samples from the complete VAM dataset (VAM 1 +
VAM 1I) and the VAM I and VAM II subsets as evaluated
on the EMO-DB dataset.

During the third experimental phase we employed pho-
netic pattern dependent emotional models. Three different
sets of phoneme-level emotional models have been trained on
the complete VAM dataset and the VAM I and VAM 1I sub-
sets. Obtained sets of phoneme-level emotional models have
been evaluated within cross-corpus analyses on the EMO-DB
dataset.

----- VAM I----VAM II — VAM I + VAM 1I

86% [ I
84% |-

82% |-
<<

=)
80% |-

78% |-

76% |-

Feeen

[ =

=~

L L L L
10 15 20 25 30
Gaussian mixture components

Fig. 3. UA rates for cross-corpus evaluations. Phonetic-
pattern dependent models trained on a subset or the complete
VAM dataset and evaluated on the EMO-DB dataset.

Figure 3 displays recognition rates for phonetic-pattern
dependent non-optimised (an arbitrary number of mixtures in
arange from 2 to 32) emotion classifiers trained on emotional
samples from the VAM dataset (VAM I + VAM 1I) and VAM
I and VAM II subsets and evaluated on the EMO-DB set.

5. CONCLUSIONS

Results presented in Figure 1 show a strong classification
gap between emotional models trained on the ‘very intense’
(VAM 1) and ‘intense’ (VAM II) subsets. Unexpectedly,
the general emotional models trained on the VAM II dataset
material provide outstanding results on the VAM I dataset
material. Corresponding results are considerably better than
baseline results obtained during LOSGO evaluation. This
raises the interesting question whether it is less important
to include emotional instances with ‘very intense’ emotional
content to classify such instances correctly.

In order to find an answer to this question one should
look at Figure 2. In the case of the second evaluation phase,
we used the same models trained on ‘very intense’ (VAM
I) and ‘intense’ (VAM II) subsets. The corresponding emo-
tional models have been evaluated on acted emotions from
the EMO-DB database. Results obtained during cross-corpus

evaluation show a steep classification performance gap for
emotional models trained on VAM I and VAM II samples.
Emotional models trained on ‘very intense’ (VAM I samples)
spontaneous emotions provide outstanding classification per-
formance on acted emotional instances.

Finally, during the third evaluation phase we evaluated
phoneme-level emotional models. Phonetic-pattern depen-
dent emotional models trained on ‘very intense’ and ‘intense’
emotional samples provide comparable classification perfor-
mance within cross-corpus evaluation. At the same time, the
VAM I dataset (‘very intense’ emotions) contains a compara-
ble smaller number of instances for each phonetic unit in com-
parison with the VAM II dataset. Emotional models trained
on the complete VAM dataset provide the best (in compari-
son with VAM I and VAM II) performance. By increasing the
number of phoneme instances with very intense emotional in-
stances, one could train more reliable emotion classifiers.

The main outcome of our evaluation experiments (see Fig-
ure 1 and Figure 2) is that there is a big classification per-
formances gap for emotional models trained on spontaneous
data with different emotional intensity. The second important
outcome was obtained during the analysis of cross-corpora
evaluation on the EMO-DB dataset. In order to train reliable
phoneme-level emotion classifiers one should have sufficient
speech samples with very intense emotional content.

6. DISCUSSION AND OUTLOOK

We obtained revealing results within cross-corpus evaluations
of emotional models trained on spontaneous data with differ-
ent intensity. Corresponding models have been evaluated on
acted emotions from the same language. We showed that, the
phoneme can be seen as possible acoustic unit for classifica-
tion of the level of emotional arousal. Even with insufficient
amount of training data, phoneme-level emotional models
outperform general phonetic pattern independent emotional
models.

We highlighted the importance of using an emotional
dataset with high intensity spontaneous emotions for the
training of phoneme-level emotional models. By using suffi-
cient amount of spontaneous emotional instances with intense
content one could train robust emotion recognition models
with stable classification performance. The combination of
‘very intense’ spontaneous and acted emotional data could
solve the problem of sparse emotional training material.
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