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Abstract 

The development of quantitative social indicators and methods for social impact assessment is not yet 

on par with their environmental counterparts. This deficit is especially apparent in strategic supply 

chain optimization. This literature study reviews 91 articles on strategic supply chain optimization to 

identify the state-of-the-art in this field and to derive a meaningful agenda for future research. First, 

the review gives an overview on social frameworks, how articles use them to justify the selection of 

specific social aspects in their studies, and the differences in selected aspects between different kinds 

of case studies. Second, the social objective functions are compared in detail. This includes social 

indicators, i.e. how certain aspects are measured, and how they are integrated in optimization models 

as input parameters. This allows for an analysis of the relations between decision variables (e.g. for 

facility location or material flows) and attributed social impacts, as well as of the aggregation of social 

impacts with different units within the same function. Our results show that the number of created 

jobs is often the only or primary indicator. If more than one indicator is employed in objective 

functions, a sizable number of studies addresses the problem of aggregation by weighting towards a 

dimensionless, generic social score. This review sheds light on the need for more sophisticated 

methods of social impact assessment and social Pareto optimization. It also assists researchers in 

identifying previously used, feasible parameters in optimization models, in order to contribute to a 

more comprehensive and more consistently applied set of social indicators. 
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1 Introduction 

Traditionally, the need for an efficient and well-informed corporate Supply Chain Management (SCM) 

stems from economic pressure due to the need for economic competitiveness and changing markets 

following globalization (Ansari and Kant, 2017). The economic perspective on SCM has therefore been 

subject of extensive research for decades and is a well-developed field in academia (Rubio et al., 2008; 

Stindt and Sahamie, 2014). Beside this traditional perspective, the environmental pillar of 

sustainability, often subsumed under the terms of Sustainable or Green Supply Chain Management 

(SSCM, GSCM; Rajeev et al., 2017), has received a high level of scientific interest, also manifesting in 

growing interest in the subdiscipline of Closed-Loop Supply Chain Management (CLSCM; Guide and 

Van Wassenhove, 2009; Nuss et al., 2015). The complexity of ecological metabolism has seen 

increasing research for decades and brought about the methodology of Life Cycle Assessment (LCA). It 

leaves environmental modelers and practitioners only concerned with the identification of inputs and 

outputs into and out of the system, but eases the characterization of these inputs and outputs towards 

a standardized set of environmental mechanisms and damage categories in a holistic, quantitative and 

standardized manner. It can be applied to SSCM problems (Eskandarpour et al., 2015, Messmann et 

al., 2019), where it enables a quantitative impact assessment of supply chain decisions. 

The case of social sustainability is more intricate. This is particularly true for quantitative supply chain 

optimization, where stocks and flows can be modeled as inputs and outputs environmentally, but less 

so in the social dimension. Chazara et al. (2017, p. 137) trace back the difficulties with social 

assessment to i.a. a lack of theoretical underpinning, the complexity of social indicators, their 

subjective and qualitative nature, and a lack of data. Generally, social assessments can be carried out 

on a site-specific or on a generic level. Site-specific assessments, using existent frameworks (see 

section 3.1), can be conducted as part of case studies (e.g. Hannouf and Assefa, 2017) and may include 

issues such as fair salary or equal opportunities at a specific location. An example for a generic indicator 

could be a company’s contribution to the local development in different countries (Benoît and Mazijn, 

2009; Benoît-Norris et al., 2013). On a more strategic and aggregated level of decision-making, a 

generic perspective is often required. For the generic assessment of raw materials alone, sophisticated 

approaches exist (Kolotzek et al. 2018; Manchini and Sala, 2018). Due to its complex and diverse 

nature, however, comparable approaches in generic decision-making along the entire supply chain are 

still scarce. 

In 2008, Seuring and Müller conclude that a deficit exists in terms of the social pillar of sustainability 

in sustainable supply chain management in general, after merely 20 of 191 revisited articles addressed 

social issues. Stindt (2017) reviews methods and sustainability indicators in sustainable supply chain 

decision-making and lists 26 social indicators applied in 14 articles. He concludes that social aspects 

are still significantly less elaborated compared to the environmental dimension, and often only used 

nominally. Cambero and Sowlati (2014) and Ghaderi et al. (2016) explore literature on biomass supply 

chains specifically. The former emphasize the prevalence of job creation as a social indicator and 

identify four relevant studies in that field, while the latter focus on optimization approaches and name 

four types of social objective functions used in seven articles. Similarly, Mujkic et al. (2018) identify 

eleven articles with explicit social objective functions in multi-criteria supply chain optimization 
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models. They select the Sustainability Reporting Guidelines by the Global Reporting Initiative (GRI, see 

section 3.1) as underlying framework for social assessment and assort a total of 16 identified indicators 

to GRI and non-GRI categories. Chen et al. (2014), who analyze articles on facility location selection 

from 1990 to 2011, choose a similar approach. 52 articles with a total of ten GRI-based location factors 

of social sustainability are reviewed. Eskandarpour et al. (2015) adopt a more OR-centric perspective 

on facility location as part of supply network design. In their study, they consider sustainability issues, 

modeling approaches, methodologies and their application. The authors briefly describe 15 articles on 

network design that include social aspects, and acknowledge the immense challenges in integrating 

social aspects quantitatively. Up to now and to the best of our knowledge, the largest samples of 

articles with social aspects in a supply chain context are presented by Bubicz et al. (2019) and by 

Barbosa-Póvoa et al. (2018). In an extensive meta-analysis, Bubicz et al. (2019) review 621 articles with 

social sustainability in a general supply chain context. With the focus rather on the qualitative aspects 

of reviewed articles, they aim at identifying major trends and gaps in the interface between social 

sustainability on the one hand, and different stages and entities within the realm of supply chain 

management in general on the other hand. Barbosa-Povóa et al. (2018) focus more on the Operations 

Research (OR) side of articles than on the social component itself, and review OR articles with 

economic, environmental or social dimensions (social: 49 of 220 articles). Two of the main objects of 

study are the decision level and the applied OR method. 44 of these 49 articles (90%) address social 

aspects on a strategic level (instead of the tactical or operational), and 36 (74%) use optimization 

techniques (instead of e.g. decision analysis or simulation). 

As a result of this overview, two mutually dependent research gaps can be identified. First, a gap exists 

with regard to meta-analyses of relevant articles in this field. The social dimension is often only a side 

aspect compared to economic and environmental ones, and the samples of revisited articles thus often 

remain relatively small in most reviews. Furthermore, none of the aforementioned studies addresses 

the quantitative side of integrating social indicators in mathematical models, despite the fact that this 

is the most intricate part within the interface of socially sustainable supply chain management. This is 

also the part where the gap to the economic and environmental dimensions is the largest, which leads 

to the second gap: All of the cited literature reviews agree that the field of quantitative supply chain 

modeling is highly underdeveloped with respect to the integration of social aspects, and that it lacks a 

standardized methodology comparable to environmental LCA. Therefore, it is vital to devote more 

research to the quantification of social aspects (Chen et al., 2014; Osmani and Zhang, 2017), to the 

selection of meaningful social indicators (Cambero and Sowlati, 2014; Mota et al., 2015b; Rahimi and 

Ghezavati, 2018; Varsei and Polyakovskiy, 2017), as well as to appropriate modeling approaches 

(Barbosa-Póvoa et al., 2018; Feitó-Cespón et al., 2017; Pishvaee et al., 2012).  

To address both of the aforementioned gaps, the analysis in the article at hand takes an in-detail view 

on how social aspects and actual social indicators for these aspects are integrated in quantitative, 

mathematical models. This encompasses the structure and composition of every social objective 

function and constraints, the relationship between decision variables and social indicators, as well as 

the units of the objective functions and their constituting terms. This analysis is done consistently from 

the perspective of quantitative social assessment. The study at hand thus examines the justification 

behind the selection of social aspects, references to preexisting social assessment frameworks, and 
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how the kind and number of considered aspects depends on the cited frameworks and the focal 

industry. For the purpose of comparability, and to eliminate additional potential layers of examination, 

we focus on the strategic decision level and on optimization models as the most prominent OR method. 

In detail, the following research questions are to be answered: 

❖ What is the state of the art of integrating social aspects in the field of strategic supply chain 

optimization?  

RQ1. What frameworks for social assessment are referred to, what social aspects are considered, 

and how is their selection justified?  

RQ2. How are social indicators incorporated into quantitative models? 

The remainder of this study is structured as follows: Section 2 outlines the applied method for 

literature collection and evaluation, as well as giving a meta-analysis of the identified sample. Section 

3 presents the results of the literature analysis with a particular attention to the research questions. 

As its key element, it describes the integration of social indicators into optimization models explicitly. 

Section 4 covers the issues of aggregating multiple aspects and indicators, and discusses the results. 

Section 5 concludes the present study with the identification of an agenda for future research. 

2 Method 

The research methodology is conducted in a systematic manner to guarantee the comprehensibility of 

the literature acquisition approach, the unambiguity of its scope, the tangibility of the results, as well 

as the consistency with previous work. For this purpose, a four-step methodology is used, which 

comprises material collection, a descriptive analysis, category selection, and material evaluation. It was 

similarly applied by i.a. Seuring and Müller (2008), Ghaderi et al. (2016), Barbosa-Póvoa et al. (2018), 

and Bubicz et al. (2019) for comparable studies cited in section 1. 

2.1 Step 1: Material collection 

The material collection is carried out in a careful database research, for which the databases 

ScienceDirect (SD), Web of Science (WS), and EBSCOhost (EH) are selected. SD is also selected by i.a. 

Mujkic et al. (2018), SD and EH by Stindt (2017), and SD and WS by Barbosa-Póvoa et al. (2018); each 

time with the argument that the selected databases cover a vast majority of relevant journals in this 

field. The used Boolean search string accounts for the interdisciplinarity between the research fields 

of social assessment and OR-based supply chain management. The latter is considered with an 

emphasis on the strategic planning level and includes reverse supply chains. The social component of 

the search string includes social concepts, the acronym of which is nowadays understood without the 

word “social” per se (corporate social responsibility, CSR, social life cycle assessment, SLCA, see section 

3.1). The search was finished on 22 May 2019, and employed the following search string: 

(social* OR societal OR csr OR slca OR s-lca) AND (“network design” OR “network planning” OR 

“logistics network” OR “strategic supply chain” OR “supply chain network” OR ”facility location” OR 

“closed-loop supply chain” OR clsc) 

In order to be referenced in this study, an article needs to meet the following criteria: 
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❖ The article is written in English. 

❖ The article includes a problem within strategic supply chain or supply network decision-making. 

❖ The article includes at least one social aspect with a quantitative social indicator in an optimization 

model. 

The latter means that also those articles are excluded that only use metrics or quantitative methods 

(e.g. data envelopment analysis, DEA, analytical hierarchical process, AHP) for the determination of 

single social parameters, but without an overall decision-making model. For example, Chazara et al. 

(2017) develop a comprehensive metric for estimating created direct, indirect and induced jobs, and 

Azadi et al. (2015) use AHP to evaluate the social sustainability of suppliers. Approaches such as those 

are valuable for parameter calculation in decision-making models, but do not encompass optimization 

models themselves. Furthermore, facility location models are excluded, if no supply chain context is 

apparent (e.g. hospitals, disaster relief centers, wind turbines). Lastly, the impacts from e.g. climate 

change are also excluded. For example, Tseng and Hung (2014) use “social costs” as an indicator to 

measure the societal impacts from greenhouse gas emissions, which is considered an environmental, 

not a social aspect in this study. Ultimately, applying the criteria resulted in a sample of 77 articles 

from the forward search (SD: 23, WS: 20, EH: 6, SD+WS: 10, WS+EH: 1, SD+WS+EH: 17) and another 14 

from a backward search. Therefore, the final sample comprises a total of 91 articles that are analyzed 

in this study with respect to the research questions. 78 of which contain a total of 85 social objective 

functions, while 13 contain social constraints only. The 91 referenced studies are listed in Appendix 2. 

2.2 Step 2: Descriptive analysis 

The earliest four articles were published in 2000, 2009 (2), and 2011. Since then, the number of 

published articles per year has been increasing, testifying the existing and growing relevance of the 

topic in academia in general, and in the field of strategic supply chain management specifically. The 

release of the Guidelines for Social Life Cycle Assessment (Benoît and Mazijn, 2009) and the ISO 26000 

standard (ISO, 2010; see section 3.1) as possible gateways could be adduced as explanations for this 

recent trend. The short time frame also hints at this article’s epistemic presumption that the afore 

used approaches lack homogeneity in terms of scope and used indicators. The identified articles are 

written by 219 different authors, and are published in 45 different journals, of which 29 appear in the 

sample only once (see Supplementary material M2b). This could be explained by the novelty of the 

topic and by the fact that the social dimension is often not the primary focus, but rather “attached” to 

whatever topic or problem. By far the most of the identified articles were published in the Journal of 

Cleaner Production (18, 20%). This journal alone accounts for more articles than Computer Aided 

Chemical Engineering (7), Transportation Research Part E: Logistics and Transportation Review (6) and 

Computers & Industrial Engineering (4) combined. Despite the focus on the strategic decision-making 

level, a sizable number of articles was published in production or process-oriented journals. Figure 1 

depicts the number of articles per year of publication, as well as the most frequent publishing journals, 

while Table 1 shows the authors with the most contributions in this field. 
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Fig. 1. Number of relevant articles per year of publication and publishing journal (* as of 22 May 2019, 

incl. articles in press) 

Table 1. Contributing authors 

Author A
rt
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Country of institution 

Barbosa-Póvoa, A.P. 6 Portugal 
Gomes, M.I. 6 Portugal 
Mota, B. 6 Portugal 
Pishvaee, M.S. 6 Iran 
Carvalho, A. 4 Portugal 
El-Halwagi, M.M. 4 USA / Saudi Arabia 
González-Campos, J.B. 4 Mexico 
Govindan, K. 4 Denmark 
Ponce-Ortega, J.M. 4 Mexico 
Fathollahi-Fard, A.M. 3 Iran 
Hajiaghaei-Keshteli, M. 3 Iran 
Mayorga, R.V. 3 Canada 
Pourjavad, E. 3 Canada 
Razmi, J. 3 Iran 
Serna-González, M. 3 Mexico 
Tavakkoli-Moghaddam, R. 3 Iran (3) / France (1) 
204 others (≤ 2 articles)   

2.3 Step 3: Category selection 

The remainder of this article comprises the synthesis of the findings according to preselected 

categories, and the evaluation of the material with regard to the research questions. The key 

categories, necessary to answer the research questions, are cited frameworks for social assessment, 

considered social aspects, and most importantly social objective functions and constraints with their 

main constituents decision variables and social indicators. Beside these key categories, data on the 

following additional categories is gathered: the type of case study (focal industry sector and/or 

product), the direction (forward, reverse) of the modeled supply chain, modeling features, methods 

for multi-criteria optimization, and included end-of-life-options in reverse supply chains. The entire 
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dataset with all categories and results is given in the Supplementary material M2a. Lastly, step 4, the 

material evaluation, is carried out in the following section 3. 

Beside the social dimension, all of the 91 articles also cover at least the economic dimension, and 78 

articles include both an economic and an environmental objective function. The same cannot be said 

vice versa, i.e. articles with an economic or environmental focus often do not include social aspects 

(cf. section 1). As is it not the focus of this study, and to keep this section as concise as possible, we 

refrain from additionally explaining the economic or environmental indicators and objective functions 

used in the respective articles. For developments in environmental modeling in SSCM, we refer the 

reader to the comprehensive reviews by Eskandarpour et al. (2015) and Barbosa-Póvoa et al. (2018). 

3 Material evaluation 

To create a common basis for social assessment and the reasoning behind the selection of aspects in 

literature, existing independent frameworks for social assessment are introduced, and it is explored 

which study explicitly references which frameworks (section 3.1). This is followed by a comprehensive 

overview on considered social aspects (section 3.2), and by an overview on industry sectors of 

conducted case studies (section 3.3). With frameworks and trends identified, a detailed analysis on the 

integration of aspects and their indicators into quantitative models is the centerpiece of this study 

(section 3.4). After a brief exploration of employed modeling approaches and multi-criteria 

optimization, the sample of articles is divided into two categories. First, there are those articles that 

optimize social objective functions (section 3.4.1), and second, there are those articles that introduce 

social constraints to e.g. economic or environmental objective functions (section 3.4.2). For objective 

functions and constraints, the main epistemic object is the quantitative connection between decision 

variables and social parameters (section 3.4.3). 

3.1 Frameworks of social assessment 

Only in recent years, research on the social perspective has begun to catch up. The release of social 

standards and frameworks has outlined the spectrum of social aspects in different categories. 

However, due to a lack of homogeneity in social assessment, comparable to environmental LCA, most 

of the referenced articles choose their set of relevant aspects and respective indicators individually. 

Here, the existing frameworks of social assessment constitute the nethermost level of commonality 

and comparability. Even though their current versions are far from being on par with environmental 

LCA, they are cited in referenced articles as providers of the available array of social aspects, and to 

justify the selection of the latter for use in the articles’ models. However, with only 24 articles, the 

number of articles that cite a framework is rather small, while 67 do not cite any framework at all. The 

frameworks mentioned in this section as well as their nomenclature and the aspects and indicators 

covered by them are detailed in the Supplementary material (M3). 

In the field of strategic supply chain decision-making, Social Life Cycle Assessment (SLCA) is cited for 

its kinship to LCA (including the typical four-step methodology, and in particular their product-

perspective), and its subsequent theoretical suitability for supply chain problems ([59] Pishvaee et al., 

2014). In 2009, UNEP/SETAC provided the Guidelines for Social Life Cycle Assessment of Products 

(GSLCAP), distinguishing between five stakeholder categories workers, consumers, local community, 
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society, and value chain actors (Benoît and Mazijn, 2009). They are further divided into a total of 31 

subcategories. The Guidelines were later complemented by the Methodological Sheets for Social LCA, 

which propose definite units of measurement and data sources for the aforementioned subcategories 

(Benoît-Norris et al., 2011, 2013). This can be seen as first attempts towards an analogy to the 

quantitative life cycle inventory and impact assessment of environmental LCA. As for the product-

perspective, the Methodological Sheets are also the only framework to differentiate between a site-

specific (e.g. the social performance of a specific company or site) and a generic (e.g. country-specific, 

industry-specific, product-specific) assessment. For example, a site-specific indicator for the 

subcategory health and safety in the stakeholder category workers could be the number of injuries in 

a specific plant of the company, while the generic variant of the indicator could be the occupational 

accident rate by country (Benoît-Norris et al., 2013, p. 118). The latter facilitates decision-making 

problems with a more aggregated scope and multifarious decisions, while the former suits evaluations 

or comparison studies between existing sites or companies, or decision problems with a limited 

number of discrete possible decisions. For the generic indicators, quantitative or semi-quantitative 

data sources are proposed for almost all of the existing aspects, such as international databases. 

Furthermore, the Product Social Impact Life Cycle Assessment database (PSILCA) is directly based on 

the categorization of the GSLCAP and offers data for 50 indicators in 15,000 sectors and 189 countries 

(Ciroth and Eisfeldt, 2016). Within the 91 referenced articles, the GSLCAP are only cited 6 times (7%, 

Table 2). 

The Sustainability Reporting Guidelines are a framework developed by the Global Reporting Initiative 

(GRI) between 2000 and 2013 in versions from GRI G1 to G4 (GRI, 2013), and cover economic, 

environmental, and social aspects. They were succeeded by the GRI Sustainability Reporting Standards 

(GRI, 2016). These frameworks aim at supporting organizations alongside the supply chain in 

evaluating their performance in all three pillars of sustainability. In contrast to SLCA, the frameworks’ 

perspective is on companies and other organizations. GRI defines the social pillar of sustainability as 

the social consequences of an organization on social systems (GRI, 2013). In the social category, G4 

(like G3.1) distinguishes between the four subcategories labour practices and decent work, human 

rights, society, and product responsibility that are further subdivided into 30 aspects, and proposes 48 

indicator measurements or questions with the aid of which the aspects can be measured. The newer 

and modular GRI Standards consist of 19 social standards with 40 indicators in total. However, unlike 

the G4, which are cited in 5 articles (G3.1: 4 articles), the GRI Standards are not mentioned in any of 

the articles. 

Likewise, the International Guidance Standard on Social Responsibility, ISO 26000, by the 

International Standardization Organization is organization-oriented. It distinguishes between seven 

categories, called core subjects (ISO, 2010). They comprise organizational governance, human rights, 

labor practices, environment, fair operating practices, consumer issues, and community involvement 

and development, which are subdivided into 36 issues. The ISO 26000 are the most frequently cited 

framework, with citations in 17 of 91 articles (19%). In addition to the ISO 26000, a small number of 

studies cites other international standards, i.e. SA8000 by Social Accountability International (SAI, 

1997) and AA1000 by the Institute of Social and Ethical AccountAbility (AccountAbility, 1999).  
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Other frameworks include the afore cited AA1000, Logistics Social Responsibility (LSR, Carter and 

Jennings, 2002), the Ethical Trading Initiative’s Base Code (ETI, 2018), the Fair Labor Association’s Code 

of Conduct (FLA, 2011), and the United Nations Global Compact (UNGC, 2007). 

Partially created by the same authors as the GSLCAP, the Social Hotspots Database (Benoît-Norris and 

Norris, 2015; SHDB, 2019) is a product-focus database, which allows for input/output modeling of 

products and provides data for numerous regions and industry sectors. It also offers metrics for 

characterization and social impact assessment in five categories (health & safety, community, 

governance, human rights, labor rights). Despite this being a notable step in the development of a 

quantifiable social dimension, it is neither used nor cited by the referenced studies. Other possible 

non-cited approaches or frameworks comprise, inter alia, the United Nations Sustainable 

Development Goals (UN, 2015) or the EU Cohesion Report (European Commission, 2017). The latter is 

released triennially and evaluates the current state and progress of the socio-economic cohesion of 

the union on the basis of a plethora of indicators, which could be appropriated for an assessment of 

social sustainability in accordance with the political interests and development goals of the EU. The 

report is not cited in the referenced articles explicitly, however, single indicators from it have been 

adopted with reference to the EU’s development strategy, e.g. population density by [49] Mota et al. 

(2015c). Lastly, single industry-specific approaches have been developed for sectors that require 

additional qualified perspectives on sustainability, such as for agricultural produces (Meul et al., 2008), 

also without citation in the referenced sample. 

Among all of the articles, those that cite no framework at all and either device the social dimension 

individually or base their selection on an unstructured source comprise the largest group. Those 

articles that do cite a framework do so in one of three ways, as presented in Table 2. A small number 

of articles bases their selection of social aspects specifically on the frameworks’ content, i.e. by citing 

specific categories and considering aspects accordingly. Others cite the respective framework 

generally as a foundation of the article’s social assessment, and the last group mention a framework, 

but unrelated to the article’s own methodology, e.g. as part of the literature section (in Appendix 2 

and Supplementary material M2a, these three differentiations are represented in bold, plain, and italic 

letters respectively). 
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Table 2. Number of articles that cite frameworks and their categories 

Framework C
it

e
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e
ci
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ca

lly
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it
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n
e

ra
lly

 

C
it

e
d

, b
u

t 
u

n
re

la
te

d
 

TO
TA
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GSLCAP 4  2 6 

Workers 3    
Consumers 2    
Value Chain Actors 1    
Local Community 4    
Society 3    

GRI G3.1 1  3 4 
GRI G4 2  3 5 

Labor practices & decent work 3    
Human rights     
Society 2    
Product responsibility 1    

ISO 26000 7 5 5 17 

Organizational governance 1    
Human rights 2    
Labor practices 6    
Environment 2    
Fair operating practices 2    
Consumer issues 2    
Community involvement & 
development 

5    

SA8000  3 5 8 

Other framework(s)  2 5 7 

No framework cited    67 

3.2 Social aspects 

For the purpose of clarity and comprehensibility in this section, we group the aspects of different 

frameworks that were cited in different articles, but which are substantially comparable. For example, 

the GSLCAP’s subcategory “local employment” and GRI’s aspect “employment” are summarized under 

“job creation” in this section. This allocation is documented in the Supplementary material (M3a), 

together with an overview on all aspects covered by the mentioned frameworks. The categorization is 

comparable to the one applied by Bubicz et al. (2019). They base their aspects on the categories by 

GRI, i.e. labor practices and decent work, human rights, society, and product responsibility. Since it 

plays only an insignificant role in the articles in the study at hand, the aspect of “human rights” is 

subsumed under “other aspects”. The remaining ones can be matched to "our" aspects creation of 

jobs, work safety, employment quality, economic development, living conditions, customer safety, and 

customer satisfaction. 

With 63 of 91 articles (69%), the creation of jobs due to strategic decisions is by far the most prominent 

of the considered social aspects. In most cases, this means the summation of the sheer number jobs 

created due to decisions. Only a small number of articles distinguishes between directly and indirectly 

created, as well as induced jobs. Direct jobs are those jobs “that the [supply chain] activity has created 
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directly” (Chazara et al., 2017, p. 137), e.g. by opening a new facility with a certain number of 

employees. Indirect jobs are created at other supply chain stakeholders, e.g. suppliers or 

subcontractors, as a result of the activity (ibid.), and induced jobs represent the impact that direct or 

indirect jobs have on employment in the local economy (ibid.). This differentiation is only taken into 

account by [42, 43] Miret et al. (2016, 2015), [85] You et al. (2012), and [86] Yue et al. (2014).  

Work safety is another frequently considered employment-related aspect, which foremost comprises 

the health and security of employees. It is mostly quantified as lost working time due to injuries (e.g. 

[25] Fathollahi-Fard et al., 2018; [59] Pishvaee et al., 2014), subject to decisions on technologies, or 

product or material choices.  

Other work-related aspects, subsumed under the term employment quality, include inter alia the 

happiness of employees (e.g. [03] Allaoui et al., 2018), the fair distribution of (an invariant amount of) 

created jobs ([04] Anvari and Turkay, 2017), qualification and availability of workforce (e.g. [15] Costa 

et al., 2017), training and skill development (e.g. [35] Jakhar, 2015), or discrimination ([18] Das and 

Shaw, 2017). 

Two major aspects concern the relation to the region that is affected by respective supply chain 

decisions. The economic development of a region often refers to the prioritization of those regions 

with a lesser degree of development, which could be measured by means of the Human Development 

Index (HDI, e.g. [08] Babazadeh et al., 2017), the gross domestic product (GDP, e.g. [50] Mota et al., 

2018), population density (e.g. [49] Mota et al., 2015c), or unemployment rates (e.g. [46] Mota et al., 

2013). Similarly region-oriented, the aspect of living conditions comprises medical & education access 

(e.g. [04] Anvari and Turkay, 2017), crime control, road infrastructure availability, political stability ([15] 

Costa et al., 2017), discrimination, abuse of human rights ([18] Das and Shaw, 2017), and visual 

pollution ([33] Habibi et al., 2017). 

Customer-related issues are the least frequently considered aspect. Namely, customer safety often 

depends on the choice of technology (e.g. [58] Pishvaee et al., 2012; [91] Zhu and Hu, 2017), and is 

considered in eight studies. Customer satisfaction is part of social optimization in ten studies (e.g [28] 

Feitó-Cespón et al., 2017; [78] Soleimani et al., 2017). However, as customer satisfaction could 

naturally be interpreted as an economic motivation, it is part of a vast array of models outside of the 

referenced sample, e.g. as a demand satisfaction constraint, but without being listed explicitly as a 

social objective. The specific integration of all of the aforementioned aspects and their respective 

indicators in quantitative optimization models is the focus of section 3.4.  

As observed earlier, only a rather small number of articles cites any framework at all (Figure 2, left). 

However, it can be stated that articles that do not cite any framework consider on average 1.6 aspects 

(67 articles consider a total of 108 aspects), whereas the other 24 articles consider on average 2.5 

aspects (60/24). Among them, the number is even higher (2.7, 35/13) for those 13 articles that cite 

frameworks explicitly to justify the selection of aspects. With reference to sections 3.4 and 4, it bears 

mentioning that the number of considered social aspects in a study does not allow for a judgement 

about the complexity or sophistication of its objective function. Quite the contrary, if several aspects 

are weighted (e.g. by AHP) towards a single social “score”, which is then used as a single model 

parameter, the results are often less tangible than with fewer indicators with actual units. 
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In addition to the number, the kind of aspects also differs between articles that do and articles that do 

not cite a framework (Figure 2, right). In articles that do not, the share of employment quality, living 

conditions, customer satisfaction and other aspects is higher than in those that do. For customer 

satisfaction, an aspect that crosses the border to the economic dimension, this is because the aspect 

is not part of any framework. Employment quality, living conditions and other aspects are more diverse 

in the used indicators (cf. Supplementary material M1), as existing frameworks offer more readily 

usable indicators for e.g. job creation, work safety, and economic development. Those articles that cite 

frameworks, but not specifically, mostly only consider job creation and economic development (and 

work safety and customer safety to a lesser degree). When frameworks are cited specifically for the 

selection of particular aspects, the array of considered aspects is more diverse. 

 

Fig. 2. Share of studies that cite or do not cite a social framework (left), number studies with different 

social aspects, and distribution of aspects depending on the type of framework citation (right) 

 

3.3 Types of case studies 

The industries and/or products that are focal in the case studies conducted in the referenced articles 

are categorized into seven groups, as presented in Figure 3. In addition, Figure 3 provides information 

of the type of supply chain (F = forward, R = reverse, F+R = both forward and reverse elements), as well 

as the considered social aspects per group. 

It is noticeable that articles that optimize a supply chain in the field of bioeconomy, i.e. biomass to 

energy or biomass to fuel, comprise the largest group with 26 articles (29%). This is testament to the 

great relevance that bioeconomy has gained in recent years (Bugge et al., 2016). They are often based 

on an inherent sustainable motivation (e.g. [08] Babazadeh et al., 2017; EuropaBio & ESAB, 2006, p. 9), 

which could explain the fact that optimization studies on bioeconomy are most likely to be subject to 

all three pillars of sustainability instead of just one or two. Different from what might be expected, this 

is not mainly due to the inherent conflict between e.g. food and fuel for first-generation biofuels, or 

for arable soil between food crops and energy crops such as switchgrass. Of the 26 articles, only four 

([16], [42], [52], [30]) deal with this issue explicitly in their models (here: subsumed under the aspect 

of living conditions). In contrast, it is noticeable that the 26 articles on bioeconomy only include a total 

of 32 social aspects (on average 1.2 aspects per article). Not only is the social aspect of job creation 

41

10
6

14
18

2
9 8

22

13

1

14
2

6
1 1

11

9

1

6

2

4
1 1

0

10

20

30

40

50

60

jo
b

 c
re

at
io

n

w
o

rk
sa

fe
ty

em
p

lo
ym

.
q

u
al

it
y

ec
o

n
o

m
ic

d
ev

.

liv
in

g
co

n
d

it
io

n
s

cu
st

o
m

er
sa

fe
ty

sa
ti

s-
fa

ct
io

n

o
th

er
as

p
ec

ts

63 23 7 28 20 8 10 9

67 articles
74%

24 articles
26%

no framework cited

framework cited

framework cited
specifically

67

24

13

of which:

number of
articles

13



Postprint Messmann et al. (2020): J Clean Prod 257 10.1016/j.jclepro.2020.120459 

12 

 

 

the most important one in bioeconomy with 18 articles, but also is bioeconomy the group in which job 

creation has highest importance relatively. The differentiation between forward and reverse supply 

chains for bioeconomy articles differs from those in the other groups. On the one hand, one could 

argue that biomass (food crops, energy crops, and agricultural residues) is raw material in forward 

supply chains that produce electricity or fuels. On the other hand, the well-known report by the Ellen 

MacArthur Foundation (2013, p. 24) promotes the concept of cascade use of feedstock as an important 

part in a development towards a circular economy. To account for this fact and to enable the 

differentiation between forward and reverse supply chains in bioeconomy articles in this study, we 

consider the use of crops (both food crops and energy crops) to be “forward”, while biomass from 

agricultural residues is classified as “reverse”. 

The 17 articles (19%) without an explicit real-world case study, where e.g. the focus is on presenting a 

supply chain model, social indicators, or a solution algorithm with a numerical example only, consider 

29 aspects (1.7 aspects per article). This is also the group with the highest share of articles that consider 

work safety, which could be explained by the fact that a widely accepted indicator exists (lost days due 

to work damages, see sections 3.4 and 4), while at the same time a numerical example without a real-

world background avoids the issue of data availability. Articles on electric and electronic equipment 

(EEE) comprise the third largest group with 13 articles (14%). Despite the small number, they include 

the most social aspects (36; 2.8 aspects per article), and also the highest number of articles where 

economic development is a considered aspect. With ten of the 13, a large share of articles model a 

reverse supply chain or one with reverse elements (e.g. CLSC), which can be traced back to the high 

prominence of especially waste EEE (WEEE) in the fields of reverse logistics and circular economy in 

general (Islam and Huda, 2018). 

Groups with much smaller numbers are waste management (6 articles, 7%), the medical industry, and 

the food industry (5 articles each, 5%). For waste management, living conditions are the most 

important social aspect, which is mostly affected by the distance of waste facilities to urban areas and 

the obnoxious effects caused by them. In addition, waste management is the only group in which job 

creation is only an insignificant aspect. For the groups of medical industry and food industry, the high 

share of forward supply chains is apparent. The 19 articles (21%) with other industries or products (≤ 

3 each) include inter alia car tires, construction and demolition (C&D), and steel production. 

 

Fig. 3. Share of industry sectors (left) and number of considered social aspects per industry sector (right) 

bioeconomy
26 articles (29%)

numerical
example
17 (19%)

EEE
13 (14%)

other
19 (21%)

91 F+
R

63 23 7 28 20 8 10 9 Σ aspects

bioeconomy 26 18 1 4 7 1 1 32 (1.2 per art.)

numerical example 17 12 7 1 2 1 1 4 1 29 (1.7 per art.)

EEE 13 10 5 3 10 2 2 2 2 36 (2.8 per art.)

waste management 6 1 1 1 5 1 1 2 12 (2.0 per art.)

medical industry 5 5 3 2 2 12 (2.4 per art.)

food industry 5 5 1 1 3 1 1 12 (2.4 per art.)

other industry 19 12 6 1 6 4 2 2 2 35 (1.8 per art.)
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Overall, 33 articles deal with a purely forward supply chain, 26 articles with a reverse supply chain, and 

in 32 articles, the supply chain has both forward and reverse elements. Of the combined 58 articles 

with partially or solely reverse elements, those end-of-life options with a lower priority according to 

the European waste hierarchy (Directive 2008/98/EC) prevail in numbers over those with a higher 

priority. Recycling, incineration, and disposal appear in 34, 9, and 23 articles respectively (38 different 

articles in total). Remanufacturing, refurbishment, and preparation for reuse (cleaning, repair, and/or 

direct reuse) appear less frequently with 14, 4, and 11 times respectively (20 different articles in total), 

yet especially refurbishment and preparation for reuse are associated with environmental and social 

(affordable products, local employment creation) benefits alike (Devoldere et al., 2009; O’Connell et 

al., 2013). For details on end-of-life options, see Supplementary material M2a. 

3.4 Social modeling 

Social objective functions and constraints, independent of the underlying modeling approach, are 

defined by their decision variables and parameters. Social parameters as model input need to be 

quantitative, or at least quantifiable for use in model constraints. This circumstance renders socially 

sustainable decision-making much more intricate than merely qualitative case studies, and it renders 

decision-making in the social dimension more intricate than in the economic or environmental one. 

Appendix 2 and Appendix 3 present employed modeling features. Social objectives, constraints, as well 

as their variables and parameters are analyzed in the following sub-sections. 

As most of the referenced studies cover at least one additional dimension (other than the social), multi-

criteria decision-making, i.e. finding trade-offs between the social dimension and the economic or 

environmental ones, is an issue. Figure 4 shows that the vast majority of studies applies advanced 

methods to find efficient solutions between economic/environmental and social objectives. This is in 

contrast to how studies deal with different goals within the social dimension (this is discussed in section 

4.2). 37 studies use the ε-constraint method (twelve of which use AUGMECON, augmented ε-

constraint), and 26 apply metaheuristics to calculate Pareto frontiers between the goals. Within 

metaheuristics, generic algorithms (GA; and the non-dominated genetic algorithm II, NSGA-II) 

dominate. Only a minority does not apply multi-criteria methods (ten articles, i.e. only optimizing 

different objective functions separately), or applies methods such as weighted sums to aggregate 

different goals towards a dimensionless score. 
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Fig. 4. Number of articles with techniques for multi-criteria optimization 

3.4.1 Social objective functions 

The design of the objective function is the decisive factor in how social aspects are considered 

quantitatively. This includes the choice of decision variables that have a social impact (independent of 

the variables used in economic or environmental functions), and the social indicator, i.e. how the social 

impact of decisions is measured. Appendix 5 and Supplementary material M4a summarize the social 

objective functions used in the referenced articles in a, for the sake of comparability, codified and 

simplified form. The second column indicates whether the function aims to maximize or minimize. In 

the fourth column, the social indicator is given, which expresses the social impacts of the decision 

variables in the same line (in columns further to the right). The nomenclature is given in Appendix 4 

and in the Supplementary material M1. Each combination of indicator and decision variable within the 

same line is a term (or group of identical terms) in the function. For example, the function by [38] Kafa 

et al. (2015) reads as “Maximize the number of jobs created due to facility location decisions + the 

number of jobs due to decisions on supplier selection”. Decision variables in square brackets indicate 

that this decision is part of the indices of another variable. For example, [23] Eskandari-Khanghahi et 

al. (2018) maximize the number of jobs created due to decisions on facility locations with a certain 

facility capacity. 

The third column lists aggregators used to combine terms of different lines. If the unit is the same in 

different lines or if both can be converted into each other (e.g. [32] Govindan et al., 2016b), the 

aggregator may just be an arithmetic operator; but if indicators of different units are employed, a 

sizable number of studies aggregates them by weighting. For example, [81] Tsao et al. (2018) maximize 

the weighted sum of three terms: the number of jobs created due to decisions on facility location with 

a certain facility technology (i.e. the term unit is “jobs”), the days lost from work damages due to 

decisions on facility location with a certain technology and a certain product type (i.e. the term unit is 

“time”), and the fraction of potentially hazardous products dependent on the amount produced of a 

certain product type and with a certain facility technology (i.e. the term unit is “potentially hazardous 

products”). Due to the weighting, the overall unit of the objective function is a social score. Six out of 

16 studies determine the weights by AHP, while in four studies, the weights follow the judgment of an 
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expert or decision-maker. [80] Tsao and Thanh (2019) test different values, and [36] Jiang et al. (2018) 

apply equal weights. In another four studies, the origin of the weights are not stated. 

The table in Appendix 5 is sorted primarily by the unit of the objective function, and secondarily by the 

unit of terms (and then lexicographically). The units are given explicitly in the Supplementary material 

M4a. The list begins with functions that solely maximize jobs (directly or indirectly created, or induced), 

followed by jobs that are weighted by another indicator. For example, [49] Mota et al. (2015c) 

maximize the number of jobs created due to decisions on facility locations and inversely weighted with 

the regional population density, so that jobs in less populated regions are favored. Therefore, the unit 

is “jobs (eq)” (“job equivalents”), since the term does represent job opportunities created, but by 

weighting with the population density to favor regions a lower density, the term’s value does not 

necessarily represent an actual number of jobs. The next set of function encompasses those with the 

unit “time”, followed by one function where costs are weighted by distances and jobs ([67] Ramos et 

al., 2018). Those functions in which the unit is a social “score” comprise the largest group. They can be 

divided in those functions where the indicator itself is already a dimensionless score, usually 

determined by multi-criteria decision-making (MCDM) methods, such as AHP, and those that employ 

a vast array of different indicators, but weight the terms in a utility function, as described in the 

paragraph above. The list is concluded by objective functions with the units “distance”, “facilities”, 

“facilities (eq)”, “amount”, and “amount (eq)”. For example, [24] Farrokhi-Asl et al. (2016) maximize 

the distances between urban areas and the locations of disposal facilities. [47] Mota et al. (2014) 

maximize the number of facilities, weighted by the inverse of the regional GDP in the first functions, 

and by the regional unemployment rate in the second function. [28] Feitó-Cespón et al. (2017) optimize 

the customer service level by maximizing the amount of products shipped to customers, which crosses 

the threshold to the economic dimension, although it is called a “social goal” in the study. 

3.4.2 Social constraints 

The social constraints can be sorted into two groups (Appendix 6, Supplementary material M4b). The 

first group are those constraints that directly restrict the primary economic or environmental 

functions. These constraints are very similar to social objective functions, modeling-wise and in the 

choice of variables and social parameters. For example, the profit maximization function by [54] 

Özceylan et al. (2017) is restricted by a lower limit for jobs created, and by an upper limit for days lost 

due to work damages (both due to facility location decisions with respective facility technology). The 

formulation is comparable to e.g. the objective function of [32] Govindan et al. (2016b) or the two 

objective functions by [25] Fathollahi-Fard et al. (2018). The nine articles of this groups are included in 

further analyses in section 3.4.3. 

The other group are those studies that follow a two-step approach, where, with one exception, the 

programming model of the second step is fed with favorable solutions pre-selected in the first step. 

[08] Babazadeh et al. (2017) pre-select possible facility locations by criteria such as the human 

development index (HDI), population, and climate, before solving a MILP model that minimizes costs 

of a biodiesel supply chain. Similarly, [12] Bouzembrak et al. (2013) use a GIS model to consider an 

array of economic, environmental, and social aspects, using expert questionnaires. Identified possible 

locations for sediment treatment facilities are then subject to cost minimization in a MILP model. Social 
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aspects include possible detriments to living conditions, such as nuisances from facilities, pollution, 

security, and effects on health. [19] Dehghani et al. (2018) identify feasible locations for photovoltaic 

production facilities by data envelopment analysis (DEA), considering technical, geographic and social 

(population density) criteria. The entire supply chain is then optimized following the goal of cost 

minimization. Vice versa compared to the aforementioned articles, [15] Costa et al. (2017) use a macro-

location MILP model to optimize a combined economic-environmental objective function, the results 

of which are the solution space for a micro-location model, which is fed with aspects such as crime 

control or political stability. The micro-location model is realized by goal programming and not 

comparable to the objective functions in section 3.4.1. As this group of four articles is hardly 

comparable to the first group in terms of the modeling approach, these articles are not included in 

further analyses in section 3.4.3. 

3.4.3 Relation between social parameters and strategic decisions 

Decisions in social objective functions and constraints have been attributed with different social effects 

in literature. It is apparent that in models for social optimization in particular, the selection of 

indicators and decision variables can be mutually dependent, as some variables may facilitate or inhibit 

certain indicators. For example, decisions on facility locations can simply be attributed with the amount 

of jobs that are created by them. Lost days due to work damages, however, can only be included, if 

the model’s decisions relate to this indicator in the first place (e.g. decisions on product types or facility 

technologies). [42] Miret et al. (2016) point out that some decisions are not or only negligibly 

connected with many social criteria. Table 3 deals with this relationship. Here, decision variables 

(vertical axis) and social parameters (horizontal axis) are ordered by the number of articles in which 

they are employed. The matrix between variables and parameters indicates the number of studies in 

which a variable is quantified by a parameter. For example, the by far most prominent combination is 

between facility location decisions (FL) and jobs created (job). In 46 of 68 studies (68%) with a facility 

location decision, this decision is quantified by the number of jobs created by the decision, and in 46 

of 48 studies (96%) that use jobs as a parameter, decisions on facility locations contribute to this 

indicator. Other frequently employed indicators for facility location (FL) decisions are lost days from 

work damages (ldd, 15), generic social scores (soc, 14), the regional weights of regional development 

(dev, 10) and unemployment (ump, 9), the economic value created (ecv, 5), population density (pop, 

5), or the distance between locations and e.g. urban centers (dis, 4). Beside facilities, jobs are usually 

created by decisions on transport quantities (QT, 17), facility technologies (FT, 21), production 

quantities (QP, 16), facility capacities (FC, 17), and decisions on product types (PT, 10). Other noticeable 

combinations include the parameter of lost days from work damages (ldd). In the 17 models in which 

the parameter is used, decisions on facility locations (FL) are responsible (at least partially) in 15 articles 

(94%), and 13 of 27 articles (48%) that include decisions on facility technologies (FT) quantify this 

decision with lost days. With a few exceptions, the other combinations only appear inconsistently, or 

do not exist at all. Parameters such as access to education (edu), medical access (med), or the security 

level (sec) are even used only once, despite the fact that [04] Anvari and Turkay (2017) prove with their 

article that applicable quantitative indicators can be found for these aspects. 



Postprint Messmann et al. (2020): J Clean Prod 257 10.1016/j.jclepro.2020.120459 

17 

 

 

Table 3. Number of articles in which the social effects of decisions (vertical axis) are quantified with 

different social parameters (horizontal axis) (nomenclature in Appendix 4; numbers from objective 

functions and constraints) 
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    48 17 15 11 9 6 6 6 5 4 3 3 2 2 1 1 1 1 10 

FL 68 46 15 14 10 9 5 5 4     2 2 2   1 1 1   2 

QT 36 17 7 4 2 1   2 3 4   1 3 1   1 1 1   3 

FT 27 21 13 1 2 2   1 1   4 1   2         1   

QP 26 16 6 1 1   1   1   4   1 2         1 1 

FC 22 17   5 4 3 3 1                         

PT 18 10 2 2     1   1   1   2 2 1         1 

QR 12 7   2         1       1 1           1 

SU 9 4   3 1 1 1   1       1 1 1           

QU 9 6 5 1                     1         1 

TM 7 3   2 1               1   1           

TL 6 4     1 1                 1         1 

HR 3                                     3 

QI 2 2                                     

4 Discussion 

The presented results enable statements about the kind and number of indicators employed as well 

as on how indicators with different units within one objective function are aggregated. 

4.1 Small number of consistently applied indicators 

The analysis in section 3.4 and Table 3 allows for two perspectives. First, it gives an overview on the 

social impacts that different types of decisions are attributed with. This helps to identify gaps in the 

field of social assessment: Where are additional generically applicable social indicators needed? 

Second, from a modeler’s perspective, this helps to identify how decisions in existing optimization 

models could be quantified from a social perspective. This may assist researchers in choosing suitable 

indicators for the social parameters in their objective functions, based on the state of the art. The 

analysis of the article at hand may thus contribute to a larger number and a more consistently used 

set of social indicators in the field of strategic supply chain optimization. 

Only few articles attempt to apply a larger number of indicators. [59] Pishvaee et al. (2014) and [91] 

Zhu and Hu (2017) use similar objective functions and indicators. Both weight the number of jobs 

created by facility location decisions with unemployment rates and the economic value created with a 

regional development index, to promote locations with higher unemployment rates and lower 

development. Furthermore, they consider days lost due to work damages from location and 

technology decisions, as well as weighting the number of needles and syringes manufactured using a 

certain technology with the respective average fraction of potentially hazardous products. [04] Anvari 

and Turkay (2017) take another approach and weight the outgoing flow of produced electronics 

products with regional unemployment rate and population density (to account for job distribution 
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equity), with a regional development index (to account for development equity), with a security level 

defined as crimes per person in a region, with a medical access level (calculated with doctors per 

population figure and hospital beds per bed demand), and with an education access level (using 

number of teachers, school seats, number of pupils and students). Lastly, while employing only few 

indicators per se, [05] Arampantzi and Minis (2017) argue that their objective function covers a diverse 

array of social aspects. Here, local community development, support of less developed countries, 

employee satisfaction, stable employment, and work safety are each expressed in employee-periods. 

Of the 188 indicators proposed in the methodological sheets for the GSLCAP (Benoît-Norris et al., 

2013), 67 are quantitative (and another 110 semi-quantitative). Of those 67 indicators, 32 are labeled 

“generic”, as opposed to site-specific ones. They represent 17 (of 31) GSLCAP subcategories, of which 

nine are in one way or another covered by the reviewed articles (cf. Supplementary material M3a, 

M3b), although not necessarily by the indicators proposed by UNEP. This leaves eight subcategories 

with generic, quantitative indicators proposed for in the GSLCAP, which find no representation in the 

referenced articles. Some of these are ambiguous with regard to strategic supply chain optimization; 

for instance, whether the presence of feedback mechanisms in a sector or country is a reason in favor 

of or against a location decision. However, innovative approaches such as in the aforementioned study 

by [04] Anvari and Turkay (2017) as well as previously unused indicators such as average or minimum 

wages in a sector or country may, e.g. if put in relation with the anticipated wages of the newly created 

jobs, affect the social sustainability of such a decision. 

Currently, created job opportunities clearly prevail in modeling. This fact may be traced back to two 

main reasons: First, linking network decisions, such as the opening of a facility (see section 3.4.1), to a 

tangible number of created jobs requires the least assumptions and thus yields the benefit of simplicity 

for modelers. Second, it is thoroughly researched and widely acknowledged that unemployment leads 

to real, quantifiable negative consequences, which justifies the selection of this aspect for many 

modelers. Breuer (2015) empirically show a statistical relation between unemployment and suicide 

rates, and Brand (2015) gives an account on the manifold consequences of job losses, which range 

from financial security to i.a. social isolation, lowered self-esteem, and anxiety. Furthermore, 

unemployment is linked to property crimes (Aaltonen et al., 2013) as well as health problems (Kroll 

and Lampert, 2009). However, most studies only add up the sheer number of jobs, and do not 

differentiate by the kind (direct, indirect, induced, cf. section 3.2) or the value of the job created. 

Exceptions are the limited number of studies that weight jobs by e.g. population density, regional 

development indices, or unemployment rates to account for the fact that a new job is more worth in 

less densely populated or less developed regions, or in those with a higher unemployment rate. [73] 

Santibanez-Aguilar et al. (2014) acknowledge that a job in different stages of the supply chain may 

impact society differently and cite the Jobs and Economic Development Impact (JEDI) model as a 

possibility to account for this fact (NREL, 2012). Lastly, [67] Ramos et al. (2018) include wages paid, so 

that a created job with a higher wage yields a higher social benefit. 

4.2 Simplistic aggregation methods 

The aggregation of different indicators within the same objective function is another difficulty, which 

again goes back to a missing impact assessment with similar sophistication as for environmental LCIA. 
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There, different environmental mechanisms and their impacts (midpoint level), e.g. global warming 

potential (in kg CO2 eq.) and land use (in m2a crop eq.) may account for a comparable damage on the 

area of protection of ecosystems, which means that the damage of both impacts can be measured in 

the same unit (species years; examples for ReCiPe 2016, Huijbregts et al., 2017). In the realm of social 

impact assessment in general and optimization models in particular, different approaches have been 

applied, none of which is able to achieve a degree of unanimity comparable to environmental LCIA’s 

endpoints. 

Figure 5 depicts how social impacts/effects are aggregated within one objective function across 

different units. For example, if an objective function contains the term job × FL, the unit of this term is 

“jobs” (34 articles). If the term is job × ump × FL, the unit is “jobs (eq)” (“jobs equivalents”, see section 

3.4.1; eleven articles). If the objective function consists of only one term, or if all of its terms are 

measured in the same unit, no further aggregation is needed or the terms can simply be added (e.g. 

22 articles for “jobs”). This is true for the majority of the sample with 58 articles. In this case, the overall 

unit of the objective function is also e.g. “jobs”. A total of four articles aggregated terms with the units 

“jobs” and “time” by translating both units into work time. In all of the other cases where the objective 

function contains terms with different units, however, these terms are usually weighted as part of a 

utility function (see objective functions, section 3.4.1), with weights determined by e.g. AHP (for the 

weights’ origins, see Supplementary material M2a). In this case, the unit of the objective function is a 

dimensionless social “score”. It could be argued that this leads to a loss of information about the actual 

social impact and thus to a loss of tangibility. Together with the 14 articles in which the social indicator 

is a generic “score” in the first place, these objective functions are the most common with 28 articles, 

or the second-most common, if “jobs” and “jobs (eq)” are counted jointly. 

Nine and six articles (12% and 8%) optimize functions with the units “time” and 

“amount”/“amount (eq)” (e.g. as metrics for achieving a certain customer service level) respectively, 

and the number of functions with other units is negligible. However, the overwhelming majority of 

objective functions thus either maximizes “job” and “jobs (eq)” (in 41% of articles), or a social “score” 

(in 36% of articles). In addition, there are only seven articles with more than one social objective 

function ([03], [25], [38], [47], [48], [78], and [84]). Five of them do apply methods of multi-criteria 

optimization to their economic, environmental, and both social functions, but while Pareto efficiency 

and trade-offs are often analyzed between the three dimensions (cf. Figure 4), trade-offs within the 

social dimension are never explored in detail. This shows again that, despite commendable aggregation 

approaches such as by [05] Arampantzi and Minis (2017) as mentioned in section 4.1, the social 

dimension has not yet reached parity with the other two dimensions in the sense of the triple bottom 

line. 
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Fig. 5. Number of articles that contain terms (in objective functions) and objective functions with different 

units, and use different aggregators per term (eq = equivalents, e.g. if weighted by a regional factor) 

Two main conclusions can be derived from this analysis: First, as discussed at the outset of this section, 

a more comprehensive set of social indicators is required. This set then needs to be employed more 

consistently, following the example of state-of-the-art impact categories in LCA. Not all possible 

indicators are suited for generic or Greenfield models, and not every parameter is relevant for every 

problem. However, currently, hardly one article unites all of the applicable indicators in one model. 

Second, these indicators then need to be aggregated by additional and possibly more sophisticated 

methods, other than weighting. This could either be accomplished by the development and use of 

social impact assessment methods (such as the SHDB, which has not been applied in any of the 

referenced studies) comparable to environmental LCIA, or by applying methods for Pareto and multi-

criteria optimization to a larger number of different social objective functions.  

5 Conclusion 

This study analyzes the state of the art of quantifying social aspects in the field of strategic supply chain 

optimization – a combination of disciplines, which has received increasing attention in the last years, 

but which is still in dire need for further development. While the social dimension has been subject of 

a few meta-studies within that field in the past, the article at hand is the first to explore the application 

of social indicators on the level of individual objective functions in optimization models. With the 

results obtained, the research questions can be answered.  

RQ1. What frameworks for social assessment are referred to, what social aspects are considered, and 
how is their selection justified? 

Only a quarter of articles cites existing frameworks and standards for social assessment, and of those, 

only few actually justify the selection of specific aspects this way. Articles that cite frameworks 

consider over 1.5 times as many aspects as those that do not. The argument could be made that the 

former also select more generically applicable aspects. The selection of social aspects differs between 

studies with different focal industries or products, but overall, the creation of job opportunities is by 

far the most frequently considered aspect, followed by regional economic development and work 

safety. Customers are the stakeholder category that is considered the least frequently. 
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RQ2. How are social indicators incorporated into quantitative models? 

Currently, the number of jobs created is the only social indicator that is used consistently. However, 

the fact that the same job can have differing social impacts or benefits in different regions, sectors, or 

supply chain stages is often neglected. Other somewhat established parameters are the days lost from 

work damages, generic social scores (e.g. determined by AHP), regional development levels (e.g. 

measured in GDP per capita), or regional unemployment (in the order of frequency). Social impacts 

are mostly related to decisions on facility locations. Other frequently used decision variables with social 

impacts are decisions on transported quantities, facility technologies, manufactured quantities, facility 

capacities, or product types. Consequently, the most common combination of indicator and variable 

are jobs created by decisions on facility locations, in 62% of all articles. Many objective functions 

contain only one indicator, or use weighted scores to aggregate a number of social aspects or units, 

while more advanced methods are frequently used for multi-criteria optimization between economic 

or environmental goals. As a consequence, the vast majority of objective functions optimizes “jobs” or 

social “scores”. 

Future research should therefore focus on the set of indicators and on aggregation approaches. In 

particular, modelers are encouraged to apply a larger set of existing indicators in models more 

consistently, and to apply Pareto and multi-criteria optimization methods to different social objective 

functions. The development of a unified approach or framework for social optimization in SCM 

problems, from a standardized selection process for indicators to ensuring Pareto efficiency between 

different social goals, could be the next stage in that development. Beyond that, academia in general 

should take a more interdisciplinary perspective and focus on incorporating the learnings of all relevant 

disciplines, in order to further advance in the field of social impact assessment. 
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Appendix 

Appendix 1. Abbreviations (shortened, see Supplementary material M1) 

Abbreviation Meaning 

AA, AA1000 AccountAbility 
AHP, ANP analytic hierarchy/network process 
AUGMECON augmented ε-constraint 
BDA benders decomposition algorithm 
CLSC closed-loop supply chain 
CSL customer service level 
CSR corporate social responsibility 
DEA data envelopment analysis 
DV decision variable 
EEE electric and electronic equipment 
EH EbscoHost 
EPR extended producer responsibility 
ETI Ethical Trading Initiative 
FLA Fair Labor Association 
FSC forward supply chain 
GA genetic algorithm 
GIS geographic information system 
GRI, GRIG3, GRIG4 Global Reporting Initiative (G3.1, G4) 
GSCM green supply chain management 
GSLCAP Guidelines for Social Life Cycle Assessment of Products 
ISO, ISO 26000 International Standardization Organization  
JEDI Jobs and Economic Development Impact Model 
LCA (environmental) Life Cycle Assessment 
LCIA Life Cycle Impact Assessment 
LSR Logistics Social Responsibility 
MCDM multi-criteria decision-making 
NSGA-II non-dominated sorting genetic algorithm 
OR Operations Research 
PSILCA Product Social Impact Life Cycle Assessment database 
PSO particle swarm optimization 
RSC reverse supply chain 
SA, SA8000 Social Accountability International 
SCM supply chain management 
SD ScienceDirect 
SDG United Nations Sustainable Development Goals 
SETAC Society of Environmental Toxicology and Chemistry 
SHDB Social Hotspots Database 
SimAnn simulated annealing 
SLCA, S-LCA Social Life Cycle Assessment 
SSCM sustainable supply chain management 
UNEP United Nations Environment Programme 
UNGC United Nations Global Compact 
WEEE waste electric and electronic equipment 
WS Web of Science 
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Appendix 2. Overview on referenced articles (shortened; for full overview see Supplementary material M2a) 
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Objective 
unit Term units A
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[01] Ahranjani et al., 2018 - x        bioeconomy R RPMILP ↑ jobs jobs - 
[02] Alkahtani and Ziout, 2019 - x        other R MILP ↑ jobs jobs - 
[03] Allaoui et al., 2018 - x x x  x   x food ind. F MILP ↑

↑ 
jobs, score jobs, score - 

[04] Anvari and Turkay, 2017 ISO   x x x    EEE F MILP ↑ score amount (eq) weights 
[05] Arampantzi and Minis, 2017 ISO, GRIG4 x x  x     EEE F MILP ↓ jobs jobs, jobs (eq) time 
[06] Asefi and Lim, 2017 -     x   x waste mgmt. R MIP ↑ score score - 
[07] Ayoub et al., 2009 - x        bioeconomy R P ↕ time time - 
[08] Babazadeh et al., 2017 -    x     bioeconomy F MILP n.a.    
[09] Bairamzadeh et al., 2016 ISO, SA, AA x        bioeconomy R MILP ↑ jobs jobs - 
[10] Bal and Satoglu, 2018 ISO x        EEE R MILP n.a.    
[11] Balaman and Selim, 2016 -       x  bioeconomy F+R FMILP ↓ amount amount - 
[12] Bouzembrak et al., 2013 -     x    other R MILP n.a.    
[13] Cambero and Sowlati, 2016 - x        bioeconomy R MILP ↑ time time - 
[14] Chen and Andresen, 2014 -  x       other F MILP ↓ time time - 
[15] Costa et al., 2017 -   x  x   x bioeconomy F MILP n.a.    
[16] Čuček et al., 2012 -     x    bioeconomy F+R MINLP ↓ amount amount - 
[17] Darbari et al., 2017 -    x   x  EEE R FMILP ↑ score score - 
[18] Das and Shaw, 2017 -   x  x  x x numerical ex. F P n.a.    
[19] Dehghani et al., 2018 -    x     other F RP n.a.    
[20] Dehghanian and Mansour, 2009 ISO, LSR x x  x  x   other R P ↑ score score - 
[21] Devika et al., 2014 - x x       other F+R MILP ↑ score jobs, time weights 
[22] Dosal et al., 2013 -    x x   x other R MILP ↑ score (unknown) - 
[23] Eskandari-Khanghahi et al., 2018 - x        medical ind. F FPMILP ↑ jobs jobs - 
[24] Farrokhi-Asl et al., 2016 -     x    waste mgmt. R P ↑ distance distance - 
[25] Fathollahi-Fard et al., 2018 ISO, SA, GSLCAP x x       numerical ex. F+R SMIP ↑

↓ 
jobs, time jobs, time - 

[26] Fattahi and Govindan, 2018 - x   x x    bioeconomy R MILP n.a.    
[27] Fattahi et al., in press - x   x x    other F SP n.a.    
[28] Feitó-Cespón et al., 2017 -       x  waste mgmt. R SMINLP ↑ amount amount - 
[29] Ghaderi et al., 2018 GSLCAP x   x     bioeconomy F RPMILP ↑ score jobs (eq), value (eq) weights 
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[30] Gonela et al., 2015 -     x    bioeconomy F+R SMILP n.a.    
[31] Govindan et al., 2016a -  x x x  x x x EEE F+R MIP ↑ score score, amount, 

amount (eq), value 
weights 

[32] Govindan et al., 2016b - x x       medical ind. R FP ↑ time jobs, time time 
[33] Habibi et al., 2017 -     x    waste mgmt. R RP ↓ amount (eq) amount (eq) - 
[34] Harijani et al., 2017 GSLCAP, GRIG3, ISO, 

SA, UNGC 
x x  x x x  x waste mgmt. R MILP n.a.    

[35] Jakhar, 2015 - x  x x x x   other F+R FLP ↑ score score - 
[36] Jiang et al., 2018 - x   x     food ind. F LP ↑ score jobs, amount (eq) weights 
[37] Jin et al., 2018 -        x other R MILP ↑ score score - 
[38] Kafa et al., 2015 - x x x     x EEE F+R MILP ↑

↑ 
jobs, score jobs, score - 

[39] Lin et al., 2019 - x        bioeconomy F FLP ↑ jobs jobs - 
[40] Martínez-Guido et al., 2014 - x        other F MILP ↑ jobs jobs - 
[41] Martínez-Guido et al., 2016 - x        bioeconomy R P ↑ jobs (unknown) - 
[42] Miret et al., 2016 - x    x    bioeconomy F MILP ↑ jobs jobs - 
[43] Miret et al., 2015 - x        bioeconomy F MILP ↑ jobs (unknown) - 
[44] Mirmohammadi and Sahraeian, 

2018 
- x x       numerical ex. F+R MINLP ↑ time jobs, time time 

[45] Mota et al., 2015a GRIG4 x   x     food ind. F P ↑ jobs (eq) jobs (eq) - 
[46] Mota et al., 2013 GSLCAP x   x     EEE F+R MILP ↑ jobs (eq) jobs (eq) - 
[47] Mota et al., 2014 -    x     numerical ex. F MILP ↑

↑ 
facilities (eq) facilities (eq) - 

[48] Mota et al., 2015b - x   x     numerical ex. F+R MILP ↓
↓ 

jobs (eq) jobs (eq) - 

[49] Mota et al., 2015c GRIG4 x   x     EEE F+R MILP ↑ jobs (eq) jobs (eq) - 
[50] Mota et al., 2018 GRIG4, ISO x   x     EEE F+R MILP ↑ jobs (eq) jobs (eq) - 
[51] Nobari and Kheirkhah, 2018 - x        numerical ex. F+R MILP ↑ jobs jobs - 
[52] Orjuela-Castro et al., 2019 -     x    bioeconomy F LP ↓ amount amount - 
[53] Osmani and Zhang, 2017 - x        bioeconomy F+R SMILP ↑ jobs jobs - 
[54] Özceylan et al., 2017 - x x       other F+R LP n.a.    
[55] Pedram et al., 2017 - x        numerical ex. F+R MILP ↑ jobs jobs - 
[56] Pérez-Fortes et al., 2012 - x        bioeconomy R MILP ↑ facilities facilities - 
[57] Petridis et al., 2018 -    x     bioeconomy F MILP n.a.    
[58] Pishvaee et al., 2012 GRIG3, ISO, SA, AA x x    x   medical ind. F RPP ↑ score jobs, time, amount, 

hazardous 
weights 

[59] Pishvaee et al., 2014 GSLCAP, GRIG3, SA, 
ETI, FLA, UNGC 

x x  x  x   medical ind. F+R RPP ↑ score jobs (eq), time, value 
(eq), hazardous 

weights 

[60] Pourjavad and Mayorga, 2018 - x        numerical ex. F+R FMILP ↑ jobs jobs - 
[61] Pourjavad and Mayorga, 2019a - x        numerical ex. F+R FMILP ↓ jobs jobs - 
[62] Pourjavad and Mayorga, 2019b - x        numerical ex. F+R FMILP ↑ jobs jobs - 
[63] Rabbani et al., 2018 - x        bioeconomy F MILP ↑ jobs jobs - 
[64] Rad and Nahavandi, 2018 -       x  numerical ex. F+R MILP ↑ score score - 
[65] Rahimi and Ghezavati, 2018 ISO x x       other R SMILP ↑ time jobs, time time 
[66] Rahimi et al., 2019 ISO x x       numerical ex. F MINLP ↑ time jobs, time time 
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[67] Ramos et al., 2018 - x        food ind. F MIP ↑ value (eq) value (eq) - 
[68] Rezaei and Kheirkhah, 2018 - x x       numerical ex. F+R MILP ↑ score jobs, time weights 
[69] Roni et al., 2017 - x        bioeconomy R MILP ↑ jobs jobs - 
[70] Saffari et al., 2015 ISO x        other F+R RPP ↑ jobs jobs - 
[71] Sahebjamnia et al., 2018 GSLCAP, SA, ISO x x       other F+R MILP ↑ score jobs, time weights 
[72] Samadi et al., 2018 - x x       numerical ex. F+R MILP ↑ score jobs, time weights 
[73] Santibanez-Aguilar et al., 2014 - x        bioeconomy F MILP ↑ jobs jobs - 
[74] Santibanez-Aguilar et al., 2015 - x        bioeconomy F+R MILP ↑ jobs (unknown) - 
[75] Sazvar et al., 2016 - x        other F LP ↑ jobs (eq) jobs weights 
[76] Shokouhyar and Aalirezaei, 2017 LSR x x  x     EEE R MILP ↑ score score - 
[77] Silva et al., 2017 -     x    bioeconomy R MILP ↓ facilities (eq) facilities (eq) - 
[78] Soleimani et al., 2017 ISO  x     x  numerical ex. F+R P ↓

↓ 
time, amount time, amount - 

[79] Teran-Somohano and Smith, 2019 -     x    waste mgmt. R P ↓ score score - 
[80] Tsao and Thanh, 2019 ISO, SA x   x     other F MILP ↓ value (eq) value, value (eq) weights 
[81] Tsao et al., 2018 ISO x x    x   numerical ex. F FMILP ↑ score jobs, time, hazardous weights 
[82] Tuzkaya et al., 2011 - x    x    EEE R P ↑ score score - 
[83] Varsei and Polyakovskiy, 2017 GRIG3 x   x     food ind. F MIP ↑ score score - 
[84] Yadollahinia et al., 2018 -       x  other F+R MILP ↑

↓ 
score, 
distance 

score, distance - 

[85] You et al., 2012 - x        bioeconomy F+R MILP ↑ jobs jobs - 
[86] Yue et al., 2014 - x        bioeconomy F+R MILFrP ↑ jobs jobs - 
[87] Zahiri et al., 2017 - x   x     medical ind. F FMILP ↑ score jobs (eq), value (eq) weights 
[88] Zhalechian et al., 2016 - x   x     EEE F+R MINLP ↑ score jobs (eq), value (eq) weights 
[89] Zhang et al., 2016 -       x  numerical ex. F MILP ↑ amount amount - 
[90] Zhou et al., 2000 -       x  other F P n.a.    
[91] Zhu and Hu, 2017 GRIG4, ISO, SA, ETI, 

FLA, UNGC 
x x  x  x   EEE F P ↑ score jobs (eq), time, value 

(eq), hazardous 
weights 

1 bold: the article cites the framework including its categories (see Table 2) to justify the selection of specific aspects. 

plain: the article cites the framework generally for the selection of aspects. 
italic: the article cites the framework unrelated to the article’s own work, e.g. as part of the literature section. 
2 detailed in the Supplementary material (M2a) 
3 forward supply chain (F), reverse supply chain (R), both forward and reverse elements (F+R) 
4 for nomenclature see Supplementary material (M1)



Postprint Messmann et al. (2020): J Clean Prod 257 10.1016/j.jclepro.2020.120459 

26 

 

 

Appendix 3. Modelling features 

 

Appendix 4. Nomenclature of objective functions and constraints 

Parameter Meaning Variable Meaning 

cost costs FL facility location 
dev development index/level FC facility capacity 
dem demand FT facility technology 
dis distance HR+/HR− hired/dismissed employees 
edu educational access PT product/material type 
ecv economic value QI quantity: inventory 
gdp gross domestic product (→ dev) QP quantity: production 
haz fraction of potentially hazardous products QR quantity: raw material 
hrs (working) hours QT quantity: transportation 
job number of jobs QU quantity: used products 
ldd lost days caused by work damages SU supplier selection 
med medical access level TL transportation link 
nui nuisance (e.g. visual pollution, social rejection, 

obnoxious effects) 
TM transportation mode 

pop population density   
sat satisfaction   
sec security level   
soc  social score (e.g. CSR, EPR, etc.)   
ump unemployment rate   
was generated waste   
(eq) equivalents (e.g. jobs (eq), if jobs are being weighted by 

e.g. regional unemployment rate) 
  

(none) no parameter; decision variable only   
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Appendix 5. Social objective functions with social indicator and decision variables (DV) 

Article ↑↓   Social indicator 
 

DV 1 DV2 DV 3 DV 4 DV 5 DV 6  

[01] ↑ 
 

job × FL [FT] QR [PT] QP [FL,FT]       
[02] ↑ 

 
job × FL           

[03] ↑ 
 

job × FLopen − FLclose         
[09] ↑ 

 
job × FL [FC,FT] QR [PT] QP [FL,FT] QT [PT,TM,TL]     

[23] ↑ 
 

job × FL [FC]           
[25] ↑ 

 
job × FL [FT] QP [FL,FT] QT [FL] QU [FL]     

[38] ↑ 
 

job × FL SU         
[39] ↑ 

 
job × FL FC         

[40] ↑ 
 

job × QP [FL] QT [FL,PT]         
[42] ↑ 

 
job × FL [FC,FT] QR [FL,PT] QT [FL,PT]       

[51] ↑ 
 

job × FL           
[53] ↑ 

 
job × FL [FT] FC [FL,FT] QR [SU]       

[55] ↑ 
 

job × FL           
[60] ↑ 

 
job × FL QT [FL]         

[61] ↓ 
 

job  × FL QT [FL]         
[62] ↑ 

 
job × FL QT [FL]         

[63] ↑ 
 

job × FL [FC] QR [SU] QT [TL]       
[69] ↑ 

 
job × FL [FC] QT [TL]         

[70] ↑ 
 

job × FL [FC,FT]           
[73] ↑ 

 
job × QP [FL,FT,PT] QT [FL,PT]         

[85] ↑  job × FL [FC,FT] FC QR [PT] QP [PT,FT] QI [PT] QT [PT,TM] 
 

 
+ jobby-product × QP [PT]           

[86] ↑ 
 

job × FL [FC,FT] QP [FT,PT]         
[05] ↓  jobrequired × FChigh dev [FL] QRnon-local [PT] QPnon-local [PT] QI [PT]     

  + (none)  HR+high dev [FL] HR−low dev [FL]     
  + 1 / jobavailable × FCidle      
  + costldd / costjob × QT [PT,TM]           

[41] ↑ 
 

(no explicit function given) 
 

            
[43] ↑ 

 
(no explicit function given) 

 
            

[74] ↑ 
 

(no explicit function given) 
 

            
[75] ↑ w1 × (none)  HR+native           

  – w2 × (none)  HR–native (function 
incomplete) 

        

[46] ↑ 
 

job / pop × FL           
[45] ↑ 

 
job / pop × FL FC [FL]         
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[48] ↓ 
 

devGDP / job × FL FT TL        
↓ or ump / job × FL FT TL       

[49] ↑ 
 

job / pop × FL           
[50] ↑ 

 
job / devGDP × FL FC [FL] FT QT [TM] TM   

[07] ↕  (+/−) hrs × QP [FL,FT,PT]           
[13] ↑  hrs × FL [FT] QR [PT,SU] QP [PT,FT] QT [PT]     
[14] ↓  ldd × FT           
[25] ↓  ldd × FL [FT] QP [FL,FT] QT [FL] QU [FL]     
[78] ↓  ldd × FL           
[32] ↑  job × FL [FT]           

  – ldd × FL [FT]           
[44] ↑  job × FL QP [PT,FL] QT [FL]       

  – ldd × QP [PT,FL] QT [FL]     
  + (none)  TLvehicles           

[65] ↑  job × FL [FT] FC [FL,FT]         
  – ldd × FL [FT] QP [FL]         

[66] ↑  job × FL [FT] QP [FL,FT,PT]         
  + (none)  HR+      
  – ldd × FL [FT]           

[36] ↑ w1 × job × QP           
  + w2 × 1 / devGDP × QP           

[21] ↑ w1 × job × FL [FT] QP [FL,FT] QT [FL] QU [FL]     
  − w2 × ldd × FL [FT] QP [FL,FT] QT [FL] QU [FL]     

[68] ↑ w1 × job × FL QP [FL,FT] QT [FL] QU [FL]     
  − w2 × ldd × FL QP [FL,FT] QT [FL] QU [FL]     

[71] ↑ w1 × job × FL [FT] QP [FL,FT] QT [FL] QU [FL,FT]       
− w2 × ldd × FL [FT] QP [FL,FT] QT [FL] QU [FL,FT]     

[72] ↑ w1 × job × FL QP [FL] QT [FL] QU [FL]     
  − w2 × ldd × FL QT [FL] QU [FL]       

[81] ↑ w1 × job × FL [FT]             
− w2 × ldd × FL [FT,PT] 

     
  

− w3 × haz × QP [FT,PT]           
[58] ↑ w1 × job × FL [FT]              

− w2 × ldd × FL [FT] 
     

  
− w3 × haz × QP [FT] 

     
  

− w4 × was × QP [FT]           
[29] ↑ w1 × job × ump × FL [FC,SU]             

+ w2 × ecv × (1 – dev) × FL [FC,SU]           
[87] ↑ w1 × job × ump × FL             

+ w2 × ecv × (1 – dev) × FL           
[88] ↑ w1 × job × ump × FL [FC]           
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+ w2 × ecv × (1 – dev) × FL [FC]           

[59] ↑ w1 × job × ump × FL [FC,FT]             
+ w2 × ecv × (1 – dev) × FL [FC] 

     
  

− w3 × ldd × FL [FT] 
     

  
− w4 × haz × QP [FT]           

[91] ↑ w1 × job × ump × FL              
+ w2 × ecv × (1 – devGDP) × FL  

     
  

− w3 × ldd × FL [FT] 
     

  
− w4 × haz × QP [FT]           

[04] ↑ w1 × ump × pop × QT [FL]             
+ w2 × 1 – dev × QT [FL] 

     
  

+ w3 × 1 – sec × QT [FL] 
     

  
+ w4 × 1 / med × QT [FL] 

     
  

+ w5 × 1 / edu × QT [FL]           
[31] ↑ w1 × ecv × QP [PT]             

+ w2 × (none) 
 

QU [PT] 
     

  
+ w2 × 1 / dem × QT 

     
  

+ w3 × socEPR × FL 
     

  
+ w4 × socEP × FL           

[03] ↑ 
 

socMCDM × FL QT [TM]         
[06] ↑ 

 
socMCDM × FT [FL]           

[17] ↑ 
 

socMCDM × FL           
[20] ↑ 

 
socMCDM × FL [FC]           

[35] ↑ 
 

socMCDM × QR [FL,SU] QP [FL] QT [FL,TM]       
[37] ↑ 

 
soc × QT [FL]           

[38] ↑ 
 

socMCDM × QR [PT,SU] QU [FL,PT]         
[64] ↑ 

 
sat × SU [PT] TL [TM]         

[76] ↑ 
 

socMCDM × FL [FC] 
 

        
[79] ↓ 

 
nuimax – nuidis × FL           

[82] ↑ 
 

socMCDM × QT [FL]           
[83] ↑ 

 
socMCDM × FL SU         

[84] ↑ 
 

sat × QU           
[22] ↑ 

 
(no explicit function given) 

 
            

[11] ↓ 
 

dem – QT           
[16] ↓ 

 
(none) 

 
QT             

/ (none) 
 

QP           
[28] ↑ 

 
(none) 

 
QT           

[52] ↓ 
 

(none) 
 

QR (from palm soil) – QR (from food 
soil) 

        

[78] ↓ 
 

dem  – QT           
[89] ↑ 

 
(none) 

 
QT           
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[33] ↓ 
 

pop × nui / dis × QT           
[67] ↑ 

 
cost / dis × QR [PT,SU] QP [FL,PT] QT [FL,PT]         

+ jobrequired × costwages × QP [FL]           
[80] ↓ w1 × (ump – job) × costunempl × FL           

  + w1 × job × costimmigration × FL      
  + w1 × costcargo × QT1      
  + w2 × costcargo × QT2           

[56] ↑ 
 

(none) 
 

FL           
[47] ↑ 

 
1 / devGDP × FL            

↑ or ump × FL           
[77] ↓ 

 
popdis × nui × FL [FT]           

[24] ↑ 
 

dis × FL           
[84] ↓ 

 
dis × QT           

Appendix 6. Social constraints 

Article Term  Constraint Primary objective(s) 

[10] job × QU ± slack = job goal ↓ total costs, ↓ emissions 
[54] job × FL [FT] ≥ lower limit for job ↑ profit  

ldd × FL [FT] ≤ upper limit for ldd   
[18] socMCDM,deviation × QT [SU] ≤ socMCDM,deviation × dem ↓ total costs 
[26] socMCDM × FL [FC] ≥ lower limit for soc ↓ total costs 
[27] socMCDM × FL [FC] ≥ lower limit for soc ↓ total costs 
[34] soc × FL [FC, PT] ≥ lower limit for soc ↑ profit 
[30] QT1G bioethanol ≤ QTtotal × upper limit (%) ↑ profit 
[90] QT = dem ↑ profit, ↓ unrecoverable material + consumed 

energy, ↓ amount of hazardous waste, ↑ recovered 
materials & energy, ↓ pollution 

[57] devGDP × FL ± slack = social goal ↓ total costs, ↓ emissions 
[08] (no explicit equations given)   ↓ total costs 
[12] (no explicit equations given)   ↓ total costs 
[15] (no explicit equations given)   ↑ profit + environmental credit 
[19] (no explicit equations given)   ↓ total costs 
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