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ABSTRACT

Automatically classifying bird species by their sound signals is of
crucial relevance for the research of ornithologists and ecologists.
In this study, we present a novel framework for bird sounds
classification from audio recordings. Firstly, the p-centre is used
to detect the ‘syllables’ of bird songs, which are the units for the
recognition task; then, we use our openSMILE toolkit to extract
large scales of acoustic features from chunked units of analysis (the
‘syllables’). ReliefF helps to reduce the dimension of the feature
space. Lastly, an Extreme Learning Machine (ELM) serves for
decision making. Results demonstrate that our system can achieve
an excellent and robust performance scalable to different numbers
of species (mean unweighted average recall of 93.82 %, 89.56 %,
85.30 %, and 83.12 % corresponding to 20, 30, 40, and 50 species
of birds, respectively).

Index Terms— Bird Sounds, p-centre, openSMILE, ReliefF,
Extreme Learning Machine

I. INTRODUCTION

The regional activities and distributions of birds carry im-
portant information for ornithologists and ecologists measuring
the biodiversity changes in a local area, which functions as an
indicator to reflect the climate change [1] and habitat loss [2].
Classification of bird species by their sound singals could be a
superior or essential supplementary monitoring method compared
with traditional tools such as the telescope, specifically, when a bad
weather condition is taken into account. Ornithologists could study
the vocalisation of bird sounds for understanding of bird languages
and distributions [3]. Therefore, with the advancement of signal
processing and machine learning techniques, more work can be
done in this promising area. Some early works were carried out by
Mcllraith and Card in 1997 [4]; they utilised backpropagation and
multivariate statistics to get a performance ranging from 82 % to
93 % correct accuracy with 6 species of birds native to Manitoba.
Kogan and Margoliash adopted Dynamic Time Warping (DTW) and
Hidden Markov Models (HMMs) to conduct a comparative study on
automatic bird song recognition [5]. This method was not suitable
when considering a noisy environment or with a short duration
of bird sounds. A harmonic structure modelling technique was
presented to be effective for classification of bird sounds in [6] and
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their approach appears computationally efficient. Different kinds of
modelling and feature descriptor comparisons were considered by
Chen et al. [7], Somervuo et al. [8], Selin et al. [9], and Lee et al.
[10].Their results demonstrated a good performance in classification
of some numbers of bird species by their sounds (accuracy rates are
ranging from 70 % to 95 %). Ranjard and Ross considered varying
characters of ‘syllables’; therefore, they introduced a method based
on unsupervised learning to analyse bird song evolution at different
levels [11]. Large numbers of bird species were tested in the
study by Lopes et al. [12]. They compared different classifiers
with the same task of classification of bird sounds and scalable
influence of classes (bird species) was evaluated. Neal et al.
proposed an efficient method to detect syllables of bird sounds
from noisy acoustic environments [13]. Graciarena et al. studied
the unsupervised approach to obtain approximate note models from
acoustic features extracted from bird sounds [14].

However, the works above are mainly focused on a limited scale
of acoustic features and species less than 30 except [12], [14].
More recently, benchmark campaigns are further given, e.g., by
the LifeCLEF Bird Identification Task [15]. This year, the work by
Tan et al. proposed an algorithm that involved DTW and two passes
of sparse representation (SR) classification [16], aiming to ease the
problem by annotation of a large scale number of bird sounds.
Related to our prior work in general acoustic event detection [17],
[18], [19], we focus on the area of bird sounds classification in
this paper. In our study, we evaluate a novel intelligent system for
classification of up to 54 species of birds totally from a public
database [20]. The main contributions of this paper are: 1) the p-
centre [21] is used for detection of ‘syllables’ from bird sound
audio recordings; 2) the openSMILE toolkit [22] is used to extract
a large acoustic feature set; 3) Extreme Learning Machines (ELM)
[23] with the ReliefF algorithm [24] are introduced for machine
learning to classify bird sounds. In the following, we describe our
framework and methods in the next section. Then, we show the
experimental results in Section Il and draw conclusions in Section
V.

II. FRAMEWORK AND METHODS

We separate our framework into the following parts: detec-
tion and segmentation of syllables (units) from audio recordings,
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Fig. 1. Setting the threshold for syllable detection by p-centre.

acoustic feature extraction from the units, feature space dimension
reduction, and classifier training and modification.

II-A. Detection of syllables by p-centre

Similar to human speech, bird sounds consist of syllables [10],
and the time durations vary from tens to hundreds of milliseconds
[8]. As the basic elementary unit for further machine learning,
syllables were detected by the p-centre tool, which originated in
speech processing [25]. The p-centre is based on a low frequency
(LF) signal filtering process, which makes it possible in the Fourier
transform to estimate the values of entropy, the average frequency,
and the centroid with the rhythmic envelope [25]. Compared to
some classifier based methods (e. g., [13], where a Random Forest
classifier was involved), p-centre based detection needs no data
training phase and can be adaptive for individual audio recording
conditions (e. g., the quality of audio signals, the background noise
level, and the specific bird sound characters, etc.). We adopt the
p-centre in our framework for the further need to process larger
scales of data, rather than employing methods based on a classifier
or a background noise-level estimation [8] for efficiency reasons
and demonstrate its suitability and potential to this end.

The p-centre represents the prominent part of the audio signal
as Figure 1 shows. We realise the required threshold setting by
the p-centre, where the threshold could adaptively detect the bird
song syllables within an audio recording. The audio recordings we
consider are all in comparably high quality (the field noise and
background interferences are in a low level condition); therefore,
the threshold is set to be 1/9 (see Figure 1). To avoid some mis-
taken frames (e. g., some sudden background noise or interference
episodes), we adopt a consecutive frames detection step (mentioned
in our previous framework for snore related signals detection [26])
for this p-centre based detector. One sees in Figure 2 (a) there
are still some missing parts both in the start and end point of the
syllables, but the main energy parts of the syllables (see Figure
2 (b)), which could carry important information for distinction of
bird vocalisations, are retained in the segmented episodes. Similar
to the performance known in speech processing, by p-centre one
can detect small units from bird sounds.
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Fig. 2. (a) Examplary detection of syllables by a p-centre-based
detector from a bird sound audio recording. (b) Corresponding
spectrogram to the example in (a).

Table 1. Acoustic feature sets used in our experiments: Low-Level
Descriptors (LLDs) and respective functionals.

LLDs (16) Statistical functionals (12)

MFCC 1-12  max, min, range, maxPos and minPos

RMS Energy  (absolue position of maximum/minimun

7ZCR value in frames), arithmetic mean, slope,

FO offset and quadratic error for a linear approxi-
HNR mation, standard deviation, skewness, kurtosis

II-B. Large acoustic feature space extraction

The typical machine learning in audio analysis reliecs on a
compact, yet meaningful feature basis. Thus, acoustic features of
bird sounds need to be extracted reflecting characteristics for the
distinction of bird species [3]. Our open source toolkit openSMILE
[22] is able to extract large spaces of acoustic features from units
of analysis. We adopted the mature and frequently-used INTER-
SPEECH 2009 Emotion Challenge feature set [27], which contains
384 features as statistical functionals applied to low-level descrip-
tors (LLDs). It includes the mel-frequency cepstral coefficients
(MFCC) 1-12, the zero-crossing-rate (ZCR) of the time signal, the
root mean square (RMS) frame energy, the pitch frequency (FO,
normalised to 500 Hz) and the harmonics-to-noise ratio (HNR) by
autocorrelation function. Detailed information about the features is
given in Table 1. For each of these, the delta coefficients are also
computed, therefore, the whole number of attributes per feature
vector is 16x12x2 = 384. To our knowledge, existing research
in bird sounds classification rarely uses larger spaces of acoustic
features. While larger feature sets are available in openSMILE, the
chosen one appears promising for the particular target task.

II-C. ReliefF algorithm for feature selection

Feature selection can be essential prior to the further machine
learning [28]. In our case, we choose a the ReliefF algorithm
for feature selection over reduction such as by PCA to retain the
original features’ physical meanings, which are significant for us
in the further study. The ReliefF algorithm [24] was found efficient
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for feature selection in our previous works [26] and [29]. It gives
the ranking weights W, of the ith feature evaluated by an iterative
process described in [30]. Here, we calculate the contribution rate
as follows:
. S5
contribution rate = = o1 (1)
2is1 Wo
where W represents the descending sorted weights of features
who give positive ranks for the subsequent machine learning, as
evaluated by ReliefF. According to the the set of contribution rates,
we select m features to obtain a subset of the original features.

II-D. Extreme Learning Machine (ELM)

The Extreme Learning Machine (ELM) has been demonstrated
to provide high accuracies while remaining efficient as a classifier
[23]. It has repeatedly been reported that it can achieve a higher
recognition rate while being less time consuming when compared
to similar classifiers such as Support Vector Machines (SVMs) or
‘conventional” Neural Networks [23]. This fast and accurate method
has been used widely in recent works [31], [32]. The ELM is
a feedforward neural network with a single hidden layer, which
randomly assigns the weights and biases of the nodes. The core
idea of ELM can be simply described as a Three-Step Learning
Model [23], in which the first layer (the input layer) with hidden
node parameters is assigned randomly its values, thus allowing it
to be regarded as an unsupervised feature mapping process [32].
Then, the hidden layer output matrix:

h(x1)
h(x2)

. @
h(xN)

is calculated. Finally, the output weights B are calculated. The
output matrix can be thought to be ‘subjective’ to a supervised
learning procedure [32]. The prediction of x is given by Y = h(x)3,
and the class with the maximum score in Y will be selected in
multi-class classification [23], [31].

Due to the limited size of our training database, learning algo-
rithms based on gradient descent will tend to converge to highly
suboptimal solutions; however, an ELM can help overcome this
effect by the use of a least squares constraint [31]. Thus, it is
reasonable to choose an ELM for learning in our case rather than,
e.g., a Deep Neural Network (DNN), which is rather suitable for
large scales of data for training [33]. Detailed information and
the theory of ELMs is provided in [23], which is beyond the
scope and aim of this paper. Here, we simply propose some basic
parameters in our ELM modelling: the number of hidden nodes are
empirically selected (from 5 to 50000) as 30 000, and the activation
function ‘radbas’ [23] is chosen for its superior performance in our
experiments.

ITII. RESULTS AND DISCUSSIONS

The dataset considered stems from a public bird sound database
[18], which includes sound recordings from a total of 54 species

Table II. Mean UAR and Accuracy of different classifiers for 54
species of birds with all features.

Classifiers UAR %  Accuracy %
ELM 73.04 80.09
SVM 70.76 77.93
Ensemble 62.56 71.13
kNN 53.11 63.660

of birds. Among the audio recordings, half of them are at a
sampling rate of 44.1 kHz and the others are at 22.05 kHz. All files
are 16bit encoding and mono-channel. To avoid the impairment
of audio quality, we make no changes of the original sampling
rate. The time duration of the whole recordings is 1577.2 seconds
(around 27 minutes, the maximum length is 237.6 seconds and
the minimum is 3.3 seconds). The p-centre selected 2 135 syllables
(units) totally for our training and testing sessions, in which the
mean number of syllables is 39.54, with a maximum number of
326 and minimum number of 2. This is not a big database for
bird sounds, however, it is sufficient to prove the feasibility and
robustness of our framework, specifically, the numbers of bird
species is 54 in total, which makes it a difficult classification
task with several different targets related to the small scale of the
dataset. We will gradually modify our system to different scales
of bird sounds of consideration. Due to the limited number of
training and testing syllables, we utilise a 10-fold cross validation
strategy to make full use of this data. Also considering the different
numbers of the syllables corresponding to each kind of birds, we
conducted our evaluation method as unweighted average recall
(UAR), which represents the accuracy in a dataset with equal class
priors. This is especially important in our case where the class
distribution is imbalanced and high accuracy could be achieved by
picking the majority class. It is calculated by the sum of recall-
values (class-wise accuracy) for all classes divided by the number
of classes. This is the standard measure of the INTERSPEECH
Computational Paralinguistics Challenge series [34]. In addition,
we provide the accuracy (weighted) as complimentary results to
evaluate the efficiency of our system.

In a first experiment, we compare the performances of different
frequently-used classifiers (e. g., SVM, Ensembles, kANN) with the
proposed ELM-based classifier. The results of the 10-fold cross
validation by mean UAR and accuracy are shown in Table II. Here,
we use the following parametrisation: A one-versus-one multi-
class SVM training; Bagging Decision Trees with 10 trees; the
numbers of Nearest Neighbors, namely k. is set to be 10. It can be
seen in Table II that ELM outperforms the frequently used SVM,
a Tree-Ensemble, and a ANN classifier in our experiment. With
feature selection, the ELM could achieve an enhancement of its
UAR and accuracy: In our study, the ELM with ReliefF could
improve by nearly 10 % absolute (from 73.04 % to 83.71 %) when
compared to the baseline of only ELM training. The trend of mean
UAR (with 54 species of birds) corresponding to different feature
numbers (percent in total feature numbers) decided by the ReliefF
algorithm is illustrated in Figure 3. It appears intuitive that, with the
reduction of redundant features, the classifier could achicve a better
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Fig. 3. Mean UAR (10-fold cross validation) with different feature
numbers selected by the ReliefF algorithm.
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Fig. 4. UAR for different numbers of bird species by 10-fold cross
validation.

performance in classification. We obtained higher than 85 % mean
UAR with less than 50 features (less than 15 % of the total feature
number, with a contribution rate of 0.55, shown in Figure 3). We
set the target feature number by the ReliefF algorithm by ranging
the contribute rate from 0.1 to 1.0 (step length is 0.05). For better
visibility, we only present part of these results in Figure 3). Note
that, the contribution rate at 1.0 (not seen in Figure 3) is the
representation of all positive ranked features [24]. Figure 4 gives the
results of UAR (maximum, mean, and minimum values of the 10-
fold cross validation) of the ELM-based classifier with the ReliefF
algorithm for different numbers of species of birds (ranging from
5 to 54). It can be observed that, our proposed system obtains a
high performance with species below 45 (mean UAR from 85.30 %
to 93.82 %). The results remain comparably high with the number
of species of birds ranging up to 50 (83.12 %) and 54 (83.71 %)
in total. Table III gives both, the mean UAR and Accuracy for 10,
20, 30, 40, 50 and 54 species of birds, which proves the efficiency
of our framework. In our study, we found that MFCC and ZCR
related attributes are ranked as highly contributing features.

IV. CONCLUSIONS

In this study, we propose a novel framework for automatic classi-
fication of bird sounds, which is composed of a p-centre detector, a
larger space feature extraction and corresponding feature selection
(ReliefF), and a state-of-the-art efficient machine learning classifier

Table III. Mean UAR and accuracy for different species of birds
(randomly selected).

Species UAR %  Accuracy %
10 90.74 94.71
20 93.82 9391
30 89.56 89.56
40 85.30 89.03
50 83.12 85.60
54 83.71 80.57

— an extreme learning machline. We firstly utilised p-centre for
segmentation. Then, with our openSMILE toolkit, we extracted a
larger scale of acoustic features from bird sound syllables as units.
Compared to the traditional state feature sets, this kind of statistic
feature set applies functionals to Low-Lever Descriptors. After that,
the feature selection phase improved the baseline of the trained
classifier with a 10 % baseline enhancement and more than 85 %
of the features reduced. The ELM has been chosen as classifier due
to its fast and accurate performance. We compared the mean UAR
and accuracy with often seen alternatives such as SVM, a Tree-
Ensemble, and NN — the results show the superior ability of the
ELM. Overall, the experiments have demonstrated the efficiency of
our methods and its robustness is shown by increasing the number
of bird species (a maximum of 54 achieving a mean UAR of
83.71 %). In future studies, we will consider much larger datasets
for our system training (up to several 100s of bird species with
longer time durations of the audio recordings). Also, we will take
low quality audio environments (with noise and field interference as
well as presence of other species) into account, which is practical
for real life use. In addition, a deeper investigation on the relevance
and suitability of specific acoustic features which make a significant
contribution to the distinction of the bird species is worth to explore,
which could be helpful for ornithologists to conduct research related
to the bird vocalisation mechanism and bird species evolution
history.
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