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ABSTRACT
We present a system for identifying humans by their walking
sounds. This problem is also known as acoustic gait recog-
nition. The goal of the system is to analyse sounds emitted
by walking persons (mostly the step sounds) and identify
those persons. These sounds are characterised by the gait
pattern and are influenced by the movements of the arms
and legs, but also depend on the type of shoe. We extract
cepstral features from the recorded audio signals and use
hidden Markov models for dynamic classification. A cyclic
model topology is employed to represent individual gait cy-
cles. This topology allows to model and detect individual
steps, leading to very promising identification rates. For ex-
perimental validation, we use the publicly available TUM
GAID database, which is a large gait recognition database
containing 3 050 recordings of 305 subjects in three varia-
tions. In the best setup, an identification rate of 65.5% is
achieved out of 155 subjects. This is a relative improvement
of almost 30% compared to our previous work, which used
various audio features and support vector machines.
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1. INTRODUCTION
Recognising people by the way they walk (also known as gait
recognition or gait-based person identification) is a relatively
new field of research. Most of previously studied methods
work in the visual domain, where this topic is an active field
of research since the last decade [15]. However, acoustic in-
formation can also be used for gait recognition. Even though
the focus on this modality has so far been significantly less,
results are promising. While in the visual domain, identifi-
cation systems can rely on analysing the silhouette [21], the
task is much more difficult for systems working only with
audio information. The relevant information which can be
exploited by such systems consists not only of the sounds of
the steps, but also adjacent sounds produced by the clothes
of moving arms and legs. These sounds are influenced by the
gait pattern of the walking person, making them suitable to
be used for person identification. Furthermore, the sounds
produced during walking are highly dependent on factors
such as the floor type, type of shoes and clothes.

In a user study [16], the potential of humans to recognise
others by their walking sounds was evaluated. After a train-
ing phase, twelve subjects were able to identify their co-
workers by their walking sounds with an accuracy of 66%.
This result shows that sounds produced by walking persons
convey characteristic information about the subject and can
thus be used for person identification.

Potential applications of gait-based person identification us-
ing audio information are smart homes for ambient assisted
living, indoor surveillance scenarios, or access control sys-
tems. Such an audio-based system can be used to enhance
visual surveillance and facilitate multimodal approaches. As
compared to video-based person identification, acoustic sys-
tems will also work in the darkness, require less expensive
hardware and often lower sensor density and are less obtru-
sive. Acoustic gait-based person identification is also known
as acoustic gait recognition.
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1.1 Contribution
The contribution of this paper is a system for acoustic gait-
based person identification that is based on hidden Markov
models (HMMs). To our knowledge, this is the first time
that HMMs are applied for this task, albeit they have been
used for video-based gait analysis before [12, 3]. We use Mel-
frequency cepstral coefficients (MFCCs) as audio features
and HMMs with a cyclic topology for dynamic classifica-
tion, in order to model the dynamics of gait patterns. With
the cyclic topology, one pass through the model corresponds
to a half gait cycle containing one step. Thus, the system is
capable of detecting the individual steps in a recording and
using them for person identification. Experiments are con-
ducted using the TUM GAID corpus, which contains 3 050
recordings of 305 subjects in three walking variations in a
realistic setup. The recognition system is trained with nor-
mal walking style recordings and evaluated on other record-
ings of normal walking style as well as variations including
a backpack and shoe covers. Our experimental results show
that the developed system is capable of achieving excellent
recognition rates compared to previous work.

1.2 Related Work
The most-widespread approach for video-based gait recog-
nition is the Gait Energy Image (GEI) [6], which is a sim-
ple silhouette-based approach. It can be combined with
face recognition [9] or with depth information [7]. Further-
more, model-based approaches have been proposed for visual
gait recognition [23]. Besides using video or audio informa-
tion, other methods to identify walking persons include us-
ing acoustic Doppler sonar [13] or pressure sensors in the
floor [24].

Using audio information for the task of gait-based person
identification is a relatively new research field. In [19], foot-
step sounds were detected in a corpus of various environmen-
tal sounds. A system for person identification using footstep
detection was introduced in [20]. The system was tested with
a database of five persons. This work was extended in [10]
by adding psychoacoustic features such as loudness, sharp-
ness, fluctuation strength and roughness. Finally, in [11],
dynamic time warping was used for classification and the
database was extended to contain ten persons. The system
achieves almost 100% perfect classification rates (using ten
persons). However, the task is simplified by reducing it to
classification of pre-segmented footsteps. A similar task is
addressed in the recently published study by Altaf et al. [2].
There, a database of segmented footstep sounds from ten
persons is used. Instead of extracting spectral features, the
shape and properties of a footstep sound are examined in
a temporal energy domain. As a result, an identification
accuracy above 90% is achieved by using a large number
of footsteps during testing. When using only three con-
secutive footsteps, which is more comparable to our work,
an accuracy of 45% is obtained. Other studies on acous-
tic gait-based person identification were presented in [4, 1].
The weakness of all previous studies about acoustic gait-
based person identification that are mentioned here is the
fact that only small databases (mostly no more than ten
subjects) that are overly prototypical have been employed.
In addition, very often, classification is performed using pre-
segmented footsteps. In our previous work [8], we investi-
gated the potential of spectral, cepstral and energy-related

(a) Normal
recording

(b) Backpack
recording

(c) Shoe cover
recording

Figure 1: Screenshots of three recordings in the TUM GAID
database

audio features in combination with support vector machines
(SVM) for acoustic gait-based person identification. This
work was continued in [5], where a feature analysis method
was used to select relevant audio features. In [22], we had
also employed cyclic HMMs, for animal sound classification.
The cyclic model topology proved to be efficient to model
the repetitive structure of these sounds.

The remainder of this paper is structured as follows: In Sec-
tion 2, we introduce the TUM GAID database which is used
in the experiments. The employed system is described in
Section 3, followed by the experimental setup and results in
Section 4. Some concluding remarks are given in Section 5.

2. THE TUM GAID DATABASE
For our experiments, we use our freely available1 TUM Gait
from Audio, Image and Depth (GAID) database [8]. The
motivation behind the TUM GAID database is to foster re-
search in multimodal gait recognition. Therefore, data was
recorded with an RGB-D sensor, as well as with a four-
channel microphone array. Thus, a typical colour video
stream, a depth stream and an audio stream are simulta-
neously available. The database contains recordings of 305
subjects walking perpendicular to the recording device in
a 3.5m wide hallway corridor with a solid floor. In each
recorded sequence, the subject walks for roughly 4m, typ-
ically performing between 1.5 and 2.5 gait cycles (each of
them consisting of two steps). Most of the sequences have
a length of approximately 2 – 3 s. Three variations are
recorded for each subject: Normal walking (N ), walking
with a backpack (B), and walking with shoe covers (S).
For each subject, all recordings of the N condition were
recorded directly after each other. This means that the same
shoes and clothes are used, which corresponds more to a re-
identification scenario. The backpack constitutes a signifi-
cant variation in gait pattern and sound, and the shoe covers
pose a considerable change in acoustic condition. Figure 1
shows screenshots of the three different walking conditions
for one subject. For each subject, there are six recordings
of the N setup, and two each of the B and S setups. This
sums to a total number of 3 050 recordings. The metadata
distribution of the database is well-balanced with a female
proportion of 39% and ages ranging from 18 to 55 years
(average 24.8 years and standard deviation 6.3 years). More

1www.mmk.ei.tum.de/tumgaid
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Development Test
(150 subj.) (155 subj.)

N1 – N4 Enrollment Enrollment
N5 – N6 Identification Identification
B1 – B2 Identification Identification
S1 – S2 Identification Identification

Table 1: Partition of the TUM GAID database

than half of the subjects are wearing sneakers while other
commonly-used types of shoes are boots and loafers.

To allow for a proper scientific evaluation and to prevent
overfitting on the test data, the database is divided into
a development set and a test set. The two sets are person-
disjunct and contain 150 and 155 subjects, respectively. Both
for the development and for the test set, the first four N

recordings of each subject are used for the enrollment pro-
cess. The other two N recordings as well as the B and
S recordings are used to perform the identification experi-
ments. This means that models are learnt only using the N

recordings, while the B and S conditions constitute previ-
ously unseen variations during the identification experiments
and will therefore deteriorate the identification performance.
The partition of the database is shown in Table 1.

3. SYSTEM DESCRIPTION
We use an HMM system for classification. Each individual
subject is modelled by one HMM. While we started with us-
ing system settings from a simple word-based speech recog-
nition system, we modified and improved the system prop-
erties to fit to the problem of acoustic gait recognition.

3.1 Audio Features
In our previous work we focussed on exploring the suitability
of different audio features for the problem of acoustic gait-
based person identification [5]. Using SVMs for classifica-
tion, we evaluated different feature sets containing MFCCs
and other spectral or energy-related features. Since SVMs
are relatively robust (in contrast to HMMs) with regard
to the number of employed features, we were able to im-
prove the average identification accuracy (on the test set
of the TUM GAID database) from 23.9% (only MFCCs)
to 28.2% by adding and selecting relevant features. In the
present work, the focus is not on the front-end processing
but rather on the back-end recognition system. Therefore
we keep the front-end fixed to using only MFCCs. We use
MFCC features in the standard configuration: MFCCs 0–12
including their delta and acceleration coefficients, computed
every 10 ms from a 25 ms Hamming window, resulting in 39
features in total. While the database provides four-channel
audio recordings, we extract features from monaural record-
ings, which are obtained by averaging over the four chan-
nels. In addition, we obtained slight improvements by pro-
cessing the audio features with principal component analysis
(PCA), without reducing the number of components. Here,
the transformations are computed only on the enrollment
data, and applied on both the enrollment and identification
data.

Figure 2 shows the spectrograms and corresponding first

Figure 2: Spectrograms (top) and corresponding first MFCC
coefficients (bottom), each, for a normal-type recording of
two different subjects. Temporal position of footsteps is
marked with a vertical line.

MFCC coefficients for two exemplary recordings (N setup)
of two different subjects. The spectrograms reveal a consid-
erable static background noise, which is due to the record-
ing environment. Several spectral peaks can be identified
which correspond to the footsteps and the sounds between
the steps, which are mostly made by the legs of the trousers
or skirts rubbing against each other. In the plot of the
MFCCs, the temporal position of the steps are marked. The
behaviour of the MFCC features indicates that they are use-
ful to detect the position of the steps and to distinguish
between different persons.

3.2 HMM System
Our starting point is a simple HMM system that can be
compared to a whole-word recognition system (each person
representing one word) in speech recognition. Each sub-
ject in the dataset is represented by an HMM. The models
are equipped with a linear left-right topology. With such
a model topology, the HMM has to pass through all of its
states sequentially without skipping a state. Before intro-
ducing an appropriate step modelling method, which will
be described in the next subsection, we apply an approach
where each recording containing several steps is modelled by
one pass through an HMM. As a result, rather large numbers
of states (generally more than ten) are required to be able
to model the dynamic sequence of sounds during walking.

In a standard HMM system, the observations are modelled
with a mixture of Gaussians. However, our first experiments
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showed that the best results are obtained by using HMMs
with a single Gaussian state model, as the amount of training
data is very small and hence probably not sufficient to train
a more fine-grained distribution of the features. Another
reason could be that a higher number of components leads
to overfitting, modelling also the noise in the recordings.

During decoding, a grammar controls the possible recogni-
tion output. Our most simple employed grammar follows the
basic HMM system setup where exactly one pass through a
model is allowed for each recording. A multi-step grammar
is then introduced to let the system automatically segment
the recording: Any number of repetitions of the same model
(subject) is allowed. In order to train the HMMs to model
the separate steps, an approach using a cyclic HMM topol-
ogy is employed as described in the following.

3.3 Step Modelling
To be able to model the individual steps in each record-
ing, we use cyclic HMMs. In our basic HMM system, each
recording (containing several gait cycles) is modelled by one
pass through the HMM. The strategy of representing each
gait cycle separately by one pass through all states of the
HMM is better suited to model the observations. We con-
sider the two halves of each gait cycle to be equivalent (al-
though in fact, there is a person-dependent assymetry [17]),
and therefore the system is designed to model half a gait
cycle (containing one step) by each HMM. In this way, one
pass through the HMM models the sounds of one step and
adjacent sounds (produced by the moving arms and legs).
This method of step modelling is implemented in the system
configuraton and training in the following way: The state
transition matrix of each HMM has a left-right topology,
and jumps from the last state to the first state are allowed.
Models are trained with embedded re-estimation, where the
number of steps is known (as determined by simple video
processing methods). As a result, the position of the steps
in the training data is automatically estimated during model
training. Together with the introduced multi-step decoding
grammar, the developed system is then capable of detect-
ing, segmenting and recognising the steps occurring in the
recordings.

4. EXPERIMENTS
Experiments are performed with the TUM GAID database
that was described in Section 2, using the development set
for system design and tuning. Finally, we use the test set to
evaluate our best system configuration. For all systems eval-
uated using the development set, 15 HMM states appeared
to be the optimal configuration. In addition, the best results
were obtained with six training iterations. For each system
setup, we report experimental results (identification accu-
racy) separately for the three different recording conditions
(normal, backpack, shoe covers). In addition, the average
accuracy over these three conditions is included.

4.1 Development set
Table 2 shows the results on the development set for dif-
ferent system configurations. The basic HMM system with-
out explicit modelling of separate steps (cf. Section 3.2) is
the first evaluated system. In the normal recording con-
dition, slightly more than half of the testing samples are

Condition
Accuracy [%] N B S average

basic HMM 53.3 30.7 7.0 28.2
+ multi-step decoding 56.3 31.3 7.3 31.6

+ PCA 57.7 34.3 9.7 33.9
+ step modelling 69.7 44.7 9.3 41.2

Table 2: Development set (150 subjects) evaluation of dif-
ferent audio features, for the normal (N ), backpack (B) and
shoe cover (S) recording conditions.

classified correctly. Averaging over the three different con-
ditions, an accuraccy of 28.2% is obtained, which serves as a
baseline for further experiments. The first step towards the
improved recognition system is the introduction of a decod-
ing grammar which allows to recognise multiple sequential
instances of the same subject in the recordings. This mod-
ification improves the average accuracy to 31.6% (mostly
due to improvements in the N setup). Applying PCA to
the features improves the accuracy for all three recording
conditions. Training the system to model each step by one
pass through an HMM (cf. Section 3.3) leads to the largest
improvement in accuracy. In the normal walking condition,
more than two thirds of the samples are now identified cor-
rectly. The accuracy in the backpack walking condition is
also greatly improved, whereas the performance in the shoe
cover condition remains largely unaffected. While the im-
provements obtained with the multi-step grammar and PCA
are not significant, improved step modelling leads to a sig-
nificant improvement in the N and B conditions and for the
average accuracy (evaluated with a one-tailed t-test with a
significance level of α = 0.05).

With a simple analysis we examined the system’s ability to
correctly detect the individual steps. To this end, we use
the best-performing developed system (row four in Table 2).
For the test samples of the normal walking conditions, we
observe the number of steps detected by the system. The
average number of steps in these test recordings is 5.3, while
the system predicts 4.3 steps, on average. For correctly iden-
tified subjects, the average number of predicted steps is 5.0,
while for incorrectly identified subjects it is 3.5. This shows
that when the subjects are identified correctly, the step seg-
mentation works very well.

4.2 Test set
In Table 3, we show the results on the test set, for our base-
line system and the best system configuration. For com-
parison, we include our previously published results on the
same dataset. The first row shows results of a state-of-the-
art gait recognition method working with video data, namely
the GEI [8]. This method achieves almost perfect results in
the normal walking condition, while especially the backpack
and also the shoe variation constitute a real difficulty for the
system (59.7% on average). However, these results have to
be interpreted carefully, since the GEI utilises mainly the ap-
pearance (the silhouette of a person) and not the behaviour
(the gait pattern). Using a large set of different audio fea-
tures (1 625 static features per recording) and SVMs for clas-
sification (second row) was our first audio-domain baseline
system [8]. Naturally, the addressed task is much more dif-
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Condition
Accuracy [%] N B S average

video (GEI) [8] 99.4 27.1 52.6 59.7
baseline SVM [8] 44.5 27.4 4.8 25.6

SVM + feat. sel. [5] 51.9 28.4 4.2 28.2

basic HMM 41.0 24.2 7.1 24.1
improved HMM 65.5 36.5 9.0 37.0

Table 3: Test set (155 subjects) evaluation of our system
compared to our previously published results, for the normal
(N ), backpack (B) and shoe cover (S) recording conditions.

ficult when dealing only with audio data (average accuracy
25.6%). However, this system can compete with the GEI
in the backpack recording variation. In [5], we improved
the SVM system by employing a feature-selection technique
to chose relevant features for the task, obtaining an aver-
age identification accuracy of 28.2%. Now, with our basic
HMM setup, the resulting accuracy of 24.1% is comparable
to the baseline SVM system. The methods introduced in
this work (primarily modelling each step separately during
model training and decoding) are able to bring a large im-
provement, reaching 37.0%. In the N and B recording con-
ditions, the accuracy is improved significantly, by more than
one third. The accuracy of the video-processing method
(GEI) in the backpack recording condition is surpassed by
26% relatively. Compared to the previous best-performing
audio system (the SVM system including feature selection)
the average accuracy is improved by 24%, relatively (signif-
icant in all recording conditions).

5. CONCLUSIONS
We developed a model-based system for recognising people
from walking sounds. The system uses HMMs in a cyclic
topology to automatically segment the recordings according
to separate steps. Experiments were conducted using the
TUM GAID database containing recordings of 305 subjects
(150 in the development set and 155 in the test set) in three
different recording conditions: normal walking, walking with
a backpack, and walking with shoe covers. The results show
that a basic HMM system (without explicit modelling of sep-
arate steps) achieves a similar performance in comparison to
the SVM system presented in our previous work. Improving
the system with the methods introduced in this work results
in large performance gains in identification accuracy. With
this system, each half gait cycle is modelled by one pass
through a cyclic HMM. This covers the sound of one step
and adjacent sounds, which are mainly produced by moving
arms and legs. Thus, it is clear that the backpack or shoe
cover variation influence the identification performance in a
negative way. However, when identification experiments are
carried out with the same walking style and shoe type as the
model was trained with (normal walking condition), almost
two thirds of the subjects are identified correctly from the
test set containing 155 individuals.

Given the challenging but application-friendly enrollment of
only four examples per walking subject and in order to im-
prove the robustness of the system, adopting approaches
from speaker recognition like creation of models through
adaption from a background model [18] could be a promis-
ing strategy in the future. Furthermore, we will work on im-
proving the system’s robustness to variations. This includes
better coping with the backpack and shoe cover recording
conditions. In addition, the TUM GAID database contains
a set of subjects with recordings made on two different dates
in time (with three months in between). Therewith, the in-
fluence of changing types of shoes and clothes as well as
possibly higher variation of the walking style on the sys-
tem performance can be evaluated. In order to improve
the system in this direction, we want to test approaches to
address session variability known from speaker recognition
(such as joint factor analysis [14]) as well as methods for
model adaptation or feature transformation adopted from
speech recognition systems.
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