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Autoencoder-based Unsupervised Domain Adaptation
for Speech Emotion Recognition
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Abstract�With the availability of speech data obtained from
different devices and varied acquisition conditions, we are often
faced with scenarios, where the intrinsic discrepancy between
the training and the test data has an adverse impact on affective
speech analysis. To address this issue, this letter introduces an
Adaptive Denoising Autoencoder based on an unsupervised do-
main adaptation method, where prior knowledge learned from a
target set is used to regularize the training on a source set. Our
goal is to achieve a matched feature space representation for the
target and source sets while ensuring target domain knowledge
transfer. The method has been successfully evaluated on the
2009 INTERSPEECH Emotion Challenge�s FAU Aibo Emotion
Corpus as target corpus and two other publicly available speech
emotion corpora as sources. The experimental results show that
our method signicantly improves over the baseline performance
and outperforms related feature domain adaptation methods.

Index Terms�Adaptive denoising autoencoders, domain adap-
tation, speech emotion recognition.

I. INTRODUCTION

S PEECH emotion recognition aims to automatically predict
�correct� emotional states from acoustic (and/or linguistic)

parameters as features using machine learning methods. Many
speech emotion recognition engines achieve promising per-
formance only under one common assumption, namely that
the training and test data instances are drawn from the same
corpus and the same feature space for parametrization is used.
However, with speech data obtained from different devices and
varied recording conditions, we are often faced with scenarios
where such data are typically highly dissimilar in terms of
acoustic signal conditions, linguistic content, type of emotion
(e. g., acted, elicited, or naturalistic), or the type of labeling
scheme used, such as categorical or dimensional labels.
Automatic speech recognition (ASR) is faced with many sim-

ilar mismatch problems, and the speech community has done a
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considerable amount of the related work to alleviate this mis-
match problem. One major research direction focuses on lever-
aging auto-associative neural networks to minimize the mis-
match problem [1], [2].
One other prominent approach to overcome this �corpus

bias� issue is domain adaptation used when the source domain
data has a different distribution than the target domain data,
but the task remains the same. In general, domain adaptation
techniques are categorized into two classes depending on
whether the target domain test data is either partially labeled
(semi-supervised) or completely unlabeled (unsupervised). In
semi-supervised domain adaptation, correspondences of la-
beled target data are often used to learn domain transformations
[3]. However, unsupervised domain adaptation uses strategies
which assume a known class of transformations between the
domains, the availability of discriminative features which are
common to or invariant across both domains, a latent space
where the difference in distribution of source and target data
is minimal [4], and a mapping �path� by which the domain
transformation maps the source data onto the target domain [5].
Another popular approach for unsupervised domain adaptation
is known as importance weighting. This method has recently
been shown to lead to signicant improvements in acoustic
emotion recognition by Hassan et al. : they considered to
explicitly compensate for acoustic and speaker differences by
employing three transfer learning algorithms [6] (i. e., Kernel
Mean Matching (KMM) [7], Unconstrained Least-Squares Im-
portance Fitting (uLSIF) [8], and Kullback-Leibler Importance
Estimation Procedure (KLIEP) [9]).
Our work is partially inspired by [10], in which Support

Vector Machines (SVMs) are used to learn from the source
model by regularizing the distance between the learned
model and . Extending this idea to an unsupervised
scenario, we propose a novel three-stage data-driven approach
in this letter. It is based on adaptive denoising autoencoders
which can learn from a source training set with the guidance
of a template learned previously from target domain adaptation
data, which yields a common representation across training and
test domains.

II. PROPOSED METHODOLOGY

A. Denoising Autoencoders

A denoising autoencoder (DAE)�a more recent variant of the
basic autoencoder consisting of only one hidden layer�is trained
to reconstruct a clean �repaired� input from a corrupted version
[11]. In doing so, the learner must capture the structure of the
input distribution in order to reduce the effect of the corruption
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Fig. 1. A denoising autoencoder (DAE) architecture. An input is corrupted
(via ) to . The black crosses (� �) illustrate a corrupted version of the input
made by .

process [12]. It turns out that in this way more robust features
are learned compared to a basic autoencoder. The architecture
of a DAE is given in Fig. 1.
Formally, an input example is rst converted to a

corrupted version by means of a corrupting function
, which could be masking corruption (deleting random

elements of the input), additive Gaussian noise, or salt-and-
pepper noise in images.
Then, in response to the corrupted example , the hidden rep-

resentation is

(1)

where is a non-linear activation function, typically
a logistic sigmoid function applied component-wise,

is a weight matrix, and is a
bias vector. It is easily found that the topology structure of the
autoencoder completely relies on the size of the input layer
and the number of hidden units .
The network output maps the hidden representation back

to a reconstruction :

(2)

where is a weight matrix, and is a
bias vector.
Given a set of input examples , the DAE training consists of

nding parameters which mini-
mize the reconstruction error. This corresponds to minimizing
the following objective function:

(3)

Here, we also include a weight-decay regularization term with
its hyper-parameter to the objective function to avoid over-
tting. is the -th column vector of the -th layer weight
matrix . The minimization is usually realized either by sto-
chastic gradient descent or more advanced optimization tech-
niques such as L-BFGS [13] or conjugate gradient method [14].
In addition, a DAE has an overall asymptotic computational
complexity of with respect to the network size.

Fig. 2. Overview of the speech emotion recognition system integrating the pro-
posed domain adaptationmethod. The function �Encoder� refers to the feed-for-
ward procedure (i. e., Eq. (1)) from input data to the activations of the hidden
layer of a pre-trained DAE.

B. Learning with Target Prior via Adaptive DAEs

In this letter, we extend the idea for unsupervised domain
adaptation by using both a DAE and an adaptive DAE. The
aim is to capture source domain knowledge in training an adap-
tive DAE with the guidance of the prior knowledge previously
learned from target domain data by a DAE.
Fig. 2 depicts the affective speech signal analysis method

with the proposed domain adaptation method integrated. The
proposed method is composed of the following three stages:
First, a DAE is learned in a fully unsupervised way from the
target domain adaptation data, resulting in the weight matrices

(input to hidden layer) and (hidden to output
layer) from Eq. (3) as well as the bias vectors and .
Next, we propose a new variant of DAEs for domain adapta-

tion, called Adaptive DAE (A-DAE), which force their weights
to adapt to the provided weights as well as minimize the recon-
struction error between the input and the output at the same time.
The output bias vectors of the DAE are not adapted. Hence,
given a training example and the weights and

of a DAE, which were estimated without supervision
from the target domain adaptation data (i. e., without knowl-
edge of target labels), the objective function of an A-DAE is
formulated as follows:

(4)

where the hyper-parameter controls the amount of transfer
regularization. The weights and are initialized
randomly and learned during training, while the weights
and are kept constant during training.
Without loss of generality, the intuition of the adaptive DAE

for domain adaptation can be understood by expanding the
weight-decay regularization term:

(5)
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TABLE I
SUMMARY OF THE THREE CHOSEN AFFECTIVE SPEECH DATABASES

Number of instances per binary valence (# Valence, Negative (-), Positive (+)), and overall number (# All)�for FAU AEC divided into ofcial training and test

set by �/�. Number of female (#f) and male (#m) subjects. Recording conditions (studio/normal/noisy).

where is the angle between the two column vectors and
.
On one hand, apart from minimizing the original term

, the optimization problem aims to use the term
to make the transfer by maximizing

, which is equivalent to minimizing the angle between
the and . On the other hand, the term in the
objective function also causes to adjust to the training
data and prevents being close to . Thus, an adaptive
DAE training consists of optimizing a trade-off between the
reconstruction error on the training data and target domain
knowledge transfer.
Finally, we encode test data and training data via Eq. (1) using

the weights ( and ) learned by the adaptive DAE.
Then, this transformed representation of the training data is used
to train a standard supervised classier (e. g., SVM) for speech
emotion recognition as shown in Fig. 2, while the transformed
test data is used for evaluation.

III. EXPERIMENTS

A. Selected Data and Acoustic Features

To investigate the performance of the proposed method,
we consider the INTERSPEECH 2009 Emotion Challenge
two-class task [15]. It is based on the spontaneous FAU Aibo
Emotion Corpus (FAU AEC), which contains recordings of
51 children at the age of 10�13 years interacting with the pet
robot Aibo in German speech. The details of the challenge�s
two-class �negative� versus �idle� emotions task are given in
Table I.
In our experiments, two further publicly available and pop-

ular databases, namely the Airplane Behavior Corpus (ABC)
[16], and the Speech Under Simulated and Actual Stress
(SUSAS) database [17] are chosen as training sets, which are
highly different from the FAU AEC in terms of speaker age
(adults vs. children in FAU AEC), spoken language (English
vs. German in FAU AEC), type of emotion (partially acted
vs. naturalistic emotion in FAU AEC), degree of spontaneity
and phrase length, type of recording situation, and annotators
and subjects. For comparability with FAU AEC, we have to
map the diverse emotion classes onto the valence axis of the
dimensional emotion model in order to generate a unied set
of labels. Binary valence labels according to the mapping
shown in Table II are thus generated. Table I summarizes the
properties and statistics of the three databases (FAU AEC,
ABC, and SUSAS).

TABLE II
MAPPING OF EMOTION CATEGORIES ONTO NEGATIVE AND POSITIVE

VALENCE LABELS FOR THE THREE DATABASES

For acoustic features, we use a standard set in the eld,
namely the INTERSPEECH 2009 Emotion Challenge [15]
baseline feature set. It consists of 12 functionals applied to

acoustic Low-Level Descriptors (LLDs) including their
rst order delta regression coefcients. Thus, the size of the
feature vector for each utterance is . To ensure
reproducibility, the open-source toolkit openSMILE1 version
2.0 was used with the pre-dened challenge conguration.

B. Experimental Setup

As classier, we used linear SVMs�as were used in the of-
cial baseline of the challenge [15]�with a xed penalty factor of

.
For the training of the autoencoders the toolkit minFunc2 was

applied which implements L-BFGS to optimize the parameters
of DAEs and A-DAEs. For training of the DAE, we injected
masking noise with a variance of 0.01 to generate a corrupted
input. For the parameters of the DAE, the weight decay values
were set to 0.0001, the number of epochs of DAE training was

set to 250. In the A-DAE learning process, the hyper-parameter
was xed to 0.05.
We evaluate the performance of the baseline systems and the

A-DAE systems using the evaluation measure of the INTER-
SPEECH 2009 Emotion Challenge: unweighted average recall
(UAR). It is the unweighted average of the per-class recall rates
and better reects overall accuracy in the given case of class
imbalance.

C. Comparison to State-of-the-Art Methods

We compare the following methods to evaluate our pro-
posed approach in the context of the current state-of-the-art:
(1) Matched Instance Number Training (MINT): randomly
(repeated ten times) picks a number of instances from the FAU
AEC training set to train an SVM, i. e., without the need of
transferring to an intra-corpus scenario. For fair comparison,
this number is set by the number of training instances of the

1http://sourceforge.net/projects/opensmile/
2http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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TABLE III
AVERAGE UAR OVER TEN TRIALS: MATCHED INSTANCE NUMBER TRAINING (MINT), CROSS TRAINING (CT), COVARIATE SHIFT ADAPTATION METHODS KLIEP,

ULSIF, AND KMM, DAE-BASED REPRESENTATION LEARNING, AND THE PROPOSED A-DAE METHOD RELATED TO TRAINING WITH ABC AND SUSAS

the ABC or SUSAS sets, respectively. (2) Cross Training (CT):
uses ABC or SUSAS to train the standard (SVM) classier,
which is the �classical� cross-corpus testing, i. e., it involves no
adaptation. (3) KLIEP [8], (4) uLSIF [9], and (5) KMM [7]:
utilize the modern domain adaption methods on the ABC and
SUSAS database for covariate shift adaptation, respectively.
We choose the �tuning parameters� following [6]. (6) DAE:
employs denoising autoencoders for representation learning in
order to match training examples to test examples; this was
successfully applied to the transfer learning challenge and
domain adaptation [4], [18].
We study the cross-corpus setting with the number of hidden

units xed to 256 where we train acoustic emotion recognition
models on ABC or SUSAS while evaluating on the FAU AEC
test set (except the MINT condition that uses FAU AEC data
for training). We report results of the averaged UAR over the
ten trials in Table III. As can be seen, our approach always
shows a comparable performance to other approaches [4],
[7]�[9].
For the small database ABC, the two standard methods (CT

and MINT) only yield an average UAR around chance level
(55.28% and 58.32%). With the benets of compensation for
the existent mismatch, the covariate shift adaptation KMM
can achieve the accuracy of 62.52%. The proposed A-DAE
method outperforms all other methods with 64.18% UAR. This
improvement has a statistical signicance at with a
one-sided -test when compared to CT and MINT.
On the SUSAS database, our proposed method shows a

signicant improvement over other methods. Specically, the
A-DAE method gives an average UAR of 62.74%, which
is slightly higher than the maximum average UAR obtained
by MINT. Moreover, it passes the signicance test at

and against the CT and KMM methods,
respectively. In the mean time, it is worth noting that the
average UAR obtained by MINT increases dramatically to
62.42% just due to the larger size of SUSAS leading to more
instances being chosen from the FAU AEC training set in
comparison to ABC.

D. A-DAE vs. DAE

We now compare the A-DAE and DAE methods in detail.
In Fig. 3, we provide UAR for different numbers of hidden
units , where we observe performance changes for different
parameter settings. Based on Fig. 3, it is worth noting that
the proposed method obtains the highest UAR of 64.67% for
ABC and of 63.02% for SUSAS at and ,
respectively. Surprisingly, we could not obtain a sustained
performance growth with more hidden units for SUSAS. One
reason is that the utterances of ABC are more complex and

Fig. 3. Average UAR with standard deviation over ten trials with varying
number of hidden units ( ) using DAE or A-DAE.

have more variance (length and content) than those of SUSAS
which contain pre-dened short commands. Therefore, the in-
crease in hidden units potentially yields to more generalization
performance for ABC than for SUSAS. In contrast, increasing
the number of hidden units to in the case of SUSAS
reduces the corresponding performance because overtting
occurs. Nevertheless, increasing the number of hidden units
leads to additional improvement indeed, which conrms that
an over-complete rst hidden layer works better than an
under-complete one when using unsupervised pre-training as
in the theory of deep architectures [19].

IV. CONCLUSIONS

In this letter, we proposed a novel unsupervised domain adap-
tation method based on adaptive denoising autoencoders for
affective speech signal analysis. The method is capable of re-
ducing the discrepancy between training and test sets due to
different conditions (e. g., different corpora). We rst built a de-
noising autoencoder on the target domain adaptation set without
using any label information with the aim to encode the target
data in an optimal way. These encoding parameters are used
as prior information to regularize the training process of an
A-DAE on the training set. In this way, a trade-off between
the reconstruction error on the training data and a knowledge
transfer to the target domain is found, effectively reducing the
existing mismatch between the training and testing conditions
in an unsupervised way. Results with three publicly available
corpora show that the proposed method effectively and signif-
icantly enhances the emotion classication accuracy in mis-
matched training and test conditions when compared to other
domain adaptation methods. In future work, we plan to use the
dropout strategy [20] to further improve the generalization per-
formance of autoencoder-based domain adaptation and extend
A-DAEs to deep architectures.
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