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Channel Mapping using Bidirectional Long 
Short-Term Memory for Dereverberation 
in Hands-Free Voice Controlled Devices 
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Abstract � In this article, the reverberation problem for 
hands-free voice controlled devices is addressed by employing 
Bidirectional Long Short-Term Memory (BLSTM) recurrent 
neural networks. Such networks use memory blocks in the 
hidden units, enabling them to exploit a self-learnt amount of 
temporal context. The main objective of this technique is to 
minimize the mismatch between the distant talk 
(reverberant/distorted) speech and the close talk (clean) speech. 
To achieve this, the network is trained by mapping the cepstral 
feature space from the distant talk channel to its counterpart 
from the close talk channel frame-wisely in terms of regression. 
The method has been successfully evaluated on a realistically 
recorded reverberant French corpus by a large scale of 
experiments of comparing a variety of network architectures, 
investigating different network training targets (differential or 
absolute), and combining with common adaptation techniques. 
In addition, the robustness of this technique is also accessed by 
cross-room evaluation on both, a simulated French corpus and 
a realistic English corpus. Experimental results show that the 
proposed novel BLSTM dereverberation models trained by the 
differential targets reduce the word error rate (WER) by 16% 
relatively on the French corpus (intra room scenario) as well as 
8% relatively on the English corpus (inter room scenario)1. 

Index Terms � Hand-Free Voiced Controlled Devices, 
Bidirectional Long Short-Term Memory, Indirect Feature 
Enhancement, Dereverberation. 

I. INTRODUCTION 
Human computer interaction via voice is increasingly being 

used and accepted in consumer electronics because of the 
advantages of hands-free operation: simplicity, mobility, 
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customizability, etc. For some personal computing devices 
such as notebooks and smart phones, the user is close to the 
microphones due to the inherent nature of these devices and 
application (e.g., personal assistant). In many other 
applications such as digital television [1], set-top boxes, home 
automation [2], car navigation system [3], and human robot 
interaction, the ultimate user experience is the ability to 
communicate hands free from a distance typically a few 
meters. In this case, however, the distant controlled speech 
can underlie significant distortion due to room reverberation, 
echo from loud speaker, and additive noise sources, which 
leads to high word error rate of speech recognition, and 
consequently results in poor user experience. 

Reverberation is an undesired acoustic phenomenon in the 
context of speech recognition where the speech signal from 
the user reaches the microphone with different time delays and 
amplitude attenuations, caused by the reflection of various 
surfaces in the acoustic enclosure such as a living room. The 
speech signal acquired by a microphone is a sum of three 
components: (a) the direct path signal whose power is 
inversely proportional to the square of the distance from the 
speaker [4]; (b) the early reflections from the walls, floor, 
ceiling, etc., and these depend on the position of the speaker; 
(c) the late reverberation which depends mainly on the size of 
the room and reflective properties of the room surface. This is 
considered to be less dependent on the position of the speaker 
[4], [5]. 

In the past decades, extensive research has been carried out 
to handle such harmful effects. Based on what is addressed, 
they can broadly be sorted into three categories: signal, 
feature, and model-based approaches. The signal-based 
approaches are to enhance the reverberant signal from 
temporal or spectral information. Typical methods include 
blind deconvolution by inverse filtering [6], beamforming 
(e.g., delay-and-sum method) which is based on multi-
microphones [5], etc. The feature-based approaches attempt to 
remove the influence of reverberation directly from the 
corrupted feature vectors. Well-known techniques involve 
feature normalization like cepstral mean normalization 
(CMN), which is effective for mitigating early reverberation 
[7], exacting expert crafted features like RASTA-PLP [8], and 
so on. Both signal- and feature based approaches are located 
in the front-end of ASR system according to ETSI standard 
ES 202 212. The model-based approaches are applied in the 
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back-end of an ASR system, and adjusting the parameters of 
the acoustic model to the statistical properties of reverberant 
feature vectors or tailoring the decoder to the reverberant 
feature vectors. One or more adaptation techniques are 
applied, for example, maximum a posteriori (MAP) [9], 
maximum likelihood linear transformation (MLLR) [10], and 
feature-space MLLR (fMLLR or CMLLR) [11], to reduce the 
mismatch of Hidden Markov Models (HMMs) trained on 
clean speech and reverberant speech. 

In the recent past, a prominent technique is to train deep 
neural networks (DNNs) [12] using a wide variety of 
reverberated data sources. The key objective is to derive the 
original speech features to a high level representation. Its 
potential capability for noise robust automatic speech 
recognition (ASR) has been demonstrated previously [13], 
[14]. Another approach which has lately received increasing 
attention is to use neural networks for feature enhancement, 
which aims to remove the reverberation characteristic 
information from the distant talk speech on the means of 
learning a mapping rule from the distant talk feature space to 
its close talk counterpart. The main advantage of this approach 
is that it leaves the feature extraction and the back-end 
untouched, as the mapping is performed after feature 
extraction and prior to decoding. Therefore, the technique can 
be easily integrated with any existing ASR systems. This work 
was firstly realized by employing a multi-layer perceptron 
(MLP) via mapping multiple channel array speech to clean 
speech. Then, it was extended by using recurrent neural 
networks (RNNs) [16] for the 2nd CHiME challenge [17], 
where reduction in word error rates were observed. 

Long short-term memory recurrent neural networks 
(LSTM-RNNs) [18], a more sophisticated form of RNNs, 
nowadays have been successfully applied to a variety of 
pattern recognition tasks, especially to sequential pattern 
tasks, i.e., handwriting recognition [19], continuous speech 
recognition [20], and driver distraction detection [21]. 
Compared with �classic� RNNs, LSTM neural networks adopt 
memory blocks to replace the individual artificial neurons. 
Therefore, these networks can learn an optimized range of 
contextual information, aiming at overcoming the vanishing 
gradient problem of conventional RNNs [18], [22]. The 
superiority of LSTM neural networks (especially the 
bidirectional type of BLSTM) when compared to DNNs and 
conventional RNNs have been empirically confirmed in 
several recent comparative studies [20], [23]. Moreover, in 
2013 the effectiveness of LSTM networks to handle 
nonstationary noisy speech was first demonstrated [24] and 
later extended to enhance reverberated noisy speech [25]. 

In this paper, the BLSTM-RNNs are explored to learn the 
nonlinear feature mapping rule. In comparison with the work 
done previously [25], this work contributes to (1) evaluating 
the BLSTM dereverberation approach by executing extensive 
experiments on realistic and synthesized reverberated speech, 
and comparing the approach with other traditional network 
structures like MLP and (B)RNN in order to exploit the 

potential value of memory networks; (2) proposing the 
differential feature vectors between the distant talk 
(reverberant/distorted) speech and close talk (clean) speech as 
training targets, which differs with the previous work [25] 
where only the absolute feature vectors of close talk speech 
are adopted as training targets; (3) comparing and integrating 
our feature enhancement methods with the widely used 
adaptation algorithms like MLLR and CMLLR; and (4) 
accessing the robustness of the techniques in the scenarios of 
mismatched recording environments between training and 
evaluation sets. 

The remainder of this paper is organized as follows. Section 
II describes a framework of a feature dereverberation system 
by neural networks, which are trained by either absolute or 
differential targets as given successively. Then, the details of 
BLSTM structure are presented in Section III. Section IV 
mainly focuses on investigating the effectiveness of our 
methods by conducting a large-scale experiments in various 
scenarios, after a short description of our databases and 
experimental setups. Finally, conclusions are drawn and 
possible future directions are pointed out in Section V. 

II. FEATURE DEREVERBERATION BY NEURAL NETWORK 

A. System Overview 

The framework of BLSTM models for dereverberation in 
distant talk ASR is illustrated in Fig. II-A. The clean talk 
signal ( )s t is corrupted by convolutional noise ( )r t and additive 
noise ( )n t  when transmitting through space channel. So, the 
observed distant talk signal �( )s t  at the microphone can be 
written as: 

( ) ( ) ( (� ) ).t s t r ts n t  (1) 

For the sake of simplification, additive noise is ignored in this 
article. Thus, equation (1) becomes 
�( ) ( ) ( ).s t s t r t  (2) 

The total length of RIR can be denoted as T60 which 
represents the time taken for the energy in the impulse 
response to decay by 60dB compared to the direct sound. The 
RIR ( )r t can be divided into two portions: The early 
reflection ( )er t  that includes several strong reflections, and 
the late reverberation ( )lr t  that consists of a series of 
numerous indistinguishable reverberation. This is, 

( ) ( ) ( ),e lr t r t r t  (3) 

where 
( ) 0 ( ) 0

( ) ( )
0 otherwise, 0 otherwise,e lr r
r t t T r t T T

t t (4) 

and T is the length of the spectral analysis window (20-30 
ms). Thus, equation (2) can be changed into 

( ) ( ) ( ) (� ) ( ).e lt s t r t s t T r ts  (5) 

When the length of RIR T60 is much shorter than the 
analysis window size T, ( )r t  is equal to ( )er t , which only 
affects the speech affects the speech signals within a frame 
(analysis window). This linear distortion in the spectral 
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Fig. 1. Framework of BLSTM models for dereverberation in distant talk ASR. 

domain can be effectively mitigated by conventional 
techniques like CMN [7]. For most applications (e.g., 
occurring in typical office and home environment), however, 
the reverberation time T60 ranges from 200 to 1000 ms [26] 
that is much longer than the analysis window size, resulting in 
an undesirable influence on the following speech frames. For 
example, if the duration of a RIR is 1 s (T60) and a feature 
frame is extracted every 10 ms, one RIR would smear across 
the following 100 frames. Therefore, this distorted speech, 
after applying short-time discrete Fourier transform (STDFT), 
can be formulated by: 

1

1

( , ) ( , ) ( , ) ( , )� ( , ),
D

e l
d

S S St f t f R t f t d f R t d f  (6) 

where ( , )R d f  denotes the part of ( )R f  (i.e., STDFT of RIR 
( )r t ) corresponding to frame delay d. In this case, the channel 

distortion is no more of multiplicative nature in a linear 
spectral domain � rather it is convolutional. 

Assuming the phases of different frames are non-correlated 
for simplification, the power spectrum of (6) can be 
approximated as 
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To extract the standardized feature vectors in cepstral 
domain for ASR, logarithms and discrete cosine transform 
(DCT) are executed over the above spectral signals. So, 
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where D  denotes the discrete cosine transformation matrix, 
and 
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If the speech signal transmission channel is invariable within 
the sentence period, the second term of 2| ( , ) | )( eln R t fD  in 
(8) can be treated as a constant, and can be theoretically 
removed just by subtracting the cepstral mean over each 
utterance [7]. Therefore, the objective of our strategy is to get 
rid of the third term of 2,( | ( ) | )t fln MD  which is the 
proportion of the power spectrum of the whole observed 
distorted speech and the distorted speech only convoluted by 
early reverberation (cf. (9)). The specific way to realize such a 
strategy in this article is to apply neural networks to map the 

feature vectors d
tx  that are extracted from the distant talk 

speech signals �( )s t  to the target ones frame by frame. Finally, 
the enhanced feature vectors � tx will be fed into the ASR 
decoder. 

B. Differential vs. Absolute Targets for Training Neural 
Networks 

From (8) and (9), one can observe that the term of ( , )M t f  
is not only relative to the early reflection, but also convoluted 
to the late reverberation of previous speech signals. Such 
highly nonlinear and nonstationary characteristic makes 
dereverberation an extremely challenging task [5], [26]. To 
this end, using a nonlinear system to predict this term might 
be a potentially promising approach. On the other hand, the 
close relationship of ( , )M t f  with the numerous previous 
speech frames also implies the possibility of compensating for 
the late reverberation by leveraging the long-term acoustic 
context. That is, to exploit the sequence of reverberant feature 
vectors preceding the current ones might be also beneficial for 
mitigating the late reverberation. The traditional way to 
capture such contextual information is to use triphone HMMs, 
which is empirically proved not sufficient for this task [17]. 

Motivated by these analyses, an approach is explored based 
on a nonlinear and more efficient context-learning-ability 
neural network [18] � BLSTM-RNN � to remove such 
convoluted late reverberation in the cepstral domain. More 
specifically, two ways could be applied according to (8) via 
transforming the distorted feature vectors d

tx  from the distant 
speech signal �( )s t  into: 

1) the corresponding absolute (clean) ones c
tx  from close 

talk speech signals ( )s t  by minimizing the following objective 
function of the mean squared error (MSE): 

2

1

�( ) ( ) ,
N

c c
t t

n

J x x  (10) 

where �c
tx  is the predicted close talk feature, and N is the 

dimensionality of the feature vector. This direct channel 
mapping strategy has already been investigated previously 
[24], [25]. 

2) the corresponding differential (delta) ones tx  which are 
obtained from later reverberation of ( , )M t f  (cf. (9)). Before 
training the neural network, the differential vectors are 
calculated by subtracting the feature vectors of distant talk d

tx  
from those of the corresponding close talk c

tx . When training 
the neural networks, the parameters are optimized by 
minimizing: 

2

1

�( ) ( ) ,
N

t t
n

J x x  (11) 
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where �tx  is the predicted differential feature. After that, these 
mapped differential vectors are added to the original distant 
talk feature vectors d

tx  frame by frame, so as to compensate 
the distortion by reverberation. This indirect channel mapping 
strategy is firstly proposed and investigated in this work. 

III. BIDIRECTIONAL LONG SHORT-TERM MEMORY NEURAL 

NETWORK 

As discussed in Section II, a nonlinear system with the 
capability of learning long-term contextual information is 
preferred to tackle with the nonlinear, nonstationary, and highly 
convoluted late reverberation. The conventional MLP 
propagates the input signals unidirectionally layer-by-layer with 
sigmoid activations without any recurrent connection, and needs 
to stack several successive feature vectors as input. 
Nevertheless, the capability of capturing context information is 
still limited by the chosen context [27]. Another method to 
address this problem is to employ RNNs, where the output of a 
previous time step is looped back and used as additional input. 
However, research shows that standard RNNs can not access 
long-range context since the backpropagated error either blows 
up or decays over time (the vanishing gradient problem) [22]. 

Fig. 2. LSTM memory block. The symbols gf , if , and of denote logistic 
sigmoid, tanh, and tanh activation functions, respectively; ti , to , 
and tf are the activations of the input, output, and forget gates at time t, 
respectively; tx , th , and tc represent input, output, and cell values of the 
memory block at time t, respectively; b is a bias. 

To overcome this limitation, [18] introduced LSTM 
networks, which are able to store information in memory cells 
over a long period of time. LSTM networks can be interpreted 
as RNNs in which the traditional neurons are replaced by 
scaled memory blocks (shown in Fig. 2). Similar to the cyclic 
connections in RNNs, these memory blocks are recurrently 
connected. Every memory block consists of self-connected 
linear memory cells and three multiplicative gate units: input, 
output, and forget gate. The input and output gates scale the 
input and output of the cell while the forget gate scales the 
internal state. In other words, the three gates are responsible 
for writing, reading, and resetting the memory cell values, 
respectively. For example, if the forget gate is open and the 

input gate is closed (i.e., the input gate activation is close to 
zero), the activation of the cell will not be overwritten by new 
inputs, and therefore the information from previous time t can 
be accessed at the following arbitrary time steps by opening 
the output gate. (Please refer to [18] and [19] for more details.) 

In particular, for a memory block, the activation of the input 
gate ti is composed of four components: 

1 1( ),g xi t hi t ci tt ifi bW x W h W c  (12) 

where gf denotes the logistic sigmoid function of the input 
unit, W is a weight matrix of the connections from all input 
gates, output gates, or forget gates in the same hidden layer to 
the input unit, tx  is the input vector, th is the hidden vector, 
and ib is the unit bias. The activation of the forget gate tf  
follows the same principle, and can be written as 

1 1( ).g xf t hf t cf tt fff bW x W h W c  (13) 

The memory cell value tc is the sum of the inputs at time 
step t and its previous time step activations that are multiplied 
by forget gate activation, and updated by: 

1 1( ) ,t i xc t hc tt c t ti f bc W x W h f c  (14) 

where if is the tanh activation function. Finally, the output of 
the memory cell is controlled by the output gate activations of 

1( ),g xo t h t tt o co ofo bW x W h W c  (15) 

and delivered by 
( ),t t o to f ch  (16) 

where of is also a tanh activation function. 
Note that each memory block can be regarded as a separate, 

independent unit. Therefore, if each memory block includes 
one memory cell, the activation vectors ti , to , tf , and tc are 
all of same size as th , i.e., the number of memory blocks in 
the hidden layer. And from the formulas given above, it can be 
seen that the values of all memory cells and block outputs in 
the previous time step t-1 will certainly affect the activations 
of all input gates, output gates, forget gates, even the input 
units in the current time step t in the same layer, except the 
case between memory cell and output gate � it is the current 
state of memory cell tc  rather than the state from previous 
time step that contributes to forget gate activation. 

Overall, the LSTM memory cell can store and access 
information over long temporal range and thus avoid the 
vanishing gradient problem [18]. Therefore, LSTM could also 
be regarded as a natural extension of DNNs for temporal 
sequence data, where the deepness comes from layers through 
time. 
Standard RNNs have access to past but not to future context. To 
exploit both, past and future context, RNNs can be extended to 
bidirectional RNNs, where two separate recurrent hidden layers 
scan the input sequences in opposite directions [28]. The 
network calculates its forward hidden layer activations f

th  from 
the beginning to the end of the sequence, and its backward 
hidden layer activations b

th  from the end to the beginning of the 
sequence, then updates the output layer by 

,f b
fy t by t yty W h W h b  (17) 
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where fyW  and byW  are the forward and backward weight 
matrices, and yb  is the hidden bias vector. The forward and 
backward directed layers are connected to the same output 
layer, which therefore can access the whole context. 

IV. EXPERIMENTS AND RESULTS 

A.  Databases 

To demonstrate the effectiveness of the proposed methods, 
two databases � a French and a English corpus were recorded 
beforehand in a realistic acoustic space environment. Both 
databases are collected for speech controlled TV application. 
This application is designed to enable the user to change the 
TV controls (volume, brightness, etc.) or browse the programs 
using her voice. Table I shows the statistics of the two 
databases. The French corpus is recorded in a living room with 
furniture, where one microphone near the mouth records the 
close talk, and another microphone array consisting of 16 
channels records the distant talk. 22 native French speakers 
(11 females) were asked to speak naturally so as to control the 
TV as their wish, i.e., �je veux un film avec Cameron Diaz (I 
want a movie with Cameron Diaz).� Finally, 8.3 h recordings 
are obtained, including about 7 k sentences and 45 k words in 
total. The distant talk data obtained from a 16-channel 
microphone array is grouped into four disjoint sets (1-4, 5-8, 
9-12, and 13-16). The four channel speech in each of the sets 
is beamformed and noise reduced to get a single speech signal. 
As a result, the amount of distant talk training/test data is four 
times its close talk counterpart. The whole database was then 
divided into training and test set speaker-independently and 
equally. 

TABLE I 
DISTRIBUTION OF SPEAKERS, SENTENCES, WORDS, AND RECORDING TIME 

OF CLOSE TALK PER PARTITION OF FRENCH AND ENGLISH CORPORA. 

French English 
train test train test 

# speakers (f/m) 11 (5/6) 11 (6/5) 9 (5/4) 11 (5/6) 
# sentences 2 231 4 619 1 430 1 801 
# words 15 148 30 094 7 886 9 907 
time (hours) 4.1 4.2 2.9 3.4 

Likewise, 6.3 h of recordings were captured for the English 
corpus which comprises 20 speakers (10 females), and 
approximate 3 k sentences, 18 k words in total. For French, 
the training and test data sets were recorded in the same room, 
but for English, these data sets were recorded in different 
rooms. The details of the French and English corpus are 
shown in Table I. In the ongoing, the proposed techniques is 
mainly evaluated on the French corpus. The English database 
is used to study the impact of mismatch in acoustic (room) 
environments between training and testing conditions. 

B. Experimental Setup 

The stereo training (close talk and distant talk) feature 
vectors are time aligned such that the Pearson product-moment 
correlation coefficient (PCC) is maximized between the 
MFCC-0 time series. The training utterances with maximum 

PCC coefficient lower than 0.9 were dropped to avoid 
utterances with severe channel distortions. 

The mapping techniques were evaluated on the standard 
MFCCs. The 12 dimensional static MFCCs were appended to 
their first, second, and third order regression coefficients, 
resulting in a feature vector of size 48. The feature vectors of 

c
tx and d

tx  are extracted from the close and distant talk 
signals, respectively, every 10 ms using a window size of 25 
ms. Then, the differential feature vectors of tx  are acquired 
by c d

t tx x . Furthermore, before training the neural networks, 
the global means and variances are calculated over the close 
talk, distant talk, and their differential feature vectors of the 
whole neural network�s training sets. Then, mean and variance 
normalization are performed over the network inputs and 
targets (i.e., the absolute or the differential feature vectors) 
using the means and variances from the corresponding sets, 
respectively. 

For the neural networks, both input and output node 
numbers are equal to the dimension of the feature vector (48 in 
our case) except that stacked frames are used as input. And 
one hidden layer with 200 neurons is chosen. Particularly, for 
the LSTM memory block, input and output gates adopt 
hyperbolic tangent (tanh) activation functions, and the forget 
gates take logistic activation functions. 

During network training, gradient descent is implemented 
with a learning rate of 10-5 and a momentum of 0.9. Zero mean 
Gaussian noise with standard deviation 0.1 is added to the 
input activations in the training phase in order to improve 
generalization. All weights are randomly initialized in the 
range from -0.1 to 0.1. Finally, the early stopping strategy is 
used as no improvement of the MSE on the evaluation set has 
been observed during 20 epochs. 

C. Speech Recognition Evaluation 

The effectiveness of different mapping strategies and neural 
network configurations was evaluated on a research ASR 
system available off-the-shelf. The acoustic models were 
trained on mobile data collected on hand held devices. The 
performance of the ASR is measured and compared in terms 
of word error rate (WER) and its relative reduction (WERR) 
metrics, and the baselines for the close talk and distant talk of 
the French corpus are 11.8% and 19.41% WERs, respectively. 

1) Neural Network Architectures: A performance 
comparison is shown in Table II between BLSTM networks 
and other networks such as MLP, and recurrent networks 
without memory (RNNs) or with memory (i.e., LSTM) Note 
that, according to the empirical experience, the best 
performance for training MLP and (B)RNN was achieved by a 
learning rate of 10-6, as opposed to 10-5 for the (B)LSTM 
networks. 

From Table II, it can be seen that, when no context is used 
at the input of the MLP, there is an increase in WER 
compared to the baseline. Whereas, the recurrent neural 
networks (standard RNN and more sophisticated LSTM) 
show lower WERs. This is because of their ability to capture 
the contextual information implicitly. When the temporal 
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context is increased at the input of the MLP, there is a steady 
decrease in WERs and for 600 hidden nodes and a context of 
7 frames, a WERR of 7% is delivered over the baseline 
system. 

TABLE II 
PERFORMANCE OF THE BASELINE RECOGNIZER AND DEREVERBERANT 

SYSTEMS BY ADOPTING VARIOUS NEURAL NETWORK ARCHITECTURES 

LIKE MLP, RNN, BRNN, LSTM, AND BLSTM WITH DIFFERENT NUMBER 

OF HIDDEN NEURONS AND STACKED FEATURE FRAMES. FR: FRAMES; 

WGT: WEIGHTS. 

network # neurons #fr # wgt WER[%] WERR[%] 
w/o mapping (close talk) 11.81 
w/o mapping (distant talk) 19.41 

MLP 

200 1 19 k 24.15 -24.4 
200 5 58 k 18.74 3.5 
200 7 77 k 18.72 3.6 
200 9 96 k 18.74 3.5 
600 7 230 k 18.06 7.0 

RNN 200 1 59 k 19.07 1.8 
BRNN 200 1 118 k 17.42 10.3 
LSTM 200 1 180 k 18.47 4.8 
BLSTM 200 1 360 k 16.38 15.6 
BLSTM 200 7 590 k 16.43 15.4 
BLSTM 144-200-144 1 1 M 16.32 15.9 

RNN and LSTM models capture only the past information. 
However, for dereverberation, it is important to learn the 
temporal smearing in the future frames because the distant talk 
signal is delayed (future) and attenuated version of the close 
talk signal (cf. Section II-A). The bidirectional RNN and 
LSTM yield significant (one-side z-test, p<0.001) reduction in 
WERs compared to the corresponding unidirectional models 
capturing past information. 

It can also be seen that both uni- and bi- directional LSTM 
models give lower WERs compared to the simple RNN 
models. This can be attributed to the sophisticated architecture 
of the individual neurons compared to the simple neuron. 
Previous acoustic information can be stored in the memory 
cell until the input gates and the forget gates allow to (partly) 
change it (cf. Section III). 

Moreover, as seven successive frames are simultaneously 
fed into BLSTM networks, no improvement is observed from 
this side (see Table II). Hence, the BLSTM seems to learn 
context better if feature frames are presented one by one and 
the increased size of the input layer rather harms recognition 
performance. In addition, when increasing one hidden layer 
with 200 neurons to three hidden layers with 144-200-144 
neurons, the performance improvement is not obvious. In the 
following experiments, one hidden layer with 200 neurons is 
kept as the BLSTM network�s architecture on the French 
corpus. 

To visualize the mapping learned by the BLSTM model, the 
trajectories of MFCC-0 for two randomly selected utterances 
are plotted in Fig. 3. The figure shows three trajectories � 
close talk (red), distant talk (green), and mapped (or 
estimated) close talk (blue). It can be seen that the MFCC-0 
curves of mapped close talk speech (by BLSTM networks) are 
closer to the original one than  the  distant  talk  speech  during  the 

Fig. 3. The scaled MFCC-0 (0-255) of a close talk utterance (red), a distant 
talk one (green), and a mapped close talk one (blue) for two examples. 

speaking period, and are smoother during the silence period. 
This indicates that the reverberant signals and channel noise 
are successfully suppressed. Such a feature enhancement 
phenomenon can be further confirmed over the entire training 
set and the whole feature vectors. Fig. 4 presents the PCCs of 
the 48 MFCCs between distant talk utterances (hollow circle 
and dotted line)/mapped utterances (solid circle and line) and 
close talk utterances over the whole training set. Obviously, 
the PCCs are boosted after reverberated features are enhanced, 
which could demonstrate the performance improvement of 
ASR by using a BLSTM dereverberation model. 

Fig. 4. Pearson product-moment Correlation Coefficient (PCC) of 48 
MFCCs between distant talk utterances (hollow circle and dotted 
line)/mapped close talk utterances (solid circle and line) and close talk 
utterances over the whole training set. 

2) Training on Differential Targets: As discussed in 
Subsection II-B, there are two ways to obtain the enhanced 
features from distant talk, either by direct way (training 
networks with absolute targets) or by indirect way (training 
networks with differential targets). Table III compares the 
performance of the two mapping ways in ASR system. 

By checking three types of BLSTM network structure, the 
BLSTM dereverberation models trained on differential targets 
perform better than the models trained on the absolute targets 
when the network structure is simpler. It can be seen that a 
gain of about 3% relative WERR (at the 0.05 significance 
level in a one-side z-test) is achieved when only 144 neurons 
are used in only one hidden layer, compared to using absolute 
targets. 
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TABLE III 
PERFORMANCE COMPARISON BY USING ABSOLUTE TARGETS AND 

DIFFERENTIAL TARGETS. 
targets # neurons WER [%] WERR [%] 

abs. 144 17.04 12.2 
diff. 144 16.52 14.9 
abs. 200 16.38 15.6 
diff. 200 16.43 15.4 
abs. 144-200-144 16.32 15.9 
diff. 144-200-144 16.29 16.1 

To find out the rationale behind this phenomenon, the 
distribution of globally normalized log energies (MFCC-0) on 
the absolute targets (a) and the differential targets (b) over the 
whole French corpus is plotted in Fig. 5. Obviously, the 
differential targets have a symmetrical unimodal distribution 
which is centered around zero. In contrast, the absolute target 
has a bimodal distribution which could be harder to learn. 
Therefore, the simpler the neural networks are, the higher a 
gain would be obtained via training on the differential targets. 
Such superiority of differential targets-based learning can 
further be verified in Subsections IV-C3 and IV-C4. 

Fig. 5. Distribution of normalized log energy (MFCC-0) of absolute 
targets (a) and differential targets (b). 

3) Incorporating CMLLR and MLLR: As the distant talk is 
passing through the BLSTM dereverberation models, its 
feature vectors are transformed (almost) to the clean target, 
which most preexisting acoustic models are trained on. Thus, 
this technique could also be considered as a sort of feature 
adaptation. It is interesting to see whether incorporating back-
end adaptation techniques like CMLLR and MLLR can further 
enhance the ASR performance. 

As expected, without our mapping technique the WERs for 
distant talk decrease from 19.41%, over 19.01%, to 17.19% 
with no adaptation, CMLLR, and CMLL + MLLR, 
respectively (as shown in Table IV). The WERs drop further 
to 16.43%, 16.34%, and 15.68% when integrating with our 
suggested mapping technique, which results in 15.4%, 13.8% 
and 7.8% relative WERR, respectively (All improvements are 
at the 0.001 significance level in a one-side z-test). Overall, 
the best result is achieved by combining both mapping and 
adaptation (CMLLR + MLLR) techniques, with 8.8% and 
19.2% performance improvement in WERR in comparison 
with adaptation techniques only and the baseline (w/o 
adaptation and mapping), respectively. Additionally, Table IV 
also shows that if the close talk was falsely detected as distant 
talk and fed into the mapping and adaptation systems, the 
WER will increase about 10% relatively. 

TABLE IV 
ASR EVALUATION ON DISTANT TALK AND CLOSE TALK SETS BY 

COMBINING BLSTM DEEVERBERATION AND ADAPTATION (CMLLR AND 

MLLR) TECHNIQUES. ABS./DIFF.: ABSOLUTE/DFFERENTIAL TRGETS. 
[%] tar- distant talk close talk 

adaptation gets WER WERR WER WERR 
w/o adaptation 
w/o mapping  19.41  11.81 
w/ mapping abs. 16.38 15.6 14.47 -22.5 
w/ mapping diff. 16.43 15.4 14.02 -18.7 
w/ CMLLR 
w/o mapping  19.01 2.0 11.78 -0.3 
w/ mapping abs. 16.14 16.8 13.70 -16.0 
W /mapping diff. 16.34 15.8 13.46 -13.9 

w/ CMLLR+MLLR 
w/o mapping  17.19 11.4 11.63 -1.5 
w/ mapping abs. 15.70 19.1 13.33 -12.9 
w/ mapping diff. 15.68 19.2 13.04 -10.4 

4) Inter Room Evaluation: In the above experiments, the 
data set used for training the dereverberation model is 
recorded in the same room with the evaluation set. In the real-
life application, however, the evaluation scenarios are always 
unpredictable. That is, the acoustic environments (i.e., room 
size, type) for creating the training data normally mismatch 
with the evaluation scenarios. To cope with this problem, 
several artificially reverberant corpora were synthesized on the 
close talk set of French by convolving various RIRs and 
adding a little noise. The rooms to create the RIRs are 
different with the ones for creating the French corpus. When 
generating the simulated corpora, three elements were taken 
into account: positions variation of the speakers w.r.t. the 
microphones, the weights of the reverberation signal and the 
weights of the noise signal. The first column of Table V shows 
the four scenarios of simulated speech. The second to sixth 
columns represent the WER and WERR for each simulated 
corpus without mapping, mapping to the absolute targets, and 
mapping to the differential targets, respectively. As observed 
from the table, the BLSTM dereverberant ASR systems 
prevail over the systems without dereverberation, which 
overall leads to a reduction of WER with 3.3% relatively by 
the usage of absolute targets and 6.6% relatively by the usage 
of differential targets. 

TABLE V 
ASR EVALUATION ON THE ARTIFICIAL DISTANT TALK SET USING THE 

BLSTM DEREVERBERANTION MODELS TRAINED ON THE NATURAL 

DISTANT TALK SET. POS: POSITION OF SPEAKERS W.R.T. MICROPHONES; 

R/N: REVERBERANT/NOISY SIGNAL WEIGHTS (DB); W/O: WITHOUT 

MAPPING; ABS./DIFF.: ABSOLUTE/DIFFERENTIAL TARGETS. 

[%] w/o abs. diff. 
WER WER WERR WER WERR 

Pos-1,R:-100,N:-30 20.86 20.06 3.8 19.24 7.8 
Pos-1,R:-30,N:-100 21.28 20.59 3.2 19.97 6.2 
Pos-2,R:-100,N:-30 20.24 19.25 4.9 18.78 7.2 
Pos-2,R:-30,N:-100 19.89 19.70 1.0 18.71 5.9 
average 20.57 19.90 3.3 19.18 6.8 

In addition, the experiments were repeated on a realistic 
English corpus, of which the training and test sets are recorded 
in totally different rooms (cf. Section IV-A). The baselines of 
the distant talk of English corpus are WERs of 18.30% and 
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18.77% for the training and test sets, both of which almost 
double the baseline of close talk (WERs of 9.27% and 9.48% 
for the training and test sets). As expected, a high gain is 
obtained for the training set when applying channel mapping. 
Nevertheless, such high gain is not observed for the test set. 
Only when using the differential targets to train neural 
networks, a gain can be obtained by 5.5% of WERR on the 
mismatched test set, and can be enlarged to 7.7% WERR when 
the utterance level CMN is implemented [7]. In this 
experiment, it can also be noticed that the indirect mapping 
way (using differential targets for networks training) 
significantly overcomes the direct mapping way (using 
absolute targets for networks training). 

TABLE VI 
ASR EVALUATION ON THE TRAINING AND TEST SETS OF THE ENGLISH 

CORPUS BY USING THE BLSTM (ONE HIDDEN LAYER WITH 128 NEURONS) 

FEATURE DEREVERBERATION MODEL TRAINED ON THE TRAINING SET. 
ABS./DIFF.: ABSOLUTE/DIFFERENTIAL TARGETS. CMN (UTT.): UTTERANCE 

LEVEL CEPSTRAL MEAN NORMALIZATION. 

[%] tar- training set test set 
gets WER WERR WER WERR 

w/o mapping (close talk) 9.27  9.48 
w/o mapping (distant talk) 18.30  18.77 
BLSTM abs. 15.80 13.7 20.67 -10.0 
BLSTM diff. 15.26 16.6 17.73 5.5 
BLSTM+CMN(utt.) abs. 14.61 20.2 19.38 -3.0 
BLSTM+CMN(utt.) diff. 14.96 18.3 17.32 7.7 

From the above two experiments, the results imply that the 
inter-room scenario is more challenging when compared to the 
intra-room scenario shown in Section IV-C1 to IV-C3. On the 
one hand, the performance improvement on both training and 
test sets indicates that different rooms share some common 
reverberation information. These shared information can be 
learned by the BLSTM networks. On the other hand, the 
different gains obtained by the training and test sets suggest 
that the networks probably learn too much information from a 
specific acoustic environment. 

V.   CONCLUSIONS 

In this study, a feature-based dereverberation method was 
proposed and investigated for realistic hands-free voice 
controlled devices. The basic idea is to use bidirectional long 
short-term memory (BLSTM) neural networks for channel 
mapping � from distant talk cepstal feature space to its close 
talk counterpart. 

In such application scenario, the speech signal at each frame 
time will impact the subsequent frames in a long-term. This 
consequentially requires a learning algorithm which could not 
only access long-term context information but also make use 
of the future information. The bidirectional structure (past and 
future) of LSTM neural networks is capable of dealing with 
these problems. The experimental results on a French corpus 
show a word error rate reduction (WERR) of more than 16% 
for ASR, which significantly outperform the �conventional� 
networks Multilayer Perceptron (MLP) (one-side z-test, 
p<0.001) and bidirectional recurrent neural networks 

(BRNNs) (one-side z-test, p<0.05). Such effectiveness of our 
feature mapping method is further confirmed by integrating 
widely used adaptation techniques of maximum linear 
likelihood regression (MLLR) or/and constrained MLLR 
(CMLLR), which yields the best performance of about 20% of 
WERR. And it is also confirmed in the scenario of inter-room 
evaluation, as the mismatched evaluation sets in acoustic 
environment also obtain a gain via channel mapping when 
using BLSTM. 

This study also presents another indirect way for channel 
mapping � the differential feature vectors (between the 
distant talk speech and the close talk speech) as network 
targets, then adding the estimated differential feature vectors 
to the counterpart of original distant talk. The results based 
on a rich number of experiments show that this indirect 
mapping strategy can compete with the previously used 
direct mapping strategy, particularly in some cases like using 
a simple network structure and evaluating mismatched data 
sets. All these cases are quite welcome for real-life 
applications. 

Due to a gain gap between matched and mismatched 
evaluation cases, future work will focus on the further 
exploitation of joint acoustic information across different 
rooms with the goal of �blind� dereverberation application. 
On a way to achieve this is to train the networks by a vast 
amount of reverberant speech collected in a variety of 
rooms. Further, one can apply to the objective functions 
some generalization terms such as weight decay. In addition, 
it seems also beneficial to develop a way of selecting 
predefined mapping models for different room categories, in 
order to ultimately explore the advantages of the room-
specific models. 
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