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Cooperative Learning and its Application to
Emotion Recognition from Speech

Zixing Zhang, Eduardo Coutinho, Jun Deng, and Björn Schuller, Member, IEEE

Abstract�In this paper, we propose a novel method for highly
efcient exploitation of unlabeled data�Cooperative Learning.
Our approach consists of combiningActive Learning and Semi-Su-
pervised Learning techniques, with the aim of reducing the costly
effects of human annotation. The core underlying idea of Coop-
erative Learning is to share the labeling work between human
and machine efciently in such a way that instances predicted
with insufcient condence value are subject to human labeling,
and those with high condence values are machine labeled. We
conducted various test runs on two emotion recognition tasks with
a variable number of initial supervised training instances and two
different feature sets. The results show that Cooperative Learning
consistently outperforms individual Active and Semi-Supervised
Learning techniques in all test cases. In particular, we show that
our method based on the combination of Active Learning and
Co-Training leads to the same performance of a model trained
on the whole training set, but using 75% fewer labeled instances.
Therefore, our method efciently and robustly reduces the need
for human annotations.

Index Terms�Acoustics, active learning, cooperative learning,
emotion recognition, multi-view learning, semi-supervised
learning, supervised learning.

I. INTRODUCTION

A LTHOUGH in the past few years great advances have
been made in the eld of emotion recognition from

speech [1]�[3], a central challenge remains to be the size and
nature of the training corpora used in the development of such
pattern recognition systems. Indeed, the training corpus often
needs to comprise a sufcient amount of data that allows for a
good generalization performance to the task at hand (including
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a good sample of the types of acoustic signals characteristic
of a particular application). Unfortunately, the scarcity of
labeled data seriously compromises the development of many
recognition systems, which in turn limits their performance
in practical scenarios [4]�[6]. As an example, popular emo-
tional speech databases such as the Berlin Emotional Speech
Database (EMO-DB) and eNTERFACE include around one
hour of recordings each [7], [8], whereas available corpora for
automatic speech recognition comprise hundreds of hours of la-
beled data. It stands to reason, nevertheless, that in comparison
with the small amount of available labeled data, there is a wide
range of unlabeled data ideally suited for the development of
speech emotion recognition systems. Such (unlabeled) data are
nowadays pervasive in digital format and are relatively easy
and inexpensive to collect (e. g., from online sources). There-
fore, the exploitation of these large amounts of data to enhance
(emotion) recognition systems� performance is increasingly
attracting attention from a wider range of researchers [9]�[11].
In the last few years, several approaches have been proposed

to deal with unlabeled data, one of the most promising being
Active Learning (AL) [12]. AL aims at achieving greater accu-
racy with fewer training labels by (actively) choosing the data
from which it learns. AL algorithms select from large pools of
unlabeled data those instances that are the �most informative�
for the task being modeled, and subsequently query a human
or machine annotator for labeling. There are various strategies
by which the informativeness of unlabeled samples can be
processed (usually referred to as query strategies). One of the
simplest strategies is to allow the model (or active learner) to
determine the uncertainty of the predictions on unlabeled data
based on a previously trained model (uncertainty sampling
AL), and then query an annotator for the labeling of those with
the least certain classication [13]. Another common strategy is
the so-called query-by-committee, whereby the predictions for
unlabeled data are obtained from multiple models (previously)
trained on the same data (typically models represent competing
hypotheses to solve the same task). In this type of strategy
the data considered to be the most informative are those with
the lowest agreement across classiers [14]. Other AL query
strategies include the expected-error-reduction method, which
aims to measure how much its generalization error is likely to
be reduced [15]; the expected-model-change-based method,
which chooses those instances that have a greater impact on the
current model [16]; and the diversity-density-related method,
which aims to maximize the learning benets of relevance
feedback on retrieving documents [17].
It has been shown that AL strategies can greatly reduce

the time-consuming and expensive human labeling work and
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still achieve good performance levels [12]. Nonetheless, AL
approaches still require a considerable amount of human
annotation. A possible solution that allows one to overcome
this expensive limitation is to use Semi-Supervised Learning
(SSL) techniques, which also aim at using unlabeled data
in an efcient way but without the intervention of human
annotators. In this context, various combinations of AL and
SSL methods have been proposed and can be found in some
pattern recognition literature (see for instance [18], [19], and
[20]). A popular approach is to combine AL with Self-Training.
Self-Training is an SSL technique that permits automatically
annotating unlabeled data by using a preexisting model trained
on a small amount of labeled data. Typically, the most condent
predictions for unlabeled points (and their predicted labels) are
added to the training set, and the classier is re-trained with
the new (larger) set. This procedure is then repeated iteratively
until a certain performance target is achieved. Because it does
not require the intervention of human annotators, this approach
is attractive and a useful option to enhance the robustness of ex-
isting classiers [21], [22]. Due to this advantage, Self-Training
is a convenient option to tandem with AL to reduce the amount
of human labeling, as it has been demonstrated, for instance, in
spoken language understanding [19] and handwritten digit and
text classication [20].
Another SSL method with the potential to mitigate the lim-

itations of AL is multi-view learning (MVL; [22]�[24]). MVL
focuses on improving the learning performance by training dif-
ferent models concurrently and optimizing them by exploiting
redundant feature sets (or �views�) of the same input data [12].
Co-Training[25] is one of the earliest schemes for MVL pro-
posed in the literature. It focuses on training two learners by
maximizing themutual agreement on two distinct �views� of the
unlabeled data set. The algorithm relies on three assumptions or
conditions: (a) sufciency: each �view� is sufcient for classi-
cation on its own, (b) compatibility: the target functions in both
�views� predict the same labels for co-occurring features with
high probability, and (c) conditional independence: the �views�
are conditionally independent given the class label [25]. Ini-
tially, two separate classiers are trained on the same (labeled)
data using the features from each �view.� Then, the most con-
dent predictions of each learner on the unlabeled data are used
to train each other (i. e., are added to the training set iteratively).
Essentially, each classier is trained with its own data plus the
additional training examples provided by the other classier.
MVL techniques in general are less restrictive than Co-Training
in particular and can be applied with two or more �views� on
the data and with less restrictive conditions in terms of condi-
tional independence. MVL schemes have been applied in sev-
eral areas, such as biometrics [26], intelligent transportation
[27], and handwriting [28] classication. In emotion recogni-
tion from acoustic signals, they have also been successfully ap-
plied with relevant improvements over Self-Training[29], [30].
In this article, we propose a new method for combining AL

and SSL techniques to improve a preexistent acoustic emotion
recognition system. To do so, we implement various learning al-
gorithms for retraining a classier consisting of Support Vector
Machines (SVMs) [31]. We rst implement and compare the
use of Supervised Learning (SL) [22] variants for improving the
performance of a preexisting classier. In particular, we focus

on Passive Learning (PL) [12], AL and a novel method that we
call �Co-active Learning� (hereafter coAL). coAL is inspired by
the concept of MVL, and it consists of implementing two dif-
ferent �views� into AL. This strategy diverges from Co-Testing
[23] by allowing both �views� to select the data to be annotated
independently, rather than nding the �contention points�. At
this stage, we also introduce a new type of AL query strategy
based on dynamic medium certainty [32] as an alternative to the
traditional least certainty sampling strategy. Our second step is
to implement Self- and Co-Training SSL learning methods to
improve the same classier. Finally, our third step is to tandem
various combinations of AL and SSL approaches (hereinafter
referred to as �Cooperative Learning� (CL)) with the aim of
improving the classier performance and reducing the amount
of human annotation through machine labeling. The CL ap-
proaches proposed here involve selecting unlabeled instances
with medium condence values and subjecting them to human
annotation (AL phase), and afterwards to select those instances
with high condence values and subject them to machine
annotation (SSL phase). In summary, three CL strategies are
proposed: (a) single-view Cooperative Learning (svCL), which
combines AL and Self-Training; (b) mixed-view Cooperative
Learning (xvCL), a combination of AL and Co-Training, and
(c) multi-view cooperative learning (mvCL), which explores
the use of coAL and Co-Training.
The remainder of this article is structured as follows.

In Section II, we make a short introduction to SVMs and
their prediction �condence values�. Then, we describe the
various learning strategies and methods used in this paper,
including SL (Subsection III-A), SSL (Subsection III-B),
and CL (Subsection III-C). Next, we introduce the databases
(Section IV) and feature sets (Section V) used in this paper
in, and show the experimental setups and results (including a
comparison between CL and other approaches) in Section VI.
Finally, in Section VII we discuss our ndings, present our
conclusions and suggest possible extensions of this work.

II. SVMS AND CONFIDENCE

In order to investigate CL based on condence values and
exemplify its application to acoustic emotion recognition, we
decided on SVMs as the classication method. The rationale
is that SVMs have a mature theoretical foundation [33], and
were ofcially employed by the INTERSPEECH 2009 (IS09)
Emotion Challenge (EC) [34] and its offshoots.
SVMs are supervised learning models based on the concept

of decision hyperplanes that dene decision boundaries, i. e.,
planes that separate sets of objects having different class mem-
berships. SVMs perform classication tasks by constructing a
set of hyperplanes in a multidimensional space that separates
cases of different class labels. The goal of SVMs is to maximize
the separation between classes, which consists of nding the
hyperplane that has the largest distance to the nearest training
data point of any class (also known as functional margin), since
the larger the margin, the lower the generalization error of the
classication task. In practice, training instances belonging to
two or more categories are used to determine the hyperplane
that best discriminates amongst different classes (that with the
widest possible gap). The testing instances are thenmapped onto
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this multi-dimensional space and the side of the gap they fall on
determines the predicted categories.
Formally, given a set of examples ,

where is a -dimensional feature vector, and
is a corresponding prediction of each example, the max-

imummargin separating hyperplane can be found by solving the
following optimization problem:

subject to:

(1)

where the that are Lagrangian multipliers satisfy the
above constraints, is a dened constant, and is
a kernel function that can be linear, polynomial, radial basis,
or sigmoidal. To classify a given test example, the following
function is implemented:

(2)

where is the �bias� term that is often assumed to have zero
mean. The sign of this function determines the category of the
test example.
The output value of SVMs is the distance of a specic point

from the separating hyperplane. To convert these distances to
probability estimates within the range of [0,1] there are various
approaches (including parametric and nonparametric methods).
In the experiments described in this article, we employed a para-
metric method of logistic regression proposed in [35], which is
one of the most frequently used approaches to transform the
output distances of SVMs into (pseudo) probabilistic values
[36]. This method assumes that the posterior probability con-
sists of nding the parameters and for a form of sigmoid
function:

(3)

mapping the value into probability estimates .
For each instance, the sum of the posterior probability for all
classes is equal to 1. In the special case of binary recognition
tasks the decision threshold is 0.5. Therefore, the �winning�
class is determined when the posterior probability is higher than
0.5. The condence value for the predicted class can be obtained
by the equation:

(4)

where are the posterior probabilities for classes
�0� and �1�, respectively.

III. METHODOLOGY

In this section we describe the various algorithms used
to retrain a SVM for improving the classication per-
formance based on exploitation of unlabeled data. For
all the algorithms described, we assume the following
premises: (1) A small set of labeled data exists, where�as

above� , is a -dimensional
feature vector , and is the label for each set of
data; (2) a large set of unlabeled data is available, where

, and and is a -dimensional feature
vector; and (3) at each iteration, a subset of instances is
selected from for labeling (either by a human or a machine
annotator).

A. Human annotator: PL, AL, and coAL

Fig. 1 shows the pseudocode description of PL, AL (least and
medium certainty query strategies) and coAL algorithms. Algo-
rithm 1 describes a standard PL algorithm, whereby unlabeled
instances are randomly selected from a pool of samples and sub-
ject to human annotation, before being added to the training set.
Algorithm 2 describes a traditional AL approach based on the
least certainty query strategy. This algorithm starts by classi-
fying all instances of the unlabeled data pool using the model
previously trained on the labeled data . Then, the condence
values assigned to each instance are ranked and stored in a
queue (in descending order). Finally, a subset of cor-
responding to those instances predicted with lowest condence
values is subject to human annotation. This sequential process
is repeated until a predened number of instances are selected
(which depends on the size of the databases). Algorithm 3 also
describes the traditional AL algorithm, but with a novel query
strategy based on the selection of those instances predicted with
medium certainty levels for further annotation. The rationale
for adopting a medium certainty query strategy is the potential
advantage of avoiding the selection of noisy data, which can
be caused by unreliable annotations [37] or distortions of the
(acoustic) pattern [38] as demonstrated in [39]. This is partic-
ularly important for acoustic emotion recognition owing to the
comparably high degree of ambiguity. This approach has been
previously used in [32].
The new query strategy diverges from Algorithm 2 in which

the instances that are closest to the middle of the queue are
the ones selected for human annotation (unlike the ones with
lowest condence values, as it is characteristic of the least cer-
tainty query strategy). Thenceforth, similarly to Algorithm 2,
these instances are added to the training set and removed from
the unlabeled data pool. Formally, the query function is dened
as:

(5)
where represents the prediction condence value for a
given instance , and is the condence value of the instance
located in the center of the ranking queue. Ideally, for uniformly
distributed predictions, would be 0.5. Nonetheless, in prac-
tice this value is notxed. Instead, it varies due to the changes on
the unlabeled data pool as learning progresses (instances moved
to the training set).
Finally, Algorithm 4 extends the idea of MVL to AL and uses

a medium certainty query strategy. Here, the feature domain
of a given dataset needs to be separated into two indepen-

dent and sufcient parts , each of which is regarded as
a �view.� Then, each �view� is used to create a classier ,
and each classier is tested on the unlabeled data pool . The
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Fig. 1. Pseudocode description of the four types of supervised learning used
in this article: Passive Learning (Algorithm 1), Active Learning based on the
least certainty query strategy (Algorithm 2) and on the medium certainty query
strategy (Algorithm 3), and co-Active Learning (Algorithm 4).

unlabeled instances predicted by each model with medium con-
dence values are then delivered to a human annotator for la-
beling. After that, these instances are added (together with the
new label) to the training set and removed from the unlabeled
data pool. There are three possibilities regarding the selection

Fig. 2. Pseudocode description of the two types of SSL used in this paper:
Self-Training Algorithm 5 and Co-Training Algorithm 6.

of a particular instance by the two �views�: 1) if an instance
is not selected by any of the two �views�, it will be discarded
in this iteration; 2) if an instance is selected by any of the two
�views�, that instance plus the given label will be added to the
training set once; 3) if an instance is selected by both �views�, it
will be added twice to the training set together with the common
class label (because it was annotated by a human). The whole
process is repeated until a predetermined number of iterations
of the learning process is achieved.

B. Machine annotator: Self-Training and Co-Training

Fig. 2 shows the pseudocode describing the two types of SSL
algorithms considered in this paper: Self-Training (Algorithm 5)
and Co-Training (Algorithm 6). Self-Training is based on the
principle of highest certainty or agreement, in such a way that
the predicted classes with higher certainty levels are automati-
cally labeled and added to the training set. Similarly to AL, the
query function for Self-Training is as follows:

(6)

In comparison with Self-Training, Co-Training uses two
models trained and tested on two different �views� of the data.
In each iteration of the algorithm, the two �views� select the
instances independently. Therefore, in one iteration, an instance
is either discarded (low certainty predictions), added once (high
certainty predictions by one of the two classiers), added twice
with the same label (high certainty and similar predictions by
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the two classiers), or added twice with different labels (high
certainty but different predictions by the two classiers).

C. Cooperative Annotator

As mentioned in the introduction, AL algorithms generally
improve a model�s performance, but they still require a consid-
erable amount of human intervention. SSL techniques, instead,
exploit machine labeling of data, yet usually cannot improve the
performance of an existing classier as much as AL techniques
canwhen the same number of instances are labeled [23]. In order
to take advantage of the best of both approaches we propose a
CL algorithm that combines AL and SSL that allows sharing the
labeling effort between human and machine annotators while
attempting to mitigate the limitations of both algorithms. In
SSL, the absence of sufcient instances for a particular category
in the initial training set can lead to poor performance for that
category. This is because the instances with higher condence
estimates selected by the SSL algorithm are generally inclined
to those categories with more samples and correct classication.
This problem often leads to a cycle in which the dominating
categories are recognized increasingly better, and the opposite
happens with the less represented categories. This drawback is
absent in AL, which mostly ignores the dominating categories.
Therefore, the combination of two learning approaches may al-
leviate the class imbalance problem. Another common problem
resulting from using SSL techniques is that noise can be added to
the training set. Even though only the instances with the highest
condence values are chosen, some of these instances can be
misclassied. As in the previous case, this noise is accumulated
and increasingly affects the performance of the classier. Once
again, AL can compensate for this limitation. We will execute
AL in each iteration before implementing SSL, re-train the clas-
sier with newly (manually) labeled instances, and re-classify
the unselected instances with the new model for SSL.
In this article, we propose three particular combinations of

AL and SSL algorithms (see Fig. 3). First, we implemented AL
followed by Self-Training, which we refer to as svCL (see Al-
gorithm 7). Second, we combined AL and Co-Training, here-
inafter xvCL (see Algorithm 8). Third, we consider coAL fol-
lowed by Co-Training (mvCL) (see Algorithm 9). Fig. 3 de-
scribes the details of the algorithms pertaining to these three CL
strategies. For all experiments described, the learning cycle was
stopped when a predened number of instances are selected (see
Table III). Also, in order to deal with the potential problem of
imbalanced class distributions, we employed data upsampling
by random subsampling in all algorithms in order to add more
instances belonging to the less represented classes to the training
set.

IV. DATABASES

In order to evaluate the application of CL to emotion recog-
nition from speech and demonstrate its robustness across cor-
pora, we chose the FAU Aibo Emotion Corpus (FAU AEC) and
the Speech Under Simulated and Actual Stress (SUSAS) data-
base. Both databases consist of natural speech samples, and are
widely used in the eld of speech emotion recognition [7], [34],
[40], [41].

Fig. 3. Pseudocode description of the three types of Cooperative Learning
proposed: single-view Cooperative Learning (svCL), mixed-view Cooperative
Learning (xvCL), and multi-view Cooperative Learning (mvCL).

A. FAU Aibo Emotion Corpus

The FAU AEC [42] (the ofcial corpus of the IS09 EC [34])
contains audio recordings of German-speaking children inter-
acting with Sony�s pet robot Aibo [42]. For the construction
of this database, children were led to believe that Aibo was
responding to their commands by producing a series of xed
and predetermined behaviors. Nevertheless, the Aibo robot did
sometimes disobey the children�s commands, which provoked
various types of emotional reactions.
The recordings include speech samples from 51 children (30

females) with ages ranging from 10 to 13 years that were taken
at two different German schools to which we will refer to in
this paper as MONT and OHM. The whole corpus comprises a
total of 9.2 hours of speech without pauses, which was recorded
through a DAT-recorder (16 bit, 48 kHz down-sampled to
16 kHz) placed on a wireless headset. The recordings were
segmented into turns using a pause threshold of 1 s. Five
students of advanced linguistics were then asked to listen
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TABLE I
DISTRIBUTION OF SPEAKERS AND INSTANCES PER PARTITION OF THE

FAU AIBO EMOTION CORPUS (AEC) [42] AND THE SPEECH UNDER

SIMULATED AND ACTUAL STRESS (SUSAS) [43]. M: MALE; F: FEMALE;
NEG: NEGATIVE EMOTIONS; IDL: NEUTRAL AND POSITIVE EMOTIONS;

HIGH: HIGH STRESS; LOW: LOW STRESS

to the various samples and to annotate each one of them by
selecting one specic label (from a set of 11 predened labels)
to describe the emotional character of the sample. The labels
used were: neutral, angry, touchy, reprimanding, emphatic,
surprise, joyful, helpless, motherese, bored, and others. If more
than three annotators assigned a specic label to a speech
sample (majority voting), that label was chosen to describe the
emotional character of the segment.
In our experiments we use the same natural speech corpus

used in the IS09 EC [34] that consists of 18 216 instances taken
from the full database. Each instance consists of a manually
dened chunk of speech longer than a word and shorter than
a �turn�, which is dened based on syntactic-prosodic criteria.
The original 11 classes were mapped onto two cover classes:
one consisting of NEGative emotion labels (angry, touchy, rep-
rimanding, emphatic), and the others consisting of all non-neg-
ative states (IDL; for more information about the database de-
velopment and data processing please refer to [34]). In order
to guarantee speaker independence, we used the data recorded
at the OHM school as the unlabeled data pool (9 959), and the
data recorded at the MONT school as the validation set (8 257).
Table I shows the details of the FAU AEC database.

B. Speech Under Simulated and Actual Stress Database

The SUSAS database contains audio recordings of speakers
in various (actual and simulated) stress conditions and orga-
nized in different domains. To the purpose of this article we
focus on the �Actual Speech Under Stress� domain, which in-
cludes audio recordings of speech produced in the �ScreamMa-
chine� scenario, one of the subject motion-fear tasks. In this
scenario, 7 speakers (3 female) were taken in a roller-coaster
(the �Scream Machine�) ride for about 90 s and asked to repeat
words from a 35-word vocabulary card (held in their hands) at
different moments. Each speaker performed the task twice.
In the task scenario, different levels of stress were sponta-

neously evoked by the dynamics of the roller-coaster ride, re-
sulting in the various levels of stress being expressed in the
voice. A total of 1 642 utterances were collected during the
rides (sampled at 8 kHz, 16 bit). Subsequently these utterances
were segmented into words, resulting in 3 593 instances that
were then annotated for stress levels (i.e., neutral, medium, high
stress, and screaming) based on the time and position during the
ride. Similarly to the FAUAEC database, in our experiments we
converted the four stress classes of SUSAS into two stress-in-

tensity cover classes�HIGH (i.e., high stress and screaming)
and LOW (i.e., neutral and medium stress). So as to perform
a speaker independent evaluation, we chose 1 064 instances
recorded from one male speaker and one female speaker as the
validation set, and used the remaining instances (2 529) for the
unlabeled pool set. The details of the SUSAS database instances
used in this article are shown in Table I (for more information
please refer to [43]).

V. ACOUSTIC FEATURES

In order to evaluate the robustness of the methods proposed
in this paper to different feature sets, we selected two standard
sets of acoustic features used in the INTERSPEECH 2009 Emo-
tion Challenge (EC) [34] and the INTERSPEECH 2010 (IS10)
Affect Sub-Challenge (ASC) [44]. Both feature sets were cre-
ated for affect-related pattern recognition tasks (including emo-
tional states). All features were extracted using the openSMILE
framework [45].

A. The INTERSPEECH 2009 Emotion Challenge Feature Set

The IS09 EC feature set contains 384 features that result from
a systematic combination of 16 Low-Level Descriptors (LLDs)
and corresponding rst order delta coefcients with 12 func-
tionals. The 16 LLDs consist of zero-crossing-rate (ZCR), root
mean square (RMS) frame energy, pitch frequency (normalized
to 500 Hz), harmonics-to-noise ratio (HNR) by autocorrelation
function, and mel-frequency cepstral coefcients (MFCC) 1�12
(in full accordance to HTK-based computation). The 12 func-
tionals used are mean, standard deviation, kurtosis, skewness,
minimum, maximum, relative position, range, and offset and
slope of linear regression of segment contours, as well as its two
regression coefcients with their mean square error (MSE) ap-
plied on a chunk. The complete feature set contains

attributes per chunk (or instance). Table II presents the de-
tails of the complete feature set.

B. The INTERSPEECH 2010 Affect Sub-Challenge Feature
Set

The IS10 ASC feature set is an extension of the IS09 EC
feature set designed to cover a wider range of features rele-
vant for paralinguistic information retrieval [44]. The IS10 ASC
feature set consists of 1 582 acoustic features and transliter-
ation (including those capturing non-linguistic characteristics)
obtained by systematic �brute-force� feature (over)generation
in three phases: 1) extraction of 38 LLDs and smoothing by
simple moving average low-pass ltering; 2) computing the rst
order regression coefcients on features extracted in 1) (full
HTK compliance); 3) apply 21 functionals to 1) and 2). After
that, we discarded 16 features because their values were always
zero (e.g., minimum F0). Furthermore, we added 2 new fea-
tures: number of discernible pitches and number of discernible
pitches per second. Table II shows the LLDs, regression coef-
cients and functionals for the IS10 AEC feature set. For more
details see [44].

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of CL (and com-
pare it to the various learning strategies described in Section III)
in the context of acoustic emotion recognition.
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TABLE II
THE IS09 EC AND THE IS10 ASC ACOUSTIC FEATURE SETS

USED IN OUR EXPERIMENTS: LOW-LEVEL DESCRIPTORS (LLDS)
AND RESPECTIVE FUNCTIONALS. THE SYMBOL INDICATES

THE FEATURES BELONGING TO VIEW-1 FOR THE CO-TRAINING
AND CO-ACTIVE LEARNING (COAL) ALGORITHMS

TABLE III
PREDEFINED NUMBER OF SELECTED INSTANCES FOR SEMI-SUPERVISED (SSL),

ACTIVE (AL), AND COOPERATIVE LEARNING (CL).
H/M: HUMAN/MACHINE LABELING

A. Experimental Setup

As described in Section II, we use SVMs as the modeling
paradigm for evaluating the various machine learning algo-
rithms. In accordance with the IS09 EC baseline specications,
the SVMs were initially trained with a Sequential Minimal
Optimization (SMO) algorithm with a linear kernel and a
complexity constant of 0.05. Logistic regression modeling was
enabled to allow converting the SVMs� output distances to
condence values. In terms of performance evaluation, we use
the unweighted average recall (UAR) index as the primary per-
formance measure (following the recommendation in [34]). As
mentioned in Section III, an upsampling strategy was adopted
for even class distribution (i.e., one time more for the �NEG�
instances for the FAU AEC). The training process was repeated
20 times with different initializations of the random generator
for each experimental condition.
We conducted four different experiments to evaluate the per-

formance and robustness of our newly proposed CL methods.
The rst two experiments were designed to evaluate the perfor-
mance of the various learning methods with different numbers
of initial training instances using the FAU AEC corpus and the
IS09 EC feature set. In this paper we use 200 and 500 instances
of the FAUAEC database for initial training, which corresponds
to approximately 2% and 5%, respectively, of the whole pool.
In the third experiment, we evaluate the various learning strate-
gies with the FAUAEC corpus and a new feature set (IS10ASC)
so as to establish the robustness of CL for different feature sets

(using 200 initial training instances). In the nal experiment,
we use a new corpus (SUSAS) with the IS10 ASC feature set
to evaluate the robustness of CL across tasks (with 100 initial
training instances, approximately 5% of the whole pool). For
the four experiments, the UARs obtained after the initial super-
vised training were: 1) 60.9% (std ); 2) 62.6% (std );
3) 64.4% (std ); and 4) 58.6% (std ). The perfor-
mances when training the SVMs with the full set of training data
were: 1) 67.7%; 2) 67.7%; 3) 67.2%; and 4) 64.6% (UARs).
In all experiments, the instances not used for the initial

training were used for the unlabeled data pool. Given that more
unlabeled data are necessary for machine-supervised learning
than for human-supervised learning, at each learning iteration,
we select 200 instances for labeling for AL and coAL algo-
rithms, and 500 instances for Self-Training and Co-Training.
For the MVL-based algorithms (coAL and Co-Training),
each �view� chooses an equal number of instances, that is,
in each iteration each �view� selects, respectively, 100 and
250 instances. Given the smaller size of the SUSAS database
(approximately 25% of the FAU AEC) used in experiment four,
fewer instances are selected in each learning iteration: 50 (AL
and coAL) and 125 (Self-Training and Co-Training).
For the creation of each �view� used for multi-view learning,

we split the full feature set into two partitions - one comprising
MFCCs (view-1) and the other the remaining LLDs (view-2).
This partitioning is motivated by the size of the feature sets (in
order to be balanced between the two �views�), and the fact
that MFCCs are, on their own, a common set of features used
in speaker identication and speech recognition that increas-
ingly found its way into general paralinguistics. Nonetheless,
although such a feature separation is only related to LLDs and
not to higher level features of functionals or linguistics, the fea-
tures in the two views may not be conditionally independent, as
for example, a change in the signal which affects F0 or energy,
etc., will also affect the MFCCs. However, the effect will be dif-
ferent, thus likely adding complementary information. Further-
more, the experimental results in [46] demonstrate that such fea-
ture separation criterion applied to multi-view learning is valid
and effective. The ratio of attributes (view-1/view-2) is 288/96
for the IS09 EC feature set, and is 630/952 for the IS10 ASC
feature set.

B. Self-Training and Co-Training

In Fig. 4, we show the average and standard deviation of
the UAR measure for the Self-Training and Co-Training ap-
proaches under study. The error measures shown correspond to
the average of the individual performances across 20 indepen-
dent runs of the learning process for all four experiments de-
scribed in this paper.
The rst observation is that Co-Training using the feature

separation based on cepstral LLDs improves the initial clas-
sication performance in all our four experimental scenarios.
Co-Training using random feature separation did not lead to
improvements using the IS10 feature set and the FAU AEC
database (see Fig. 4(c)). Self-Training led to improvements
in the experiments using the IS09 feature set, but not in
those using the IS10 one (see Figs. 4(c) and (d)). Overall,
Co-Training with cepstral LLDs feature separation seems to
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Fig. 4. Comparison between Co-Training using the feature separation method based on cepstral LLDs, Co-Training using a random feature separation method,
and Self-Training. The charts show the average UARs across 20 independent runs (and respective standard deviations) vs. number of machine labeled instances
for the four experiments described in this paper: (a) FAU AEC database with the IS09 EC feature set and 200 initial supervised training instances; (b) FAU AEC
database with the IS09 EC feature set and 500 initial supervised training instances; (c) FAU AEC database with the IS10 ASC feature and 200 initial supervised
training instances; and (d) the SUSAS database with the IS10 ASC feature set and 100 initial training instances. (a) FAU AEC, feature set: IS09, : 200 (b) FAU
AEC, feature set: IS09, : 500 (c) FAU AEC, feature set: IS10, : 200 (d) SUSAS, feature set: IS10, : 100.

be more robust than the other two approaches when using dif-
ferent numbers of initial supervised training instances, different
databases and different feature sets. Furthermore, it outper-
forms the other approaches after only a few iterations, which
suggests that this algorithm leads to a faster learning process
and better generalization performance. Finally, it is also evident
that the performance of Co-Training degrades after a certain
number of learning iterations. Previous work (e.g., [25], [47])
has demonstrated that this phenomenon can be attributable to
the exchange of mislabeled instances between the different
�views.�

C. PL, AL and coAL

In this section we evaluate the performance of the PL, AL
with least (lc) and medium (mc) certainty query strategies, and
coAL algorithms. Figs. 5 shows the performance gures aver-
aged across 20 independent runs of the whole training process
(and respective standard deviations) for the four experimental
scenarios (the results of CL, also shown, will be described later).
As can be seen, the sequential addition of the human-labeled

instances to the training set (200 per iteration for FAU AEC
and 50 for SUSAS) led to improvements in the performance
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Fig. 5. Comparison between the supervised (PL, least certainty AL, medium certainty AL, and coAL) and cooperative (AL Self-Training, AL Co-Training,
and coAL Co-Training) learning algorithms. The performance measures shown are UARs averaged across 20 independent runs of each algorithm (as well as the
corresponding standard deviations) vs. the number ofmanually labeled instances for the FAU AEC with IS09 EC feature set by 200 (a) or 500 (b) initial supervised
training instances, as well as with the IS10 ASC feature set by 200 (c) initial supervised training instances, and the SUSAS with the IS10 ASC feature set by 100
(d) initial training instances. (a) FAU AEC, feature set: IS09, : 200 (b) FAU AEC, feature set: IS09, : 500 (c) FAU AEC, feature set: IS10, : 200 (d) SUSAS,
feature set: IS10, : 100.

of the classier for all four supervised learning approaches.
Nonetheless, contrary to our expectations, the coAL approach
did not show an improvement over the AL algorithms. The AL
approach with the medium certainty query strategy, especially

in relation to the FAU AEC database, delivers the best global
performance. The exception to this rule, as it can be seen
on Figs. 5(d), is the performance for the SUSAS database,
which is particularly worse than the other algorithms for fewer
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human labeled instances. In this task, the AL with the least
certainty query strategy performs better. Regarding the amount
of labeled data used, the AL approaches with either least or
medium certainty strategy achieve a similar performance to
that of the baselines when the models are trained with the full
set of training data. Nevertheless, it uses, respectively, 55%,
50%, 70%, and 65% fewer human labeled instances in each of
the four experimental scenarios. Therefore, the AL methods
efciently reduced the amount of required human labeling
effort.

D. Cooperative Learning

We now turn to our nal set of algorithms that combine
AL and SSL techniques. As mentioned earlier, we focus on
three particular methods: svCL, xvCL, and mvCL. In these
approaches only a maximum of 2 400 and 600 human labeled
instances could be considered for the FAUAEC and the SUSAS
databases, respectively. This is due to the fact that both AL
and SSL algorithms independently select instances from the
unlabeled pool for human and machine (respectively) labeling
at each learning iteration. Therefore, the comparisons with the
previous models are only made for a maximum of 12 iterations
of the learning algorithm (when the maximum number of
human labeled instances is achieved). Given the inconclusive
results obtained in the previous section regarding the query
strategy, the AL algorithms used in the CL approaches make
use of the medium certainty query strategy for experiments
with the FAU AEC database and the least certainty query
strategy for those with the SUSAS database.
As depicted in Fig. 5, the three CL methods perform glob-

ally better than all other algorithms for different numbers of ini-
tial training instances, databases and feature sets. The improve-
ment is evident in all experiments just after a few iterations of
the learning algorithms, the only exception being the experi-
ment with the FAU AEC and the IS10 feature set where the
improvement is clearer at the end of the learning process. More-
over, the standard deviation of UAR exhibits a descending trend,
which indicates that increasingly adding more human labeling
instances to the training set makes the system more stable. In re-
lation to the global performance improvement and human effort
minimization, the best UARs obtainedwith CL algorithms in the
four experimental scenarios (67.2%, 67.2%, 67.6%, 64.9%) are
very close to the baseline performance of the models trained on
the whole pool of labeled data (67.7%, 67.7%, 67.2%, 64.6%).
Nevertheless, CL uses about 75% fewer labeled instances in all
scenarios and is, therefore, less expensive.
In order to analyze in more detail the performance of the var-

ious algorithms, we calculated the average UAR across itera-
tions 4 and 12 (see Table IV) and computed Student�s -tests to
statistically compare the performances of the various algorithms
(see Table V). An analysis of both tables conrms our previous
observations and clearly indicates that all three CL approaches
(single-, mixed-, and multi-view) generally lead to signicantly
better performance than all other methods. This is particularly
evident for xvCL (AL and Co-Training), the algorithm that led
to the best performance in all four experiments by consistently
and robustly outperforming the other methods. This is consistent

TABLE IV
MEANS AND STANDARD DEVIATIONS OF UAR PERFORMANCE MEASURE

OBTAINED BY AVERAGING THE RESULTS BETWEEN ITERATIONS 4
AND 12 ( INSTANCES FOR FAU AEC, AND

INSTANCES FOR SUSAS). VALUES ARE SHOWN FOR PASSIVE LEARNING
(PL), ACTIVE LEARNING (AL), CO-ACTIVE LEARNING (COAL), AND

SINGLE-/MIXED-/MULTI-VIEW COOPERATIVE LEARNING (SVCL/XVCL/MVCL)
FOR THE FOUR EXPERIMENTAL CONDITIONS

TABLE V
SIGNIFICANCE LEVELS OBTAINED FROM THE STATISTICAL COMPARISON

(STUDENT�S -TEST) OF THE UAR PERFORMANCE MEASURES BETWEEN

ITERATIONS 4 AND 12 ( INSTANCES FOR FAU AEC, AND
INSTANCES FOR SUSAS). VALUES ARE SHOWN FOR PASSIVE

LEARNING (PL), ACTIVE LEARNING (AL), CO-ACTIVE LEARNING (COAL), AND
SINGLE-/MIXED-/MULTI-VIEW COOPERATIVE LEARNING (SVCL/XVCL/MVCL)

FOR THE FOUR EXPERIMENTAL CONDITIONS

with the best performance of Co-Training over Self-Training as
described in Subsection VI-B.

VII. CONCLUSIONS AND FUTURE WORK

In this article, our main aim was to exploit large amounts
of unlabeled (speech) data to enhance the performance of
existing (emotion) classiers while minimizing the costly work
of human labeling. To do so, we tested the use of Supervised
Learning and Semi-Supervised Learning techniques, and we
proposed a novel approach that combines both�Cooperative
Learning. In particular we considered three approaches to Co-
operative Learning: 1) single-view cooperative learning, which
combines Active Learning and Self-Training; 2) mixed-view
Cooperative Learning, which combines Active Learning and
Co-Training; and 3) multi-view Cooperative Learning, which
combines co-Active Learning and Co-Training. Furthermore,
we evaluated the use of a medium certainty query strategy for
instances selection in Active Learning.
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Our experimental results on two well-dened emotion-recog-
nition-from-speech tasks�the FAU Aibo Emotion Corpus and
the Speech Under Simulated and Acted Stress database�show
that all three suggested Cooperative Learning algorithms are
superior to all other approaches when using the same number of
human-labeled instances for retraining. The results also show
that not only the accuracy of the classier is improved, but also
its stability is enhanced. Furthermore, by varying the amount
of instances used in the initial supervised training phase, using
different feature sets, and testing different classication tasks,
we demonstrated that Cooperative Learning is a robust method.
In particular, the best performance and robustness were ob-
tained with the mixed-view Cooperative Learning algorithm,
which combines Active Learning and Co-Training. In relation
to the type of query strategy used for instance selection in
Active Learning, our results indicate that medium certainty
may be a feasible way to improve the classication perfor-
mance of pre-trained models. We have shown its robustness
with different initial training set sizes and feature sets using the
FAU Aibo Emotion Corpus. Nevertheless, the lowest certainty
query strategy leads to better results with the Speech Under
Simulated and Acted Stress database and so our results are not
conclusive in this respect.
Future extensions of this work should consider larger unla-

beled data pools than that considered in our experiments. This
would be important to test further the robustness of Cooperative
Learning for very large databases, an ideal scenario for its ap-
plication with great relevance for the development of emotion
recognition systems for realistic applications. Such data sets
of realistic signals can be created from online sources such as
YouTube, recordings of everyday life conversations, among
others. Also, it would be interesting to further demonstrate the
robustness of Cooperative Learning with other types of relevant
feature sets (e.g., [48]). In this article we have not explored
the use of different query strategies with the aim of improving
robustness within and across tasks. This is an obvious extension
of this work and likely candidate methods are sparse instance
tracking and committee-based algorithms. Also, since the
methods introduced in this paper were evaluated in the context
of paralinguistic recognition, it would be interesting to evaluate
their performance in other classication problems. Finally,
it would be particularly interesting to analyze the effects of
various learning strategies proposed in terms of bias-variance
trade-off. This could reveal specic benets of the various
strategies in terms of reducing the various types of errors (bias,
variance and irreducible).
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