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Abstract�In this article we address the problem of distant
speech recognition for reverberant noisy environments. Speech
enhancement methods, e. g., using non-negative matrix factor-
ization (NMF), are succesful in improving the robustness of ASR
systems. Furthermore, discriminative training and feature trans-
formations are employed to increase the robustness of traditional
systems using Gaussian mixture models (GMM). On the other
hand, acoustic models based on deep neural networks (DNN) were
recently shown to outperform GMMs. In this work, we combine
a state-of-the art GMM system with a deep Long Short-Term
Memory (LSTM) recurrent neural network in a double-stream
architecture. Such networks use memory cells in the hidden units,
enabling them to learn long-range temporal context, and thus
increasing the robustness against noise and reverberation. The
network is trained to predict frame-wise phoneme estimates,
which are converted into observation likelihoods to be used
as an acoustic model. It is of particular interest whether the
LSTM system is capable of improving a robust state-of-the-art
GMM system, which is conrmed in the experimental results. In
addition, we investigate the efciency of NMF for speech enhance-
ment on the front-end side. Experiments are conducted on the
medium-vocabulary task of the 2nd �CHiME� Speech Separation
and Recognition Challenge, which includes reverberation and
highly variable noise. Experimental results show that the average
word error rate of the challenge baseline is reduced by 64%
relative. The best challenge entry, a noise-robust state-of-the-art
recognition system, is outperformed by 25% relative.

Index Terms�Long short-term memory, multi-stream recog-
nition, noise robust speech recognition, non-negative matrix
factorization.
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I. INTRODUCTION

A UTOMATIC speech recognition (ASR) in realistic
acoustic conditions, e. g., involving room reverberation

and interfering noise sources, is still a major research chal-
lenge. System robustness can be achieved by several strategies
at different levels [1]. On the one hand, the speech signal
can be enhanced by denoising [2], [3]. Monaural signal sep-
aration techniques such as non-negative matrix factorization
(NMF) [4] are especially useful for cases where multi-channel
audio with a specied microphone placement is not available.
Furthermore, robust features such as RASTA-PLP [5], feature
enhancement techniques [6], or feature transformations such
as Linear Discriminant Analysis (LDA) [7] can improve the
system robustness. On the other hand, robust models and de-
coding methods are often employed, including multi-condition
training and/or discriminative training, e. g., using the Max-
imum Mutual Information (MMI) principle [8]. In addition,
methods such as vector Taylor series (VTS) can be applied to
adapt the acoustic model to noisy speech [9]. Such approaches
addressing the robustness of the back-end of the recognition
system were mostly developed for conventional systems using
Gaussian mixture models (GMMs). Recently, deep neural
networks (DNNs) gained popularity in speech recognition
due to improved acoustic modeling performance compared to
GMMs [10]. In [11], the potential of DNNs for robust ASR was
demonstrated. In this work we consider a system using a Long
Short-Term Memory (LSTM) recurrent neural network (RNN)
as an acoustic model and NMF-based speech enhancement
for robust ASR. We want to study the effects of combining
the LSTM network with a state-of-the-art GMM system in a
double-stream architecture. Furthermore, we investigate the
inuence of speech enhancement on the different acoustic
models.

A. Related Work

Recently, RNNs have been applied in a tandem system for
robust ASR [12]. Deep RNNs with end-to-end training are
also capable of being used for speech recognition on their
own, without an HMM framework [13]. One shortcoming of
conventional RNNs is that the amount of context they use
decays exponentially over time (the well-known vanishing
gradient problem [14]). To overcome this problem, the LSTM
concept has been introduced [15]. An LSTM-RNN exploits
a self-learned amount of temporal context, which makes
it especially suited for a speech recognition task involving
reverberation and additive noise. Previously, we suggested
using LSTM networks for noise-robust spelling recognition
in a tandem HMM-LSTM system [16]. The application of
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LSTM networks in a double-stream system was rst intro-
duced in [17] for conversational speech recognition, where
LSTM phoneme predictions improved a simple triphone HMM
system. Multi-stream HMM systems were initially proposed to
combine independent feature streams [18]. For example, in this
way, GMMs can be fused with NNs [19] or with NMF-based
sparse coding techniques [20] for increased robustness.
Building upon the rst CHiME Speech Separation and

Recognition Challenge [21], in its second installment [22], a
medium-vocabulary speech recognition track was introduced
by using the Wall Street Journal (WSJ0) read speech corpus.
Together with degradation introduced by room reverberation
and highly non-stationary additive noise, this proved to be
a challenging recognition scenario. In our successful con-
tributions to the 1st and 2nd CHiME challenges, we used a
GMM-LSTM multi-stream system in combination with NMF
speech enhancement [23]�[25]. An LSTM network was used to
generate frame-wise phoneme predictions, largely improving
the performance of the maximum likelihood (ML) trained
HMM baseline system. The HMM system employed NMF
speech enhancement in its front-end. However, up to now, the
LSTM approach has never been combined with discrimina-
tively trained HMM systems. Since in previous work, it was
always combined with a ML-trained HMM-GMM system,
it is not clear whether the LSTM approach will also lead to
such large improvements in combination with a state-of-the-art
discriminatively trained GMM system.
In the study presented in [26], a speech enhancement method

using spatial and spectral cues was capable of improving a
noise-robust small-vocabulary recognition system that utilized
DNNs. In our work, we consider only spectral features (without
additional information such as spatial cues), to enable a fair
comparison. On the other hand, in [11], a DNN ASR system
could not be improved by applying feature enhancement in the
front-end.

B. Contribution

We now combine the LSTM approach with a state-of-the-art
discriminatively trained ASR system, additionally making use
of an NMF-based speech enhancement approach. In particular,
we want to address the following research questions: (I), is the
LSTM system capable of improving a state-of-the-art noise-ro-
bust HMM-GMM ASR system? Our experimental results will
afrm this question. Furthermore, (II), what is the inuence of
speech enhancement in combination with our back-end recogni-
tion system? The robustness of the LSTM network has already
been demonstrated (e. g., in [16]) and therefore it is unclear
whether the combination of a state-of-the-art HMM-GMM and
an LSTM system can be further improved by applying speech
enhancement in the front-end. Our results will show that, while
the employed speech enhancement method improves the GMM
system, this is not the case for the LSTM system.

C. Overview

A ow chart of the evaluated ASR system is depicted in
Fig. 1. On the back-end side, a double-stream architecture is
used for acoustic modeling. In addition to a GMM acoustic
model, a deep bidirectional LSTM network generates frame-
wise phoneme estimates, which are converted into observation

Fig. 1. Block diagram of the evaluated system: The central component is a
multi-stream HMM fusing GMM and LSTM acoustic models. Speech enhance-
ment, using NMF, is optionally applied prior to feature extraction. For the GMM
stream, feature transformations (as explained in later sections) can be employed.

likelihoods to be used as an acoustic model in the HMM frame-
work. Both acoustic models are always trained in a multi-con-
dition fashion, using noise-free and noisy data. On the front-end
side, our system can optionally use NMF speech enhancement
(independently for both streams), exploiting an exemplar-based
approach where noisy speech is decomposed into additive com-
binations of speech and noise training segments.
The described system is evaluated on the original

medium-vocabulary task of the 2nd CHiME Speech Sepa-
ration and Recognition Challenge [22]. We will demonstrate
the inuence of different system components on the recognition
performance and show that our system strongly outperforms
the challenge baseline as well as the best-performing challenge
entry.
The employed methods (HMM-GMM, NMF speech en-

hancement and LSTM) are described in Sections II, III, and
IV, respectively. Details about the experimental setup and
parametrization of algorithms are given in Section V. The
results of our experiments are presented and discussed in
Section VI, before concluding in Section VII.

II. HMM-GMM-BASED SPEECH RECOGNITION

We use a state-of-the-art HMM-GMM ASR system, as
it was described by Tachioka et al. in [27]. This system is
implemented with the Kaldi speech recognition toolkit [28]. In
addition to ML training, it uses discriminative learning (DL)
and various feature transformation (FT) methods. Discrimi-
native training is performed using boosted Maximum Mutual
Information (bMMI) as proposed in [8]. The MMI principle
aims at maximizing the posterior probabilities of the correct
utterances, given the trained models. By applying bMMI, a
weight is introduced, strengthening the inuence of hypotheses
with a higher error. For bMMI, the objective function is

(1)

where are the training utterances, and are the
corresponding feature sequences. is the HMM sequence of
sentence , is the reference transcription of utterance ,
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is the acoustic scale, is the likelihood of the acoustic model
with the parameters , and is the language model likelihood.
The last term in the denominator is the boosting weight, where

is the boosting factor and is the phone accuracy
of sentence given the reference . In addition to model-space
bMMI, we apply feature-space bMMI as well. The introduction
of the boosting factor incorporates the concept of a soft margin
that is proportional to the errors in a hypothesized sentence.
Furthermore, techniques for feature transformation are

employed. Feature transformations can improve the class
separation and address the speaker variability in the training
data. Channel variability, such as different channels and ad-
ditive noise or reverberation, can also be compensated by
feature transformations. Linear discriminant analysis (LDA)
is applied on �stacked� MFCC vectors extracted from multiple
signal frames (centered around the current frame) and reduces
these high-dimensional features to a smaller dimension. The
necessary class labels are obtained by aligning the triphone
HMM states. There are too few data to train full-covariance
models, because of the high-dimensional acoustic feature
space. Therefore, diagonal-covariance models, which do not
consider correlations between features, are used instead.We use
a maximum likelihood linear transform (MLLT), as described
in [29], for decreasing the correlations between features. The
combination of LDA and MLLT exploits context to reduce
the inuence of non-stationary noise, and correlations be-
tween feature dimensions that were introduced by noise are
removed. To address the problem of large variations among
speakers, speaker adaptive training (SAT) is applied: During
the ML training procedure, feature-space maximum likelihood
linear regression (f-MLLR), which is the same as constrained
MLLR [30], is applied to estimate a speaker-dependent trans-
form. The estimated transform is subsequently used during
model re-estimation. First, a tight-beam decoding is performed
to re-estimate the SAT transform (the speaker identities are
known), before doing a nal decoding pass.

III. NMF SPEECH ENHANCEMENT

The speech enhancement component of our system uses ex-
emplar-based spectrogram factorization algorithms previously
employed in noise robust ASR experiments on the Aurora-2,
SPEECON and CHiME/GRID datasets [25], [31]. In short,
noisy Mel-magnitude spectra are decomposed as a sparse,
non-negative linear combination of speech and noise dictionary
atoms. The activations of the speech atoms are then used to
obtain an estimate of the clean speech. In order to capture time
context, atoms span multiple time frames and utterances are
decoded using a sliding-window method:

(2)

where is a dimensional spectrogram representing the
current window of the observed noisy speech, is the number
of spectral bands, and the number of consecutive frames in
a windowed spectrogram. The spectrograms and are
estimates for its speech and noise content, respectively, are

dimensional dictionary atoms, and their activation

weights. We denote the number of speech atoms by and sim-
ilarly the noise dictionary size by .
The coefcients and are obtained through supervised

NMF by minimizing the KL-divergence between and reg-
ularized with a sparsity constraint on the activations [25]. After
factorization, we estimate clean and noise estimates of the noisy
speech spectra by overlap-adding the sliding windows. With
these, we estimate the Wiener lter used to do speech enhance-
ment [25]. The choice for speech enhancement rather than fea-
ture enhancement allows us more freedom in the feature extrac-
tion of the double-stream recognizer.
The dictionary atoms are formed by exemplars, spectrograms

directly extracted from spectrograms [32]. Preliminary exper-
iments on the CHiME development set revealed that the use
of exemplars yields better results compared to the learnt rep-
resentations of speech and noise used in previous and related
work [33], [34].

IV. LSTM ACOUSTIC MODELING

As an alternative to GMM acoustic modeling, an LSTM net-
work is used to generate frame-wise phoneme estimates, as rst
proposed in [17]. The observation likelihoods are derived from
these phoneme estimates.

A. LSTM RNN

LSTM networks were introduced in [15]. Compared to a
conventional RNN, the hidden units are replaced by so-called
memory blocks. These memory blocks can store information
in the cell variable . In this way, the network can exploit
long-range temporal context.
Each memory block consists of a memory cell and three

gates: the input gate, output gate, and forget gate, as depicted in
Fig. 2. These gates control the behavior of the memory block.
The activation vector of each gate is computed as, for example
for the input gate,

(3)

where is a weight matrix, is the input vector at time step
, is the hidden state vector of the previous time step,
denotes the input bias vector, and is a sigmoid function,

causing each gate either to be open or closed. The forget gate
can reset the cell variable which leads to �forgetting� the stored
input , while the input and output gates are responsible for
reading input from and writing output to , respectively:

(4)

(5)

where denotes element-wise multiplication and is also
applied in an element-wise fashion. Each memory block can be
regarded as a separate, independent unit. Therefore, the activa-
tion vectors , , , and are all of same size as , i. e., the
number of memory blocks in the hidden layer. Furthermore, the
weight matrices from the cells to the gates are diagonal, which
means that each gate is only dependent on the cell within the
same memory block.
In addition to LSTM memory blocks, we use bidirectional

RNNs [35]. A bidirectional RNN can access context from both
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Fig. 2. Long Short-Term Memory block, containing a memory cell and the
input, output, and forget gates.

temporal directions, which makes it suitable for speech recog-
nition, where whole utterances are decoded. This is achieved by
processing the input data in both directions with two separate
hidden layers. Both hidden layers are then fed to the output
layer. The combination of bidirectional RNNs and LSTM
memory blocks leads to bidirectional LSTM networks [36],
where context from both temporal directions is exploited. An
NN composed of more than one hidden layer is referred to as
a deep NN [10]. By stacking multiple (potentially pre-trained)
hidden layers on top of each other, increasingly higher level
representations of the input data are created (deep learning).
When multiple hidden layers are employed, the output of the
network is (in the case of a bidirectional RNN) computed as

(6)

where and are the forward and backward activations
of the -th (last) hidden layer, respectively. Furthermore, a
softmax activation function is used at the output,

(7)

to generate probabilities for the targets, in our case for all pos-
sible phonemes .
For network training, we use on-line gradient descent by

backpropagation through time, where weight changes are
applied after processing one utterance in each training epoch.
Training utterances are �shufed� (presented in random order)
to improve generalization in on-line learning. The cross en-
tropy is employed as an error function for training. Our LSTM
software is publicly available1.

B. LSTM Phoneme Prediction

For a phoneme prediction LSTM, the input vectors of
the network correspond to the employed acoustic features,
whereas the output represents frame-wise activations for
each phoneme. In order to use phonemes as training targets, a
forced alignment of the baseline HMM recognizer with clean
data is obtained.

1https://sourceforge.net/p/currennt

During decoding, a phoneme prediction is derived from the
network output activations,

(8)

leading to one phoneme prediction per frame. The process of
LSTM decoding and generating the phoneme prediction is sum-
marized in the function

(9)

These frame-wise phoneme predictions are used to obtain the
likelihood for the acoustic model in the following way.
Using the development set, the frame-wise phoneme predictions
are evaluated and all confusions are counted and stored in the
phoneme confusion table as row-normalized probabilities:

(10)

Although the phoneme confusions are estimated on the de-
velopment set, the performance generalizes well to the test set.
The likelihood (observation given HMM state) is then
obtained by using the mapping from HMM states to
phonemes. Since the LSTM works with monophones, triphone
structures are ignored here, mapping triphoneHMM states to the
corresponding monophones. The acoustic likelihoods are there-
fore computed as

(11)

Thus, instead of directly predicting the probability
with the network and using Bayes� theorem to obtain obser-
vation likelihoods, as in a typical hybrid system, the network
converts the output scores to discrete phoneme predic-
tions using Eqn. (8). These phoneme predictions are evalu-
ated on the development set. By storing the confusions in and
normalizing the rows of , this matrix constitutes a discrete
probability table for . For HMM decoding, the likeli-
hoods are required, which are now approximated by

, exploiting the surjective mapping
from states to phonemes. Thereby, the confusions of the net-
work are �learned� in the conditional probability table and
used to derive the observation likelihoods . These like-
lihoods are now expected to have a high discriminative power.
With this method, the RNN needs fewer output nodes (as com-
pared to predicting state posteriors), which makes it easier to
train.
Phoneme classication experiments in [37] support our

choice of using bidirectional LSTM RNNs instead of other
network architectures. In that work, bidirectional LSTMs
were shown to perform better than feedforward networks or
traditional RNNs without LSTM cells. To underpin this state-
ment, in our experimental section, we will additionally show
results where a feedforward network is employed for phoneme
prediction instead of an LSTM.

C. Double-Stream Decoding

In order to combine GMM acoustic modeling and LSTM
phoneme predictions, we employ a double-stream HMM
system. In every time frame , the double-stream HMM has
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access to two independent information sources,
and , the acoustic likelihoods of the GMM and the
LSTM predictions, respectively. The double-stream emission
probability is computed as

(12)

where the variable denotes the stream weight of the
GMM stream.

V. EXPERIMENTAL SETUP

A. Evaluation Database

Experiments are conducted on the medium-vocabulary task
of the 2nd CHiME Challenge [22]. This database consists of ut-
terances from theWSJ0 5 k vocabulary read speech corpus, con-
volved with real binaural impulse responses measured in a do-
mestic environment, andmixedwith realistic noise backgrounds
recorded in the same environment. The impulse responses were
measured for a xed position 2 m in front of a head and torso
simulator. The background noise contains a rich collection of
sound sources from a lounge and kitchen such as electronic and
kitchen appliances, noise produced by the inhabitants (such as
footsteps, laughter or background speech), and noise from out-
side. Speech utterances are temporally placed in the background
noise such that different signal-to-noise ratios (SNRs), from -6
to 9 dB, in steps of 3 dB, are obtained. The training set con-
tains 7 138 utterances from 83 speakers summing up to 14.5
hours (forming the WSJ0 SI-84 training set), in clean, reverber-
ated and reverberated+noisy form. For the development set, 409
noisy utterances from 10 other speakers are provided at all six
different SNRs, leading to a total number of 2 454 utterances
(4.5 h in total). The test set includes 330 noisy utterances from
12 speakers, at all SNRs (1 980 recordings or 4 h in total). All
noisy utterances are also provided in an embedded form, where
10 s of surrounding background noise are included. Word error
rate (WER) is used as an evaluation measure. For each evalu-
ated system, we report the average WER across all SNRs, and
for some systems also theWER for each of the six different SNR
values.

B. Preprocessing and Feature Extraction

While the challenge data are stereophonic, we consider only
single-channel signals. These signals are obtained by averaging
over both channels. For the employed database, this corresponds
to a delay-and-sum beam-forming, since the target speaker is
located at a xed position in front of the microphones (azimuth
90 degrees).
All features are extracted from frames of 25 ms and a frame

shift of 10 ms. The baseline HMM-GMM system uses standard
MFCCs, i. e., 13 coefcients with their delta and acceleration
coefcients, whereas for the advanced HMM-GMM the features
are processed using feature frame stacking and LDA projec-
tion (as described in the following section). The LSTM network
uses logarithmic Mel lter bank (Log-FB) features (instead of
MFCCs) that are also complemented by their delta and accel-
eration coefcients. The choice of features follows other recent
studies that use NNs for speech recognition [10], [13], [38]. We
use 26 Log-FB (plus root-mean-square energy) covering the fre-

quency range from 20�8 000 Hz, computed with the same frame
size and shift as applied for the MFCCs.

C. Parameterization

1) HMM-GMM Recognizer: Parameterization and training
of HMM-GMM acoustic models in our system is the same as
described in [27] and works as follows: 40 phonemes (including
silence) are integrated in context-dependent triphone models
with 2 500 states and a total number of 15 000 Gaussians. First,
models are trained with clean training data applying the ML
principle. Next, ML training is continued with reverberated
training data, using the alignments and triphone tree structures
from the clean models. Then, isolated noisy training data
are used for training. In the experimental section, this basic
system (using only ML training) is referred to as the ML GMM
acoustic model. From this setup, an advanced system is created
using discriminative training and feature transformations. First,
another set of ML training iterations is performed after applying
the described feature transformations, using the noisy training
data. Here, the 13 static MFCC coefcients of nine consecutive
frames are concatenated together and LDA is applied to reduce
the resulting 117 dimensional vector to 40 dimensions. The
LDA uses the 2 500 aligned triphone HMM states as classes.
Subsequently, features are transformed using MLLT and model
re-estimation is done. Afterwards, an f-MLLR transform is
estimated for SAT, leading to another set of model re-estimation
iterations. Based on the resulting acoustic models, discrimina-
tive training is performed with the noisy training data, using
model-space and feature-space bMMI with a boosting factor of

. During decoding, the language model weight is tuned
for each system to minimize the average word error rate across
all SNRs on the development set.
2) NMF Speech Enhancement: All factorization operates

on Mel-magnitude spectra, with bands. The window
length is frames, and a window shift of one frame is
used.
From the reverberated isolated utterances in the training data,

10 000 speech exemplars were extracted by random sampling.
Two noise dictionaries were used: a xed noise dictionary of
4 000 exemplars randomly extracted from the embedded utter-
ances in the noisy training set, and a noise dictionary extracted
from the 10 seconds of embedding noise in the noisy utterance
that is being decoded. This second noise dictionary consists of
all exemplars that can be extracted from the 1 000 frames of
noise: exemplars. This brings the total
number of exemplars in the dictionary to 14 981. An additional
experiment is performed in order to demonstrate the effect of ex-
ploiting the embedding noise. For that experiment a xed noise
dictionary of 4 981 exemplars is used, without exploiting the
knowledge of surrounding noise.
The sparsity for the speech was set at 0.075 times the av-

erage norm of the xed part of the dictionary (speech and
noise jointly). The noise sparsity was set at 0.5 times the speech
sparsity. The number of iterations was kept constant at 400.
These values were tuned using a small random subset of the
AURORA-4 corpus.
3) LSTM Conguration: LSTM network parameters are es-

timated with multi-condition training, using the combination
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of the reverberated noisy-free and noisy training sets. The in-
puts to the LSTM network are globally mean and variance nor-
malized. To this end, the global means and variances are com-
puted from the reverberated noise-free and noisy training set
features. In addition to the input and output layers, the employed
bidirectional LSTM network is made of three hidden layers
(making it a deep NN), where 81, 128, and 90 hidden units are
employed. These values correspond to the number of memory
blocks in each of the two temporal directions. The number of
input nodes corresponds to the length of the feature vector (81
in case of Log-FB), while the number of output nodes is equal to
the number of phonemes, which is 40 in our case. LSTM topolo-
gies were chosen according to previously performed experi-
ments on similar databases. The networks are trained through
gradient descent with a learning rate of and a momentum
of 0.9. During training, zero mean Gaussian noise with standard
deviation 0.6 is added to the inputs in order to further improve
generalization. All weights were randomly initialized from a
Gaussian distribution with mean 0 and standard deviation 0.1.
The average cross entropy error per sequence on the develop-
ment set is evaluated after every fth epoch in the training phase.
Using an early stopping strategy, training is aborted as soon as
no improvement on the development set can be observed during
25 epochs.

VI. EXPERIMENTS AND RESULTS

A. GMM vs. LSTM

First, we want to study the effects of combining the employed
LSTM method with the two different GMM acoustic models:
the standard system using only ML training or the advanced dis-
criminatively trained system employing LDA, MLLT and SAT.
Experimental results for the resulting four system combinations
are displayed in Table I. Our ML-trained GMM acoustic model
(rst row) and the discriminatively trained system including
all feature transformations (second row) correspond to the sys-
tems described by Tachioka et al. in [27], except that we apply
beam-forming (cf. Section V-B), which brings an absolute im-
provement of about 7% in averageWER. Combining GMM and
LSTM acoustic modeling in the double-stream system (GMM
stream weight ) leads to further large improvements in
WER. The ML-trained HMM is improved by almost 30% rel-
atively. More impressively, the discriminatively trained HMM
can also vastly be improved (18% relative) by adding the LSTM
predictions. The relative improvements are nearly the same for
all SNRs. For comparison, results for a standard DNN, taken
from [39], are listed in Table I. The DNN acoustic model had
3 hidden layers and 500 k parameters and is thus comparable
to the LSTM employed in our study. Because it is not speaker-
adapted (though it still uses the LDA+MLLT feature transfor-
mation), the DNN is not able to beat the GMM. Beyond that,
the performance is also weaker than the GMM-LSTM double-
stream system. A phoneme prediction DNN (employed in the
same way as the LSTM, and described in more detail later in
this section) performs signicantly worse than the LSTM.
The stream weight in Eqn. (12) controls the trade-off

between the inuence of the GMM and LSTM acoustic model
likelihoods. When setting , the HMM uses only the

TABLE I
WER (IN %) ON THE DEVELOPMENT SET WHEN COMBINING DIFFERENT

GMM ACOUSTIC MODELS WITH THE LSTM

Fig. 3. Average WER (development set) for different HMM decoding stream
weights . Values of 0.0 and 2.0 correspond to using only the LSTM or GMM
acoustic model, respectively.

GMM acoustic model (though with an exponent of 2). Accord-
ingly, means that the system uses only the information
from the LSTM stream. Fig. 3 shows the average WER for
different stream weights. Of particular interest are the results
with and . The GMM alone (36.0%) performs
better than the LSTM (43.4%), This might appear contrastive
to the conclusion that DNN acoustic models perform better
than GMMs [10]. However, only the advanced GMM (in-
cluding DL+FT) beats the LSTM, while the LSTM approach
outperforms the standard ML-trained GMM. In addition, the
employed LSTM only models monophones. Further improve-
ments are expected when modeling context-dependent HMM
states. In this case, the model complexity needs to be increased
and the resulting higher number of trainable parameters might
require unsupervised pre-training of the network. The best
performance of the double-stream system is achieved with
a stream weight of (27.3%). In all other reported
experiments, we therefore use a stream weight of .
These results show that, even if the LSTM acoustic model alone
performs worse than the GMM, the GMM system can greatly
benet from the combination with the LSTM predictions in the
double-stream setup.
In order to demonstrate the merits of the chosen LSTM

RNN architecture, we trained different feedforward DNNs for
phoneme recognition. Table II shows the framewise phoneme
error rate on the development set for these experiments. A layer
size of 400 hidden units was chosen for the DNNs, with either
3 or 4 hidden layers. Feature frame stacking (incorporating 7
neighboring frames) was applied to exploit temporal context.
The phoneme recognition results show that the DNN cannot
reach the performance of the LSTM network. What can also be
seen is that adding the fourth layer to the DNN (and thereby
adjusting the number of parameters to the LSTM) brings no
improvement. In that case, the missing pre-training or ini-
tialization of the DNN becomes noticeable. Compared to the
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TABLE II
FRAMEWISE PHONEME ERROR RATE (PER) ON THE DEVELOPMENT

SET, COMPARING AN LSTM WITH DIFFERENT DNNS WITH

OR WITHOUT FEATURE FRAME STACKING

Fig. 4. Sensitivity (mean standard deviation) of network outputs to input
nodes of neighboring time frames.

DNN, the LSTM is better structured and thus easier to train.
The DNN with 3 layers and feature frame stacking was also
used to obtain the results in the last row in Table I.
In [40], a methodology was proposed to analyze the amount

of context that is exploited by an LSTM network. From the se-
quential Jacobian [37],

(13)

which corresponds to the derivative of the network outputs
with respect to network inputs at different time steps

(given as a relative position compared to time step ), the sensi-
tivity is computed by summing up the absolute magnitudes of
the derivatives over all input units and output units and all
time steps and normalizing them:

(14)

This sensitivity can be considered as a measure of the
contribution of input nodes to the activity at the output of the
network. Fig. 4 shows the sensitivity (mean standard devi-
ation over time steps ) of a randomly chosen sequence (with
SNR of -6 dB) in the development set. In particular, the plot
shows the average sensitivity of the outputs with respect to the
inputs from frames of context. For example, considering
a sensitivity threshold of 0.2, the network exploits roughly 30
frames (300 ms) of past and future information. The standard
deviation (dashed lines) shows that there is a higher variability
in using past context. In comparison to standard DNNs, which
usually exploit context of around 10 frames via feature frame
stacking [10], the employed LSTM architecture has access to
a much larger amount of context information. For a standard

TABLE III
INFLUENCE OF NMF ENHANCEMENT (ENHANCING TRAINING AND/OR TESTING

DATA) ON THE TWO DIFFERENT GMM SYSTEMS (AVG. WER ON THE

DEVELOPMENT SET). TWO NMF CONFIGURATIONS ARE TESTED, WHERE ONE

OF THEM USES A CONTEXT NOISE DICTIONARY AND THE OTHER DOES NOT

DNN, the amount of context could be increased by using larger
windows for feature frame stacking. However, this would
increase the number of trainable parameters of the network.
An advantage of the LSTM topology is that the amount of
exploitable context is independent of the number of parameters.

B. Inuence of Speech Enhancement

Now we study the inuence of NMF speech enhancement as
a preprocessing step to GMM and/or LSTM training and/or de-
coding. Enhancing the training and test data can be regarded
as feature-space noise-adaptive training. It can also be seen as
a way of minimizing the mismatch between training and test
data: enhancing only test data leads to a mismatch that may de-
grade recognition performance. Applying the speech enhance-
ment only to the test data corresponds more to a �plug-and-play�
mode, where we regard the back-end of the recognition system
as a constant and just enhance the input to the system. Fur-
thermore, this simplies the training procedure, since the signal
enhancement approach is not required to be performed on the
training set, which is generally much larger than the test set.
In this setup, the system is not adapted to the artifacts intro-
duced by the speech enhancement. A comparison of enhancing
only the test data or also the training material (using only the
GMM acoustic model) is shown in Table III. Rows 1 and 4 can
also be found in Table I (as rows 1 and 2, respectively). We
rst discuss the results of the NMF conguration that exploits
knowledge of context noise. In case of theMLmodel, when only
the test data are enhanced, the system performance undergoes a
slight degradation; the artifacts introduced by the NMF cancel
out any improvements due to the enhancement. When creating
matched conditions between the training and test data (through
enhancing also the training set), NMF is able to decrease the
WER of the ML model to 42.4%. While processing the training
data increases the computational cost of model training, the
process is trivially parallelizable and can easily be accelerated
using modern GPU hardware [41] and advanced optimization
methods [42]. If the GMM acoustic model is discriminatively
trained and feature transformations (LDA, MLLT, SAT) are ap-
plied, the WER is slightly better when enhancing only the test
data. In this case, the mismatch between training and test data
(that is introduced by the signal enhancement) is compensated
by the SAT transform; a speaker-dependent feature transform
is estimated with f-MLLR in batch mode for the (enhanced)
test data. Presumably, this feature transform not only adapts to
the target speaker, but also on the enhancement. Not using the
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TABLE IV
INFLUENCE OF APPLYING NMF ENHANCEMENT ON THE TRAINING AND/OR

TESTING DATA FOR THE LSTM, IN COMBINATION WITH THE TWO DIFFERENT

GMM SYSTEMS (WHICH USE ENHANCED (ENH.) DATA IN ALL CASES),
SHOWING WER ON THE DEVELOPMENT SET

TABLE V
TEST SET EVALUATION (WER IN %) OF OUR ASR SYSTEMS WITH NMF
ENHANCEMENT (ENH.), WITH CONTEXT OR WITHOUT (NC), AND LSTM
PHONEME PREDICTIONS AND COMPARISON TO RELATED APPROACHES

context noise dictionary for NMF enhancement leads to a slight
degradation in all tested congurations. Since the amount of re-
quired context is only small, we thus use the variant that exploits
the knowledge of embedding noise in all other experiments with
NMF enhancement.
Next we examine the inuence of speech enhancement as a

preprocessing step to the LSTM system (when used in conjunc-
tion with the GMM system). The experimental results of dif-
ferent setups are listed in Table IV. Here, the GMM system uses
the best enhancement setup as determined in Table III (matched
for the ML system and mismatched for the DL+FT system). Al-
together, in this setup (GMM system sees enhanced data), no
improvement can be observed by also using enhanced speech as
input to the LSTM system. The best result (row 4) is achieved
with the LSTM system (without NMF) in combination with the
advanced GMM system (with enhancement in mismatched con-
ditions). This is the overall best WERwe obtained on the devel-
opment set.

C. Test Set Results

Finally, Table V shows results on the CHiME Challenge test
set. Generally, the results show the same tendencies as on the
development set.
From our systems, we include the unenhanced GMM-only

system (with DL and FT). Furthermore, we report results where
NMF enhancement or the LSTM double-stream system, or both

are applied. Here, following the results from Section VI-B, we
apply enhancement in mismatched condition for the GMM, and
the LSTM works with unenhanced data (row 4 in Table IV).
The results for the ofcial challenge baseline (multi-condition
ML-trained HMM-GMM using MFCCs) are shown in the rst
row of the table (55.0% averageWER). This was improved with
NMF enhancement exploiting long-context speech and noise
models by Hurmalainen et al. [33] by 13% relative. In our orig-
inal contribution to the challenge [24], we used the same NMF
enhancement approach as proposed in the present study, to-
gether with an earlier version of the LSTMmulti-stream system,
in combination with the ofcial challenge baseline. This system
reduced the WER to 41.4%. An alternative recognition system
for the challenge was provided by Tachioka et al. in [27], which,
compared to the ofcial baseline, uses LDA, MLLT, SAT and
discriminatively trained HMM-GMMs, resulting in a WER of
35.0%. This result is surpassed (8% relative) by the approach
proposed by Nesta et al. [43]. Their system works mainly on the
front-end side, exploiting blind source extraction, and using the
challenge baseline recognizer. Including binary feature masking
into the front-end of the system in [27] improved the result by
23% relative, which was the challenge entry with the best re-
sults [39]. In [44], a well-tuned DNN and a recurrent DNN
were evaluated on the CHiME task. These systems outperform
the best GMM baseline. Our systems are also based on the
GMM system described in [27]. First, performing the simple
beam-forming method as described in Section V-B leads to a rel-
ative improvement of 21%, down to an average WER of 27.7%.
By adding NMF enhancement to this system, this result is im-
proved by 13% relatively. The GMM-LSTM system brings a
larger improvement, yielding a WER of 21.5%. Finally, when
both NMF enhancement and the LSTM double-stream system
are exploited, we achieve a WER of 20.6% without exploiting
context in NMF, or 20.0% with context. Compared to the of-
cial challenge baseline, this is a relative improvement of 64%.
The best challenge entry is beaten by 25% relative. Notably, our
best system also surpasses the DNN and recurrent DNN results
presented in [44].

VII. CONCLUSIONS

We have presented a system for noise-robust ASR that
exploits exemplar-based speech enhancement and combines
GMM acoustic modeling with phoneme predictions from a
deep bidirectional LSTM RNN.
In particular, we were interested in the following ques-

tions: (I), when a state-of-the art discriminatively trained
HMM-GMM system including feature transformations is used
instead of the simple baseline, can the LSTM predictions still
lead to an improvement? Our results (cf. Table I) revealed
that the LSTM brings large improvements to both GMM sys-
tems. The other open question we wanted to address was, (II),
whether speech enhancement (in our case NMF) can still im-
prove a DNN-based recognition system. The results presented
in Section VI-B show that the NMF enhancement approach
was capable of improving the GMM system by 12% relative.
What�s more, also in the GMM-LSTM system, enhancing the
GMM input improves the WER (27.3% vs. 25.1%). However,
when the GMM sees enhanced features, additionally enhancing
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the input to the LSTM brings no further improvement. Due
to the improved memory of the LSTM network, the system is
already very robust. These results are in contrast to the nding
in [26], where a speech enhancement approach was able to
improve a DNN ASR system. However, in those experiments,
the enhancement approach had access to spatial information,
while in our experiments, the enhancement and recognition
systems work without this information. On the other hand,
our experiments conrm the results presented in [11], where a
feature enhancement method could not improve a DNN ASR
system in a positive way.
Overall, the experimental results showed that the novel

combination of a state-of-the-art GMM and an LSTM is highly
efcient. The system achieved large improvements in WER
and outperformed all entries to the 2nd CHiME Challenge (as
well as comparable DNN systems) while being compliant with
the challenge guidelines, leading to the best current result on
this database. On the test set, the challenge baseline, a standard
HMM system, had an average WER of 55.0%, whereas with
our best system, a WER of 20.0% was obtained.
Future work will concentrate on nding out whether other

speech enhancement approaches are able to improve the LSTM
system. Furthermore, it will be interesting to investigate how
the LSTM performs in the hybrid setup where it predicts HMM
states instead of phonemes.
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