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Abstract

This chapter provides a synthesis of research on multimodal affect recognition and discusses 
methodological considerations and challenges arising from the design of a multimodal affect recognition 
system for naturalistic human-computer and human-robot interactions. Identified challenges include 
the collection and annotation of spontaneous affective expressions, the choice of appropriate methods 
for feature representation and selection in a multimodal context, and the need for context sensitivity 
and for classification schemes that take into account the dynamic nature of affect and the relationship 
between different modalities. Finally, two examples of multimodal affect recognition systems used in (soft) 
real-time naturalistic human-computer and human-robot interaction frameworks are presented.
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Introduction
Recent work in human-computer interaction 

(HCI) and human-robot interaction (HRI) has shown 
that embodied agents and robots are increasingly being 
studied as partners that collaborate and do things with 
people (Breazeal, 2009; Schroeder et al., 2012). For 
example, the use of embodied agents and robots is 
being investigated in many HCI and HRI applica­
tions, such as providing assistance for the elderly at 
home, serving as tutors for children by enriching their 
learning experiences, and acting as therapeutic tools or 
as game buddies for entertainment purposes.

These applications require embodied agents and 
robots to be endowed with social skills. Social per­
ception abilities include affect sensitivity— that is, 
the ability to recognise peoples affective expressions 
and states, understand their social signals— and 
account for the context in which the interaction 
takes place (Castellano et al., 2010a). Affect sensi­
tive embodied agents and robots are more likely to 
be able to engage with human users over extended 
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periods of time as compared with their nonaffective 
counterparts (Bickmore & Picard, 2005).

Research on automatic affect recognition has 
contributed several studies on the design of systems 
capable of perceiving multimodal social, cognitive, 
and affective cues (e.g., facial expressions, eye gaze, 
body movement, physiological data, etc.) and using 
them to infer a users affective and cognitive state 
(Calvo & D ’Mello, 2010; Zeng et al., 2009).

Recently there has been a shift toward real-world 
HCI and HRI, which has led to the emergence 
of new trends in multimodal affect recognition. 
These include, among others, an increased focus 
on the automatic recognition of spontaneous and 
nonprototypical affective states, the development 
of techniques for continuous affect prediction— 
which allows for the dynamics of affective states 
to be taken into consideration, and the design of 
context-sensitive affect recognition systems.

Compared with systems based on a single modal­
ity, multimodal affect recognition has the potential



to achieve increased recognition performances. It is 
still an open question, however, why improvements 
of multimodal affect recognition systems over their 
unimodal counterparts are still relatively modest, 
especially when natural data is used, as shown by 
D ’Mello and Kory (2012) in a recent meta-analysis 
of thirty affect recognition studies.

This chapter provides an overview of the state of 
the art on multimodal affect recognition, the chal­
lenges that underlie the design of a multimodal 
affect recognition system, and two examples of suc­
cessful integration of multimodal affect recognition 
systems for real-time HCI and HRI.

Multimodal Affect Recognition: 
State o f the Art and Challenges

While affect recognition systems based on one 
modality have been extensively investigated, studies 
taking into account the multimodal nature of affec­
tive states have been gaining ground only recently 
(Zeng et ah, 2009). D’Mello and Kory (2012) 
showed that multimodal affect recognition systems 
are consistently better than their unimodal counter­
parts, supporting the general tendency in the litera­
ture to move toward systems that combine multiple 
modalities for the purpose of predicting a users 
affect. Nevertheless, evidence shows that improve­
ments over unimodal systems are still modest, sug­
gesting the need for classifiers and fusion methods 
that better capture the relationships between differ­
ent modalities, and for affective corpora that con­
tain adequate samples of synchronized expressions 
(D’Mello & Kory, 2012),

The latest shift toward real-world HCI and HRI 
is driving research on multimodal affect recognition 
in new directions. This, in turn, has brought new 
challenges that need to be considered as opportuni­
ties that open up new avenues for research.

For example, of late there has been an increased 
interest in the automatic recognition of spontane­
ous, nonpro to typical affective states (Castellano 
et al., 2012; Kleinsmith et al., 2011; Lucey et al., 
2011), rather than of prototypical or basic emotions 
(such as anger, disgust, fear, happiness, sadness, and 
surprise) and a shift toward dimensional affect rec­
ognition (Gunes & Schuller, 2013; Gunes et al., 
2011), which is based on a description of human 
affect in terms of a set of dimensions, such as 
valence (i.e., positive or negative affect) and arousal 
(i.e., affect characterized by low or high activation).

Another aspect that is receiving a lot of attention 
is the development of novel methods for multimodal 
fusion (Metallinou et al., 2013; Nicolaou et al., 

2012), which should take into consideration the 
underlying relationships and correlation between 
feature sets in different modalities and affect dimen­
sions, how different affective expressions influence 
each other, and how much information each of 
them provides about the expressed affect.

An emerging trend that addresses the need for 
the dynamics of affective states to be accounted for 
is continuous affect prediction, based on a users 
input that is continuously available and analyzed 
over time, which aims to produce continuous values 
for the target affect or affect dimensions (Meng & 
Bianchi-Berthouze, 2011; Nicolaou et al., 2012). 
This is especially important for the integration of 
affect recognition systems in real-time HCI and 
HRI frameworks.

Finally, some studies have started to address the 
issue of context-sensitive affect recognition, which 
takes into account the context in which the interac­
tion takes place (e.g., task, user preferences, pres­
ence of other people, behavior of the interactant, 
etc.) in order to improve affect recognition perfor­
mances (Castellano et al., 2012; Kapoor & Picard, 
2005; Martinez & Yannakakis, 2011).

The following sections discuss in detail how the 
current challenges in affect recognition research are 
being addressed in the literature, with a specific 
focus on multimodal affect recognition systems.

Data Collection
BEYOND PROTOTYPICAL EMOTIONS AND
ACTED AFFECTIVE EXPRESSIONS

Research on multimodal affect recognition is 
moving from the lab to the real world; hence the 
need for corpora and databases that contain spon­
taneous and subtle, rather than acted, prototypi­
cal and exaggerated affective expressions. While 
examples of naturalistic databases are gradually 
increasing in the literature (e.g., Lucey et al., 2011; 
McKeown et al., 2012, 2013), currently most affect 
recognition systems have been trained on databases 
of acted affective expressions. These often reflect 
stereotypes and exaggerated expressions, and they 
are often decontextualized. Moreover, most of the 
available databases contain expressions of prototypi­
cal emotions that seldom represent affective states 
emerging in HCI and HRI applications. This has 
been the case, so far, for most unimodal and multi­
modal affect recognition systems.

Real-world HCI and HRI require affect recog­
nition systems trained with databases containing 
contextual descriptions synchronized with other 
modalities (Castellano et al., 2010b), a research
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direction that is still underexplored. Moreover, most 
o f the available acted databases contain expressions 
recorded in contexts that are not specific to a partic­
ular application. While the availability of affect data­
bases that can be used for training affect recognition 
systems applicable to several interaction scenarios is 
a pressing need, real-world HCI and HRI scenarios 
require contextualized affective expressions (i.e., 
expressions that emerge in the same scenario of the 
final application) for system training and validation.

ANNOTATION
The training and testing of affect recognition sys­

tems requires ground truth data, which are usually 
obtained via observational assessment. While ideally 
one would ask the participants of an HCI or HRI 
experiment to rate the affective states they experi­
enced, this is seldom a viable solution. First o f all, 
ratings are usually collected at the end of the experi­
ment via questionnaires, but this does not allow 
for affective states emerging at specific instants of 
the interaction to be captured. On the other hand, 
continuous self-annotation of affect during the 
experiment is not practical. Another option is to ask 
participants to watch videos of their experiment and 
label the affective states they feel they experienced; 
however, this may be problematic— for example, 
when children are involved. Alternatively, affect 
annotation can be performed with the help of exter­
nal coders. These are usually assigned presegmented 
videos and asked to label each one (Castellano et aL, 
2010). Another approach is continuous annotation 
of affect dimensions from videos using tools such as 
Feeltrace (McKeown et al., 2012).

Affect annotation still presents open issues— for 
example, the difficulty of achieving good intercoder 
agreement and the time-consuming nature o f the 
annotation process, which often requires enormous 
efforts in recruiting and training coders. Another 
open question concerns whether affective stimuli 
should be labeled by simultaneously taking into 
account all the modalities available to the coder 
rather than considering the single modalities sepa­
rately. The first approach has the advantage of pro­
viding the coder with an overall perspective of the 
emergence of an affective state, including the con­
text in which the affective cues are displayed.

Feature Extraction
FEATURE REPRESENTATION--- FRAME- VERSUS 
WINDOW-BASED

Different modalities tend to operate on differ­
ent time scales. In addition, the feature sampling 
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frequency can be variable: For example, for video 
processing (e.g., facial expression analysis or body 
gestures by motion capture, depth cameras or simi­
lar), often a constant frame rate, such as 25 frames 
per second (fps), is chosen as a basis to calculate fea­
tures such as tracked facial points, global motions, 
local (Gabor) binary patterns, or transformed image 
information, etc., for the analysis o f shape- or 
appearance-based characteristics. This is often simi­
lar for physiological feature information. In acoustic 
speech analysis, suprasegm entai features are calcu­
lated per word, turn, or similar entity with differing 
length over frame-level features typically extracted 
at around 100 fps. This usually includes prosodic 
(intonation, intensity, duration, etc.), cepstral, 
spectral (Mel frequency cepstral coefficients, for­
mant information, etc.), and voice quality descrip­
tion (harmonicity, perturbations, etc.). Frame-level 
features are often referred to as low-level descriptors 
(LLDs), and the suprasegmental features are func­
tionals— that is, the time series of unknown length 
of frame-level LLD features is projected onto a sin­
gle scalar value per LLD. Such functionals comprise 
extremes, means, higher moments, peaks, percen­
tiles, regression coefficients, segments, or spectral 
and temporal characteristics; one can also apply 
these in a hierarchical manner such as the extremes 
of means and vice versa. For linguistic feature infor­
mation, it seems obvious that the sampling interval 
cannot be fixed, as it depends on the speech rate, 
and one usually has to wait until the end of linguis­
tic entities such as words. Based on individual enti­
ties or sequences of these, one can apply knowledge 
from resources such as affective word lists, execute 
deeper linguistic analyses, or extract functional-type 
feature information such as bags of words, etc.

At some point, however, some form of synchro­
nization will be needed— either to unite the feature 
information or to come to a decision at a certain 
moment in time informed by the diverse modalities 
(see Stream Fusion, p. 251). One option to reach this 
goal is the application of functionals to the diverse 
LLDs from different modalities and also to the pro­
cessing of video, physiological, or other multimodal 
information on a suprasegmental level. Decisive in 
this case is the unit of analysis of interest, which can 
be linguistic entities if linguistic analysis is involved. 
This allows a recognition system to directly attach 
affective information to these units— such as words, 
turns or similar—which may be well suited from 
an application point of view. In case of absence of 
speech, or a multimodal fusion without availability 
of such linguistically motivated information, fixed
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intervals at a larger “macro” window size can be a 
good choice. Again, the application scenario will 
have an influence on the choice of the window length 
as a compromise between reasonably fast update, 
sufficient LLD feature information, and “stationary 
emotion” (i.e., the emotion can be assumed not to 
change over the unit of analysis) within this macro 
window. A typical value can be around 1 second, as 
was used in the SEMAINE project (see Multimodal 
Affect Detection for a Sensitive Artificial Listener, 
p. 252); however, more research will be needed to 
identify an optimal value,

FEATURE SELECTION IN A MULTIMODAL
CONTEXT

Obviously one can optimize the feature space 
individually per information stream, such as acous­
tic or video features. However, the multimodal 
context allows for a combined feature selection, in 
particular in the case of a feature-level fusion (see 
Early Feature-Level Fusion, p. 251). This can lead 
to improved performance (Schuller et al., 2008). In 
fact, an individual optimisation per stream followed 
by a combined selection process can be an interesting 
choice: At first, the often highly correlated informa­
tion should be reduced individually per modality. 
Then, a secondary optimisation process can lead to 
further improvements reducing cross-modal redun­
dancy (Schuller et al., 2008). As unimodal data are 
usually available in larger amounts than multimodal 
data, the optimization per single modality can 
partly benefit from more available data. Likewise, 
if the number of considered modalities or feature 
streams is greater than two, selection of subgroup­
ings of modalities could be considered.

Context Sensitivity
To correctly understand a phenomenon— an 

affective display for example— it is often necessary 
to move beyond the phenomenon in isolation to 
consider broader circumstances and aspects. These 
can be thought of as surrounding the phenomenon 
in both space (a smile interpreted in the context 
of the movements of the rest o f the face) and time 
(dialogue preceding the smile), and can potentially 
include many factors relating to the interactants 
(personality, gender, culture, preferences, moods, 
goals), their impressions of each other and even 
themselves (how others perceive them, their goals, 
and so on), and the state of the interaction (com­
mencing, maintained, closing). For example, ratings 
of the behavior of individuals may vary depending 
on their accompanying background (Ennis et al.,

2011). Context is therefore of great importance in 
attempting to improve the performance and robust­
ness of affect recognition systems, especially when 
other modalities are not sufficient or lead to non­
meaningful interpretations. Context is typically 
difficult to account for, however, as it necessarily 
involves the identification of those features, from 
among a large number of potential candidates, that 
are most relevant to understanding and interpreting 
an unfolding situation.

While some efforts have been reported in the liter­
ature, only a limited number of studies have addressed 
the problem of context-sensitive affect recognition. 
Kapoor and Picard (Kapoor & Picard, 2005), for 
example, proposed an approach for the recognition of 
interest in a learning environment by combining non­
verbal cues and information about the learner’s task 
(e.g., level of difficulty and state of the game). Peters 
and colleagues (Peters et al., 2010) used eye gaze 
and head direction to model user engagement with 
a virtual agent. Interpretation of the quality of user 
engagement with the interaction is contextualized by 
accounting for gaze toward relevant objects at appro­
priate times in the interaction. In this case, participant 
gaze toward an object when it has not been part of the 
recent discussion is deemed to signal less engagement 
than participant gaze toward an object that has just 
been described by the system. Context sensitivity is 
also a vital basis for determining the novelty of events 
and objects (Grandjean & Peters, 2011), which is fun­
damental to social attention, recollection, and learn­
ing capabilities in artificial social entities.

A key challenge is contextual feature represen­
tation— that is, how to model and encode rela­
tionships between different types of context and 
between context and other modalities. Morency 
et al. (2008) proposed a context-based recogni­
tion framework that integrates information from 
human participants engaged in a conversation to 
improve visual gesture recognition. They proposed 
the idea of an encoding dictionary, a technique for 
contextual feature representation that models differ­
ent relationships between a contextual feature and 
visual gestures. Martinez and Yannakakis (2011) 
proposed a method for the fusion of physiologi­
cal signals and game-related information for auto­
matic affect recognition in a game scenario. Their 
approach uses frequent sequence mining to extract 
sequential features that combine events across dif­
ferent user input modalities. Castellano and col­
leagues (2012) investigated contextual feature 
representation in a game-based HRI scenario and 
explored how to encode task and game context and
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their relationships in a timely manner for automatic 
engagement prediction. They investigated the use of 
overall features, which capture game and social con­
text in an independent way at the interaction level, 
and turn-based features, which encode the inter­
dependencies of game and social context at each 
turn o f the game. They found that the integration 
of game- and social context-based features with 
features encoding their interdependencies leads to 
higher recognition performances.

Classification Schemes
Classification methods for affect recognition 

can be viewed under two schemes: static versus 
dynamic classification and discrete versus continu­
ous recognition.

STATIC VERSUS DYNAMIC MODELING
Analysis o f automatic human nonverbal behavior 

can be performed either by using the features from 
one frame at a time or by considering the sequential 
nature of the frame sequence, as in a time series. 
These two approaches are referred to as static or 
frame-based and dynamic or sequence-based classifica­
tion, respectively (Petridis et al., 2009). Commonly 
used static classifiers are support vector machines, 
neural networks, and decision trees. Dynamic 
Bayesian networks, hidden Markov models, and 
their variations (e.g., coupled hidden Markov mod­
els) constitute the well-known dynamic classifiers.

Researchers claim that in the static classification 
case, dynamic properties of human affective behav­
ior should be captured by the features, while in 
dynamic classification, they are dealt with by the clas­
sifier. Vogt et al. (2008) argue that in speech-based 
emotion recognition, most works use different fea­
ture representation for static and dynamic classifica­
tion; therefore, it is not possible to clearly attribute 
the higher recognition accuracy to either classifica­
tion technique (dynamic versus static). A number 
of researchers reported that dynamic classifiers are 
better suited for person-dependent facial expres­
sion recognition (e.g., Cohen et al., 2003), which 
is likely to be the case for affect recognition from 
other modalities. This was attributed to the fact 
that dynamic classifiers are more sensitive to both 
differences in terms of appearance change and dif­
ferences in temporal patterns among individuals. 
Static classifiers were reported as being more reliable 
when the frames represent the apex of an expression 
(Cohen et al., 2003). Other researchers reported 
that the frame-based classification outperforms the 
sequence-based classification in the task of temporal 
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segment detection from face and body displays (e.g., 
Gunes & Piccardi, 2009). Overall, the usefulness of 
static versus dynamic classification depends on the 
feature representation (frame- versus window-based 
feature representation) and the task at hand (Petridis 
et al., 2009).

DISCRETE VERSUS CONTINUOUS
RECOGNITION

Traditionally, research in the field of automatic 
affect recognition has focused on recognizing dis­
crete, basic emotional states from posed data 
acquired in laboratory settings. However, these 
models are deemed unrealistic, as they are unable to 
capture the nonbasic and subtle affective states exhib­
ited by humans in everyday interactions. Therefore 
researchers have started adopting a dimensional 
description of human emotion, where an emotional 
state is characterized in terms of a number of latent 
dimensions (Gunes & Schuller, 2013; Gunes et al., 
2011, Kleinsmith et al., 2011). Two dimensions are 
deemed sufficient for capturing most o f the affective 
variability: valence and arousal, signifying respec­
tively how negative/positive and active/inactive an 
emotional state is. Other dimensions have also been 
proposed (Fontaine et al., 2007).

Dimensional quantized (discrete) classification 
of affect is usually done by reducing the predic­
tion problem to a two/three/four-class classifica­
tion problem (e.g., positive versus negative or active 
versus passive classification (Nicolaou et al., 2010, 
2011a). The choice of classifier depends on the 
context and the application. Classification methods 
used for discrete affect detection and recognition 
include, among others, support vector machines 
(SVMs), multilayer perceptron networks, k-nearest 
neighbor classifiers, naïve Bayes classifiers, radial 
basis function networks, linear discriminant analy­
sis, conditional random fields, hidden Markov m od­
els (HMMs), and variations of these (e.g., coupled 
HMMs or asynchronous HMMs) (Nicolaou et al., 
2010). Various frameworks that combine the ben­
efits of multiple classifiers have also been proposed 
(e.g., a multilayer hybrid framework for classifica­
tion (Nicolaou et al., 201 lb; Meng et al., 2013).

Continuous affect measurements should be able 
to produce continuous values for the target dimen­
sions. Some of the classification schemes that have 
been explored for this task are support vector regres­
sion, relevance vector machines, and long short-term 
recurrent neural networks (e.g., Nicolaou et al., 
2011a, 2012). Overall, for automatic affect analysis 
of continuous input, there is no agreement on how
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to model dimensional affect space (continuous ver­
sus quantized) and which classifier is better suited 
for automatic multimodal analysis of continuous 
affective input.

The two emerging trends in continuous affect 
prediction are the so-called output-associative pre­
diction (e.g., Nicolaou et al., 2012) and the design 
of emotion-specific classification schemes (e.g., 
Nicolaou et al., 2011b). Output-associative predic­
tion exploits the correlations between the dimen­
sions and learns dependencies among the predicted 
values. Creating emotion-specific schemes for con­
tinuous prediction of emotions is relatively new and 
needs to be investigated further.

Stream Fusion
EARLY FEATURE-LEVEL FUSION

In automatic affect prediction, feature-level 
fusion is obtained by concatenating all the features 
from multiple cues into one feature vector, which 
is then fed into a machine learning model (e.g., 
Nicolaou et al., 2011a). If the frame rate of the 
audio stream differs from that of the video stream 
(e.g., 50 Hz versus 25 fps), some form of adaptation 
is needed during feature-level fusion (e.g., Nicolaou 
et al., 2011a; Petridis et al., 2009). Feature-level 
fusion becomes more challenging as the number of 
features increases and when the features are of very 
different nature. Synchronization then becomes of 
utmost importance.

LATE SEMANTIC FUSION
The most straightforward approach whereby to 

tackle modality fusion is at the decision level, since 
feature and time dependence are abstracted. Each 
classifier processes its own data stream and the mul­
tiple sets o f outputs are combined at a later stage to 
produce the final hypothesis. Decision-level fusion 
can be obtained at the soft level (a measure of confi­
dence is associated with the decision) or at the hard 
level (the combining mechanism operates on single 
hypothesis decisions). There has been some work 
on combining classifiers and providing theoreti­
cal justification for using simple operators such as 
majority vote, sum, product, maximum/minimum/ 
median, and adaptation of weights.

Explicit fusion o f multimodal data refers to first 
automatically detecting behavioral cues that are 
known to convey important affective information 
(e.g., head nods, smiles, pauses) and then fusing 
explicitly only these higher-level cues. A repre­
sentative example of explicit fusion is the work of 
Eyben et al. (2011), who proposed a string-based 

approach for fusing the behavioral events from 
visual and audio modalities (i.e., facial action units, 
head nods and shakes, and verbal and nonverbal 
vocal cues) to predict human affect in a continu­
ous dimensional space in terms of arousal, expec­
tation, intensity, power, and valence dimensions. 
A number of approaches have also been reported 
for explicit synchronization purposes of multiple 
streams. For instance, Guncs et al. (2009) identified 
the neutral-onset-apex-offset-neutral phases of face 
and body expressions recorded via separate cameras 
and synchronized the information from face and 
body streams at the phase level (i.e., by detecting 
the apex phase of face and body expressions stream).

HYBRID FUSION
Since humans display multimodal expressions in a 

complementary and redundant manner, the assump­
tion of conditional independence between modalities 
and cues in decision-level fusion can result in loss of 
information (i.e., loss of mutual correlation between 
the modalities). Model-level fusion has been adopted 
to mitigate the issues pertinent to feature- and 
decision-level fusion by exploiting the correlations 
between the modalities while relaxing the require­
ment of synchronization. By doing this, model-level 
fusion has the potential of capturing correlations and 
structures embedded in the continuous output of 
the classifiers or regressors from different sets of cues. 
It may use Bayesian networks, multistream fused 
HMM, tripled HMM, neural networks, etc. (see 
Zeng et al., 2009 for details on these).

Overall, finding the best way to fuse the modali­
ties for automatic emotion prediction remains an 
open issue in the field. An emerging trend in affec­
tive data fusion is called output-associative fusion 
(e.g., Nicolaou et al., 2011a). This fusion method 
capitalizes on the fact that the emotion dimen­
sions (valence and arousal) are correlated. In order 
to exploit these correlations and patterns, the 
output-associative fusion framework aims to learn 
the dependencies that exist among the predicted 
dimensional values.

Multimodal Affect Detection for 
(Soft) Real-Time HCI and HRI: 
Methodological Considerations and 
Case Studies

The timely analysis and interpretation of a user’s 
affective state is of primary importance for HCI 
and HRI in real-world settings. For example, it is 
vital for embodied agents and robots to establish an 
affective loop with the user through the generation
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of a response that is appropriate to the way the 
user is feeling. Despite the large body of existing 
literature on affect recognition, examples of auto­
matic affect recognition systems for integration in 
HCI and HRI frameworks are still not numerous. 
Further, not many system prototypes have been 
designed which can work in real environments in 
the long term. The next sections present two case 
studies where a multimodal affect recognition sys­
tem has been successfully applied to real-world HCI 
and HRI scenarios.

M ultimodal Affect Detection fo r  a 
Sensitive Artificial Listener—Results 
and Lessons Learned from  the
SEMAINE Project

The SEMAINE system is a pioneering effort 
in creating dynamic, expressive, and adaptive vir­
tual agents by analyzing the multimodal nonverbal 
communicative behavior of the human user in soft 
real-time. The system aims to engage the user in a 
dialog and create an emotional workout by pay­
ing attention to the users nonverbal expressions, 
and reacting accordingly. It focuses on the soft skills 
that humans naturally use to keep a conversation 
alive (e.g., backchannel feedback such as nod­
ding and smiling). The SEMAINE system avoids 
task-oriented dialogue, instead, it models the type 
of interaction sometimes found at parties: you lis­
ten to someone you want to chat with, and with­
out really understanding much of what the other 
person is saying, you exhibit all the signs that are 
needed for him or her to continue talking to you. 
The SAL characters can speak to engage the user in 
a simple dialogue as well as show nonverbal listener 
signals (Figure 17.1). The approach has been test 
run using various “Wizard of Oz” setups that have 
allowed the fine tuning of the scripts used by the 
various characters in order to react to the emotional 

state of the user in plausible ways despite the lack of 
language understanding. The SEMAINE system has 
been demonstrated at ]: International Conference 
on Affective Computing and Intelligent Interaction 
(ACII 2009) (Schroder et al., 2009) and IEEE 
International Conference on Automatic Face and 
Gesture Recognition FG’l 1 (Schroder et al., 2011).

AUDIOVISUAL AFFECT RECOGNITION IN A
REAL-LIFE SYSTEM

In a real-life system, such as the SEMAINE sys­
tem, affective data can be thought of as uninter­
rupted streams originating from a variety of sensors 
(cameras, microphones, etc.); to achieve optimal 
affect prediction, prior to recognition, or simultane­
ously with this, there is a requirement to segment the 
data and to determine analysis duration (Gunes et al., 
2011) or the unit of analysis (Schuller et al., 201 lb). 
Segmenting multimodal data in a meaningful way 
is directly related to the level at which the detection 
results should be accurate and that at which the detec­
tion results should be analyzed and outputted (frame, 
millisecond, second, or minute level). The current 
solution is to employ various window sizes depend­
ing on the modality. The achievement of real-time 
affect prediction requires a small window size to be 
used for analysis (i.e., a few seconds), but obtaining 
a reliable prediction accuracy requires longer-term 
monitoring. Overall, the challenge for future research 
is to find an appropriate unit of analysis which is sen­
sitive to the context at hand. Another issue is that 
research on affect analysis and affect generation (syn­
thesis) appear to be detached from each other even 
in multiparty and multidisciplinary projects such as 
SEMAINE (Schroder et al., 2011). Investigation of 
how to interrelate these in earlier stages will provide 
valuable insight into the realization of affect-sensitive 
systems that are able to interpret multimodal and 
continuous input and respond appropriately.

Fig. 17.1 A user conversing with one of the SAL characters (i.e., Poppy).
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THE AUDIOVISUAL EMOTION CHALLENGES
The AVEC series of two consecutive public chal­

lenges on audiovisual emotion recognition is the first 
of its kind for multimodal affect detection. It is based 
on data collected in the SEMAINE project, and offers 
a test bed for uni- and multimodal emotion recogni­
tion including acoustic, linguistic, and video cues. 
Four affect dimensions are to be assessed: arousal, 
expectation, power, and valence. While the annota­
tion of the data was done in a continuous manner 
both in time and values, the first challenge, as held 
in 2011 (Schuller et al., 2011), required participants 
to solve a two-class problem with respect to above 
or below the average value per dimension. In addi­
tion, the video stream was chunked in two ways over 
time: per frame for the video only task and per word 
for the audio and audiovisual tasks. In the second 
round held in 2012 (Schuller et al., 2012), this was 
changed to a continuous regression-type measure­
ment in value either at the frame or word level. The 
2011 installation thus used three different test parti­
tions for three subchallenges, providing files contain­
ing either audio only (as test partition for the audio 
subchallenge), or video only (as test partition for the 
video subchallenge), or both (for the audiovisual 
subchallenge) to ensure that only this modality was 
used for result assessment. In the 2012 installation, 
the same test partition was used no matter which 
modality was exploited for the best result. Instead, 
two types of subchallenges focused either on fully 
continuous (i.e., frame-level emotion assessment) 
or word-level assessment. This means that emotion 
needed to be recognized either for every frame or per 
word (i.e., over a larger frame that lasted as long as 
each spoken word). Only parts where audio was actu­
ally present were used.

Besides the audiovisual data, 1,941 (2011)/1,841 
(2012) precomputed audio features brute-forced 
by functional application to LLDs (see Feature 
Representation— Frame- Versus Window-Based, 
p. 248) and 5,908 video features are given for 
optional usage and baselines. These features and the 
data are freely available to experiment with; how­
ever, the labels of the test partition remain with the 
organizers and results can be acquired by submis­
sion of predictions on these instances.

Various classification methods have been applied 
to the 2011 audiovisual task of AVEC: support 
vector machines, extreme learning machine-based 
feed forward neural networks, AdaBoost, Gaussian 
mixture models, and a combined system consisting 
of MLPs and HMMs. At the time of the challenge, 
latent-dynamic conditional random fields led to 

the best result o f 60.3% weighted accuracy on 
average over the four dimensions (Ramirez et al., 
2011). Later, the best audiovisual result to date 
was reached by long short-term recurrent neu­
ral networks (Wollmer et al., 2012) with 64.6% 
weighted accuracy for late fusion. The authors 
used the baseline acoustic feature set and opti­
cal flow video features after rectifying the tracked 
facial region.

The 2012 event highlights the particular challenge 
of fully continuous emotion assessment: 0.456 as 
cross-correlation coefficient was reached by the win­
ning team (Nicolle et al.) as averaged over the four 
affective dimensions. In the case of the word-level 
subchallenge, this measure exceeded only 0.28.

M ultimodal Affect Recognition fo r  a Robotic 
Companion—Results and Lessons Learned 

from  the LIREC Project
The EU FP7 LIREC (Living with Robots and 

intEractive Companions) project (2008—2012) 
explored long-term social relationships with socially 
intelligent robotic companions. Within LIREC, 
MyFriend is an H RI scenario that showcases an iCat 
robot acting as a game companion for young chil­
dren (Figure 17.2). The robot plays chess with chil­
dren, provides affective feedback based on the moves 
on an electronic chessboard, interacts with them by 
displaying facial expressions and verbal utterances, 
and reacts empathically based on the valence of the 
affects the children experience throughout the game 
(Castellano et al., 2013).

CONTEXT-SENSITIVE AFFECT RECOGNITION IN 
REAL-WORLD HRI SETTINGS

The robotic game companion is built on a novel 
platform for affect sensitive, adaptive HRI. The 
platform integrates an array of sensors in a modu­
lar client-server architecture that includes a vision 
module, a game engine, an affect recognition 
module, an empathic behavior generation engine 
coupled with an action selection and an appraisal 
mechanism, and the iCat robot module. After every 
move made by the user, the users affective state is 
inferred by the affect recognition module based on 
behavioral indicators provided by the vision module 
(i.e., probability of smile, eye gaze) and contextual 
indicators (i.e., game-related features) extracted by 
the game engine (Castellano et al., 2012).

The affect recognition module consists of an 
SVM-based valence detector. It continuously 
receives synchronized features from the vision mod­
ule and the game engine and, as output, provides
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Fig. 17.2 A user interacting with iCat in a primary school.

probability values for the valence of the users affect. 
At any time during the interaction, the iCat module 
can send a request to the affect recognition module 
to evaluate the affective state experienced by the user 
in the previous N  seconds of the game/interaction. 
Information about the users affective state is then 
used by the robot to select and generate an empathic 
intervention, such as providing encouraging com­
ments or suggesting a good move. The valence 
detector was trained using the Inter-ACT corpus, 
an affective and contextually rich multimodal video 
corpus including spontaneous expressions of chil­
dren playing chess with the iCat robot in a primary 
school and a chess club (Castellano et al., 2010b). 
Nonverbal behaviors (i.e., smiles and eye gaze) and 
game-based features (i.e., state of the game and game 
evolution) were automatically extracted and synchro­
nized before being combined in a joint feature space 
for training the valence detector. An SVM classifier 
with radial basis function (RBF) kernel achieved a 
recognition performance of 63% in a three-class 
valence classification problem (three labels: positive, 
negative, or neutral) (Castellano et al., 2013).

Results from studies integrating the platform 
for affect-sensitive, adaptive human-robot interac­
tion in the robotic companion and carried out in 
a semicontrolled environment in a primary school 
showed that affect sensing and empathic interven­
tions lead to increased engagement with the robot 
and an increased perception of friendship from the 
robot (Leite et al., 2012a) as compared with neutral 
behavior. Affect sensing and empathic interven­
tions also allowed the establishment of interac­
tions that were more engaging and more successful 
over extended periods of time, which is an impor­
tant requirement for companionship (Leite et al., 
2012b).

Important challenges for future research in 
the domain of affect recognition for social robots 
include the design of systems that can adapt to 
specific users, successfully encode relationships 
between contextual features and between context 
and other modalities, and are highly robust (e.g., 
they are capable of performing successful con­
tinuous affect prediction over extended periods of 
time).
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Conclusions and Future Directions
This chapter provided an introduction to mul­

timodal affect recognition for naturalistic HCI and 
HRI. We showed how the latest trends in multi­
modal affect recognition research are opening up 
new opportunities for real-time interactions with 
embodied agents and robots in real-world settings. 
Particularly, we identified key challenges in the 
design of a multimodal affect recognition system for 
naturalistic HCI and HRI. These include:

1. The collection and annotation o f data 
containing spontaneous affective expressions. 
Real-world HCI and HRI require affect 
recognition systems trained with corpora and 
databases that contain spontaneous and subtle 
rather than acted and prototypical affective 
expressions.

2. The choice o f appropriate methods for feature 
representation and feature selection in a multimodal 
context.

Different modalities tend to operate on different 
time levels and may be dependent one another; 
additionally, some of them may be more important 
than others for the purpose of affect prediction in 
a specific application scenario. Hence there is the 
need to choose appropriate methods for feature 
representation and feature selection in a multimodal 
context.

3. The design o f affect recognition systems sensitive 
to context.

Context can be used as an additional 
modality to improve the performance of an affect 
recognition system. A key challenge here is how to 
model and encode relationships between different 
types of context and between context and other 
modalities.

4, The design o f classification schemes that take 
into account the dynamic nature o f affect and the 
relationship between different feature sets.

Continuous affect prediction has been shown 
to be successful in addressing the dynamic nature 
of affective states; novel methods for multimodal 
fusion need to take into consideration the underly­
ing relationships and correlations between feature 
sets in different modalities and affect dimensions.

While several issues in multimodal affect recog­
nition require further investigation, we have shown 
how initial attempts at addressing these challenges 
can lead to the successful integration of multi­
modal affect recognition systems in HCI and HRI 
frameworks.
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