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ABSTRACT

This paper proposes a novel machine learning approach for the
task of on-line continuous-time music mood regression, i.e., low-
latency prediction of the time-varying arousal and valence in musical
pieces. On the front-end, a large set of segmental acoustic features
is extracted to model short-term variations. Then, multi-variate re-
gression is performed by deep recurrent neural networks to model
longer-range context and capture the time-varying emotional profile
of musical pieces appropriately. Evaluation is done on the 2013
MediaEval Challenge corpus consisting of 1000 pieces annotated
in continous time and continuous arousal and valence by crowd-
sourcing. In the result, recurrent neural networks outperform SVR
and feedforward neural networks both in continuous-time and static
music mood regression, and achieve an R? of up to .70 and .50 with
arousal and valence annotations.

Index Terms— music information retrieval; emotion recogni-
tion; recurrent neural networks

1. INTRODUCTION

Music mood recognition, i. e., automatic determination of the per-
ceived emotion, is a highly promising topic in music information
retrieval, with applications in the organization of music collections
and recommendation. Early work on music mood recognition started
as a special case of music tagging, by using categorical labels such
as happy or sad [1]. However, such categorical taxonomies are often
ambiguous [2]; hence, many recent studies — e.g., [3—6] — use a dimen-
sional model of affect proposed by Russell [7], describing emotional
tags as points in the plane spanned by the arousal and valence axes.
This turns the problem of emotion prediction into a two-dimensional
regression problem [2]. Besides, in most music pieces, the emotion is
not static, but rather varies over time; for example, composers often
contrast passages of different emotional content, e.g., lively vs. calm,
with each other — this holds both for classical and popular music. This
observation, together with the above, calls for an emotion model that
is continuous both in time and in value.

From the machine learning perspective, time-continuous recog-
nition comes with the need for context-sensitive models, since the
emotion in a certain time interval depends on past and future input
to some (variable) extent. In the music mood recognition domain, a
few classes of context-sensitive models have been proposed; among
them are graphical models such as conditional random fields [8], and
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recurrent neural networks (RNNs) [6], which can also perform regres-
sion. RNNs can access previous hidden layer activations to deliver
the emotion prediction for the current time frame. In this study, we
adopt the Long Short-Term Memory (LSTM) type of RNN since it
has shown superior performance in music information retrieval tasks
such as onset detection [9] and transcription [10].

Since emotion in speech and music evolves much slower than
typical acoustic features derived from short-time spectra, there is
a need for aggregating these features to match the time scales. In
this study, we apply functionals such as moments, percentiles and
regression coefficients to the ‘low-level” feature contours, resulting
in generic affective features which are highly effective for describing
emotion in speech, music, and sound, and across these domains [11].
Next, we propose to use a deep RNN structure to reduce these feature
vectors over multiple time steps to hidden representations.

Our methods are evaluated on the 2013 MediaEval Music Emo-
tion task, the first major comparative evaluation campaign for music
mood recognition. While the focus is on low-latency prediction of
emotion from short observation intervals, we also address song level
estimates, which are useful, e.g., for sorting a music archive by mood.
Our results are given in Section 5, indicating the effectiveness of
the proposed method for prediction of emotional profiles and overall
mood of musical pieces, compared to a support vector regression
(SVR) and feedforward neural network baseline.

2. RELATED WORK

One of the earliest studies on music mood regression by SVR was
presented by [2]. [12] describes on-line continuous-time continuous-
valued speech emotion recognition with multi-task LSTM-RNN net-
works, but does not consider feature reduction. [5] models time-
varying emotion in an aggregated fashion by performing regression
on the distribution, rather than context modeling across periods with
different emotion. Small-scale evaluations of (shallow) recurrent
neural networks for music mood recognition have been performed
in [6,13]. [14] uses a feedforward deep belief network for unsuper-
vised feature generation from short-term features, which can be seen
as a replacement for the rule-based functional extraction step which
is performed in our work; however, the actual regression is done by
linear regression, without context modeling.

3. METHODOLOGY

3.1. Acoustic Feature Brute-Forcing

The front-end of our approach consists of supra-segmental features
calculated by applying statistical functionals, such as mean and mo-
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Table 1: 70 provided low-level descriptors (LLD) (top) and applied
functionals (bottom). 1 only applied to F0; %: not applied to voicing
related LLD; ®: only applied to voicing related LLD

4 energy related LLD

Sum of auditory spectrum (loudness).

Sum of RASTA-style filtered auditory spectrum.

RMS Energy, Zero-Crossing Rate.

64 spectral LLD

RASTA-style auditory spectrum, bands 1-26 (0-8 kHz).
MFCC 1-14.

Spectral energy (logarithmic) 250-650 Hz, 1 k—4 kHz.
Log. spectral slope 0—1 kHz 1-5kHz, and 0-5 kHz
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90.

Log. spectral entropy, harmonicity

Psychoacoustic Sharpness

CHROMA (Pitch Class Profiles) 1-12

2 voicing related LLD

FO by SHS with Viterbi smoothing, Probability of voicing

Functionals applied to LLD/A LLD

quartiles 1-3, 3 inter-quartile ranges

5 % percentile (=~ min), 95 % percentile (~ max)
percentile range 5 %—95 %

standard deviation

gain of linear prediction (LP), LP Coefficients 1-5
amplitude mean of peaks?, of minima >
amplitude range of peaks?

mean value of peaks — arithmetic mean?
mean/std.dev. of inter peak distances>
mean/std.dev. of rising/ falling slopes®
Functionals applied to LLD only

arithmetic mean, root quadratic mean, flatness
rel. duration LLD is above 25/50/75/90% range
rel. duration LLD is rising

rel. duration LLD has positive curvature

mean, max, min, std. dev. of segment length?
linear regression slope, offset, quadratic error
quadratic regression a, b, offset, quadratic error
percentage of non-zero frames®

skewness®, kurtosis®

ments, to the contours of frame-wise low-level descriptors (LLDs),
such as chroma features, MFCCs or energy, over fixed length seg-
ments. In this study, non-overlapping segments of one second length
are used, which corresponds to the annotation interval. We use a set
of purely acoustic affective features based on the baseline feature
set of the 2013 Computational Paralinguistics Evaluation (ComParE)
campaign [15]. It has been shown in [11] that this set provides robust
cross-domain assessment of emotion (continuous arousal and valence)
in speech, music, and acoustic events. Despite its rather ‘brute-force’
nature, it has been shown to outperform a more hand-crafted set of mu-
sically motivated features for the task of music mood regression [11].
While our MediaEval submission was based on the ComParE set, for
the present study, we modified and reduced the ComParE feature set
in order to adapt to the specific task of music mood recognition. For
example, chroma features are added, and purely human voice related
features such as jitter and shimmer were removed. Furthermore, a
few rather redundant functionals (such as various types of means)
or functionals not connected to the task (position of max/min) were

eliminated. In the result, our feature set contains 4 777 features. The
LLDs and functionals are shown in detail in Tables 1 and 1.

3.2. Deep Recurrent Neural Networks

The neural network architecture we adopt in this study is based on
Long Short-Term Memory (LSTM) deep recurrent neural networks
(RNNs) [16]. A deep LSTM-RNN can be described as an automaton-
like structure mapping from a sequence of observations to a sequence
of output features. These mappings are defined by activation weights
and a non-linear activation function as in a standard multi-layer per-
ceptron. However, recurrent connections allow to access activations
from past time frames. To solve the problem of exponential weight
decay (or blowup) in the recurrent connections, the LSTM concept
introduces an internal state variable (‘memory cell’) whose content
is modified in each timestep by so-called input and forget gates [17],
instead of simply having a recurrent connection with constant weight.
In other words, memory is modeled explicitly instead of implicitly
(by recursion), as in traditional RNNs. The output of each layer of
LSTM cells is determined by a non-linear function of the cell states,
scaled by the output gate. Mathematically, the following iterative
procedure is executed in a N-layer deep RNN:

h” = x, o)
o fy‘)@c;’i)ﬁii")@tanh(W("—1>=<">h§"‘”(2)
i T

+W(n)a(n)hgi)1 —|—b(n>),

Y = o™ @ tanh(cl™),
¥ o= W(N)’(N+1)h§N)+b(N+1). 3)

In the above, hi") denotes the hidden feature representation of time
frame ¢ in the level n units, n = 1,..., N. The O-th layer is the input

layer and the N + 1-th layer the output layer. Analogously, cim ,

£™ i) and o{™ denote the dynamic cell state, forget gate, input
gate, and output gate activations. W~ and W) denote
weight matrices for feedforward and recurrent connections and b(™
stands for bias vectors (with superscripts denoting layer indices). The
i regulate the ‘influx’ from the feedforward

input gate activations i,
and recurrent connections. £, i{™, and o\™ are calculated in a

similar fashion as cftn) (2) — see [16] for details. The weight matrices
and bias vectors are all learnt from training sequences, minimizing
the average sum of squared errors per sequence.

In our application, the weight matrix W) maps high-
dimensional input features x; to lower-dimensional hidden layer
features h,El) , and the recurrent weight matrix W()(1) serves to
aggregate information from multiple time steps in hgl). Thus, infor-
mation from the low-level descriptors is aggregated hierarchically:
once by application of functionals, then by the RNN. The remaining

weights then define a mapping from h,El) to the emotion labels.

3.3. Multi-Task Learning

Multi-task learning can be used as a regularization to improve gener-
alization of neural networks. We consider joint learning of arousal
and valence, as well as joint learning of the instantaneous emotion
(arousal/valence) with their dynamics. As a simple measurement for
the dynamics, we use delta regression coefficients as typically done
in speech recognition, i.e., adding 2 x 2 future and past targets in
a regression formula. Since the future timesteps are only used in
training, this does not conflict with the goal of an on-line system.
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3.4. De-Noising Auto-Encoder Pre-Training

To add more structure to deep networks, pre-training of the first
hidden layer(s) is often used, especially with low amounts of training
data [14]. In this study, we use pre-training based on the de-noising
auto-encoder principle [18]. We first create a LSTM network with a
single hidden layer trained to predict the input features, i.c., y; = X;.
To avoid over-fitting, in each training epoch and timestep ¢, we add
a noise vector n to x¢ (Eqn. 1) which is sampled from a Gaussian
distribution with zero mean and variance o,,. After determining the
auto-encoder weights a second hidden layer is added and the rest
of the weights is trained, this time using the regression targets and
keeping the first layer weights constant.

4. EXPERIMENTAL SETUP

4.1. MediaEval Emotion in Music Database

Our evaluation database is the official corpus of the MediaEval 2013
Emotion in Music challenge. Of the 1 000 song database presented
in [19], 700 songs were assigned to the development set and 300
songs to the test set. In this study, we only use the development set as
the test set labels have not been released yet. Genres are balanced and
cover classical music (including contemporary pieces), blues, jazz,
rock and pop. Songs are annotated via crowd-sourcing on Amazon
Mechanical Turk (AMT) in the dimensions arousal and valence. Time
continuous observer annotations are averaged and ‘re-sampled’ at
1Hz such that the ‘ground truth’ for every segment of 1s length
corresponds to the average of all available annotations within that
segment. After pre-selection, 100 qualified annotators participated in
the AMT experiment. Annotation was done by mouse movements,
separately for arousal and valence.

4.2. Classifier Training and Evaluation

We evaluate in 10-fold cross validation on the development set. Eval-
uation measures are computed on the entire development set (not
by averaging across folds). The fold subdivision follows a simple
modulo based scheme (song ID modulo 10), and is thus easily repro-
ducible and song independent, i.e. segments of one song do not occur
in more than one fold.

We compare the proposed LSTM-RNN approach to feedforward
neural networks (FNN) and Support Vector Regression (SVR). Both
use the same input features, normalized to the range [—1, +1] for
SVR and standardized to zero mean and unit variance (on the training
data) for neural networks. SVR is chosen for its capability to handle
large feature spaces by L2 regularization and its popularity in music
mood regression [2,3, 11]. The regression targets are standardized
independently to zero mean and unit variance, which is important
for multi-task neural networks minimizing the sum of squares error
function, which is sensitive to the scaling of the target variables with
respect to each other. The complexity constant for SVR training
was chosen as 10™* based on our experiments on the MediaEval
development set described in [20]. Neural networks have one or
two hidden layers with 192, 256, or 384 units (cf. Section 5 for
details on the topologies). Gradient descent with 25 sequences per
weight update is used for training. An early stopping strategy is
used, using a held out part of each fold’s training set. Training is
stopped after a maximum of 100 iterations or after 20 iterations
without improving the validation set error (sum of squared errors).
To alleviate over-fitting to the high dimensional input feature set,
Gaussian noise with zero mean and standard deviation 0.6 is added to
the input activations. The same amount of noise is used in de-noising

Arousal Valence
Model R?* MLE 7 R?> MLE 7
LSTM-RNN | .635 .071 .222 | 421 .078 .174
FNN 557 076 .096 | .298  .083  .038
FNN(stack2) | .576  .073  .109 | .320 .075 .041
SVR 566 074 132 | 312 075  .059

Table 2: Single-Task Regression on MediaEval 2013 development
set in 10-fold cross-validation: LSTM-RNN vs. FNN and FNN with
two input frames concatenated (stack2).

Arousal Valence
Tasks R? MLE 7 R?> MLE 7
A+AATV+AV | 638 071 223 | 425 078 .18l
A+V 626 072 208 | 433 079 .192

A+V+AA+AV | 634 .071 207 | 433 .078 .183

Table 3: Multi-Task Nets: Effects of different training targets.

auto-encoder pre-training (o, = 0.6). Sequences are presented in
random order during training. SVR models are trained with Weka [21]
using Sequential Minimal Optimization (SMO). BLSTM-RNNs are
trained with our open-source CUDA RecuRrent Neural Network
Toolkit (CURRENNT)! for reproducibility. All ‘hyper*-parameters
not mentioned in the above are left at the toolkits” defaults.

4.3. Evaluation Metrics

We report the official challenge metrics [19], determination coef-
ficient (R?) and average Kendall’s 7 per song (7). The latter is a
measure of how well the emotional profile of each song is captured
by the regressor, as opposed to overall correlation. For example, a
system that predicts the correct average emotion of the song in each
segment would have high R? but zero 7. Mean linear error (MLE)
corresponding to the range [—0.5, 40.5] is provided for reference.

5. EXPERIMENTAL RESULTS

5.1. Single-Task Regression

In a first set of experiments, we compare the performance of differ-
ent single-task regressors (LSTM-RNN, FNN, and SVR). That is,
we train separate models for arousal and valence. We also investi-
gate ‘stacking’ input feature vectors for the FNN in order to provide
context. We restrict the context to one additional (past) frame to
keep the number of parameters in the input connection reasonable
(9554 instead of 4 777 input features). Table 2 shows the results for
single-task regression. It can be seen that LSTM-RNN deliver best
performance in terms of all of the considered evaluation metrics. The
most interesting result is perhaps that 7 increases drastically when
using LSTM-RNNs. There is a slight performance gain by adding
one frame of context at the expense of doubling the parameter size
of the first layer, but from the results it can hardly be expected that
adding more frames would reach the performance of LSTM.

5.2. Multi-Task Regression

In a second set of experiments, we investigate the benefit of adding
the deltas of the emotion profile as targets, as well as learning arousal
and valence models separately. Thus, multi-task models have two

Uhttps://sourceforge.net/p/currennt
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Arousal Valence
LSize #L | Pre | R? MLE 7 R? MLE 7
192 1 — | 610 072 147 | 402 071 .093
256 1 - | .607 073 .141 | 385 072 .079
384 1 - | .606 074 .150 | 378 072 .070
192 2 | - | .643 070 211 | 423 070 203
256 2 | - | 634 071 207 | 433 078 .183
384 2 | - | 644 070 229 | 413 070 .186
192 2 | / | 631 068 222 | 421 070 .194
256 2 | v | 624 069 216 | 416 069 .179
384 2 | v | 635 068 214 | 403 070 .171

Table 4: 1- and 2-layer nets: Effects of network topologies (layer
size: LSize, number of layers: #L) and of pre-training the first layer
(pre). LSTM-RNNS.

Arousal Valence
Model ‘ R’> MLE ‘ R®> MLE
SVR/Song | 0.541 0.088 | 0.320 0.100
Avg SVR/Is | 0.689  0.059 | 0.458 0.062
AvgLSTM | 0.704 0.085 | 0.500 0.087

Table 5: Song-level results by averaging predictions (SVR or LSTM,
1 s functionals) or taking functionals over whole songs (SVR/Song).

or four regression targets (arousal and valence, arousal plus delta,
valence plus delta, arousal and valence plus deltas). Table 3 shows
the results for these models, when LSTM-RNNs are used. It can be
seen that adding delta regression coefficients improves performance;
the improvement in 7 for valence is statistically significant (p <
.05 according to a one-tailed t-test). Learning arousal and valence
prediction in a single net further improves R* and 7 for valence, but
the performance in arousal prediction decreases. Thus, there seems to
be a trade-off between the benefit of regularization to learning valence
recognition (which is harder, according to the single-task results),
and precise learning of the ‘easier’ arousal task. Still, the four-task
network delivers the best average R? for arousal and valence (.528).
For the sake of clarity, we always use four training targets in the
ongoing.

5.3. Deep Networks and Pre-Training

Third, we show the effectiveness of deep neural networks for the task
of predicting emotion from large feature sets. In Table 4, we display
the results obtained with a single hidden layer and the LSTM-RNN
architecture. It can be seen that these are largely inferior (statistically
significant) to the results reported above. When increasing the layer
size, performance further decreases. This shows that the simple single
hidden layer model is inadequate for the given task; more than layer
is needed so that the first layer can perform the feature reduction task.
For networks with two hidden layers, there is no clear trend as to
which layer size performs best; by tuning the layer size, we can only
achieve a slight gain to .229 /.203 average 7. This clearly shows
that depth is more important than breadth in our task. Finally, if we
pre-train the first layer, there is no significant gain in performance.
This could indicate that the gain by including the regression targets in
training the first layer (and thus having hg” targeted to the regression
task) outweighs the gain of pre-training — note that we also use noise
on the input features when not pre-training the first layer.

In Figure 1, we show an example from the MediaEval devel-
opment set (song 130). It can be seen that both SVR and LSTM

Fig. 1: Arousal (top) and valence (bottom) of song #130 from the Me-
diaEval development set: Ground truth (continuous line), SVR, and
LSTM predictions; SVR predictions smoothed by moving average
(order 5, MAS).
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deliver reasonable predictions of the average mood in the shown 40
second clip. However, the contour of the SVR prediction, even when
smoothed by a moving average filter, hardly represents the actual con-
tour of the emotion (7 = —.016 for arousal, 7 = .103 for valence).
The LSTM prediction is much smoother and more in line with the
correct emotional profile (7 = .338 for arousal and 7 = .538 for
valence), although there is some overshooting.

In Table 5 we show the performance of predicting the average
song emotion, once by extending the functionals over the whole
song and using SVR, once by using the SVR predictions as above
and taking the average per song, and finally by averaging LSTM
predictions (two layers, 384 units, 4-task). From the results it seems
that taking functionals over whole songs is rather unstable, probably
because such long feature contours can hardly be captured by simple
statistics. Comparing the averaging of regression outputs on 1 second
functionals, LSTMs deliver better correlations with the song-level
annotation than SVR at the expense of increased MLE. Similar to the
shapes in Figure 1 we often observe that the LSTM overshoots on
changes of the emotion contour, while SVR predictions are closer to
the average ground truth without capturing much of the time-varying
emotional profile.

6. CONCLUSIONS AND OUTLOOK

We have introduced an effective approach for music mood regression,
combining acoustic feature brute-forcing and RNN-based context-
sensitive feature reduction and regression. On the MediaEval chal-
lenge task we achieved significant gains with respect to SVR mod-
eling. The proposed method can be used in low-latency settings
and is already real-time capable on a standard PC. Yet, future work
will concentrate on effective combination with feature selection to
further decrease complexity. We will also investigate unsupervised
pre-training using large amounts of unlabeled music data.
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