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1. Introduction

Considering the unsatisfying word accuracies that occur when-
ever today's automatic speech recognition (ASR) systems are faced
with ‘unfriendly’ scenarios such as conversational and disfluent
speaking styles, emotional coloring of speech, or distortions caused
by noise, the need for novel concepts that go beyond main stream
ASR techniques becomes clear [1,2]. Since systems that are exclu-
sively based on conventional generative Hidden Markov Models
(HMM) appear to be limited in their reachable modeling power
and recognition rates, the combination of Markov modeling and
discriminative techniques such as neural networks has emerged as
a promising method to cope with challenging ASR tasks. Hence,
Tandem front-ends that apply multi-layer perceptrons (MLP)
or recurrent neural networks (RNN) to generate probabilistic
features for HMM processing are increasingly used in modern ASR
systems [3-6].

Such Tandem systems apply neural networks to map from
standard low-level speech features like Mel-Frequency Cepstral
Coefficients (MFCC) or Perceptual Linear Prediction (PLP) features
to phoneme or phoneme state posteriors which in turn can be used
as features within an HMM framework. Usually, the quality of those
probabilistic features heavily depends on the phoneme recognition
accuracy of the underlying neural network. As phoneme recognition
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is known to profit from context modeling, an obvious strategy to
consider contextual information is to use a stacked sequence of past
and future vectors as input for an MLP that generates phoneme
predictions [7]. However, extensive experiments in [8] have shown
that flexible context modeling within the neural network leads to
better phoneme recognition results than processing fixed-length
feature vector sequences. Bidirectional Long-Short Term Memory
(BLSTM) recurrent neural networks based on the concept intro-
duced in [9] and refined in [10,8] were shown to outperform
comparable context-sensitive phoneme recognition architectures
such as MLPs, RNNs, or triphone HMMs, as they are able to model
a self-learned amount of context via recurrently connected memory
blocks. Thus, it seems promising to exploit the concept of BLSTM in
Tandem ASR systems.

First attempts to use BLSTM networks for speech recognition
tasks can be found in the area of keyword spotting [11-13]. In [14]
it was shown that also continuous speech recognition perfor-
mance can be enhanced when using a discrete feature, that
indicates the current phoneme identity determined by a BLSTM
network, in addition to MFCC features. Further performance gains
could be demonstrated in [15] by applying a multi-stream HMM
framework that models MFCC features and the discrete BLSTM
phoneme estimate as two independent data streams. An enhanced
BLSTM topology for multi-stream BLSTM-HMM modeling was
presented in [6], leading to further ASR improvements.

An interesting alternative to using the logarithmized and
decorrelated activations of the output layer of recurrent neural
networks (RNN) or multi-layer perceptrons (IMLP) as probabilistic
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features is the extraction of activations in a narrow hidden layer
within the network as the so-called ‘Bottleneck’ (BN) features [16].
This implies the advantage that the size of the feature space can be
chosen by defining the size of the network's Bottleneck layer
which makes the dimension of the feature vectors independent of
the number of network training targets. The linear outputs of the
Bottleneck layer are usually well decorrelated and do not have to
be logarithmized.

In this paper, we present and optimize a novel approach towards
BLSTM feature generation for Tandem ASR. First, we replace the
discrete phoneme prediction feature used in [6] by the continuous
logarithmized vector of BLSTM output activations and merge it with
low-level MFCC features. By that we obtain extended context-
sensitive Tandem feature vectors that lead to improved results
when evaluated on the COSINE [17] and the Buckeye [18] corpora.
Then, we show how ASR performance can be further enhanced by
uniting the concepts of BLSTM and Bottleneck feature extraction.

The structure of our paper is as follows: First, in Section 2,
we explain the BLSTM technique and provide an overview over the
previously proposed BLSTM-based ASR systems. Next, we intro-
duce our BN-BLSTM front-end (Section 3) and the used sponta-
neous speech corpora (Section 4). Finally, in Section 5, we present
our experiments and results.

2. Background
2.1. Bidirectional Long Short-Term Memory RNNs

Even though the recurrent connections in RNNs allow to model
contextual information, which makes them a more effective
sequence labeling framework than, for example, MLPs, it is known
that the range of context that standard RNNs can access is limited
[19]. The reason for this is that the influence of a certain input on
the hidden and output layer of the network either blows up or
decays exponentially over time while cycling around the recurrent
connections of the network. In literature, this problem is referred
to as the so-called vanishing gradient problem. The effect of this
decaying sensitivity is that RNNs have difficulties in learning
temporal dependencies for which relevant inputs and targets are
separated by more than ten time steps [19], i.e., the network
cannot remember the previous inputs over longer time spans so
that it is hardly possible to model input-target dependencies that
are not synchronous. One of the most effective techniques to
overcome this problem is the Long Short-Term Memory architec-
ture [9], which is able to store information in linear memory cells
over a longer period of time.

An LSTM hidden layer is composed of multiple recurrently
connected subnets which will be referred to as memory blocks in
the following. Every memory block consists of self-connected
memory cells and three multiplicative gate units (input, output,
and forget gates). Since these gates allow for write, read, and reset
operations within a memory block, an LSTM block can be inter-
preted as (differentiable) memory chip in a digital computer. Fig. 1
contains an illustration of the architecture of a memory block
comprising one memory cell.

If ai" denotes the activation of the input gate at time t before
the activation function f, has been applied and f3;" represents the
activation after application of the activation function, the input
gate activations (forward pass) can be written as
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Fig. 1. LSTM memory block consisting of one memory cell: the input, output, and
forget gates collect activations from inside and outside the block which control
the cell through multiplicative units (depicted as small circles); input, output, and
forget gate scale input, output, and internal state; f;, f;, and f, denote activation
functions; the recurrent connection of fixed weight 1.0 maintains the internal state.

respectively. The variable 7Y corresponds to the weight of the
connection from unit i to unit j while ‘in’, ‘for’, and ‘out’ refer to
input gate, forget gate, and output gate, respectively. Indices i, h,
and ¢ count the inputs xi, the cell outputs from other blocks in the
hidden layer, and the memory cells, respectively, while I, H, and C
are the number of inputs, the number of cells in the hidden layer,
and the number of memory cells. Finally, s{ corresponds to the
state of a cell ¢ at time t, meaning the activation of the linear
cell unit.

Similarly, the activation of the forget gates before and after
applying f, can be calculated as follows:
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The memory cell value af is a weighted sum of inputs at time t and
hidden unit activations at time t—1:
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To determine the current state of a cell ¢, we scale the previous
state by the activation of the forget gate and the input f;(af) by the
activation of the input gate:
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The computation of the output gate activations follows the same
principle as the calculation of the input and forget gate activations,
however, this time we consider the current state s¢, rather than the
state from the previous time step:
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Finally, the memory cell output is determined as
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The overall effect of the gate units is that the LSTM memory
cells can store and access information over long periods of time
and thus avoid the vanishing gradient problem. For instance, as
long as the input gate remains closed (corresponding to an input
gate activation close to zero), the activation of the cell will not be
overwritten by new inputs and can therefore be made available to
the net much later in the sequence by opening the output gate.
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Fig. 2. Connections in an LSTM network consisting of two input nodes, one memory cell with one memory block, and two output nodes.

Fig. 2 provides an overview over the connections in an
‘unrolled’ LSTM network for time steps t—1 and t. For the sake
of simplicity, this network only contains small input and output
layers (two nodes each) and just one memory block with one cell.
Note that the initial version of the LSTM architecture contained
only input and output gates. Forget gates were added later [10] in
order to allow the memory cells to reset themselves whenever the
network needs to forget past inputs. In this paper, we exclusively
consider the enhanced LSTM version including forget gates.

Another shortcoming of standard RNNs is that they have access
to past but not to future context. This can be overcome by using
bidirectional recurrent neural networks (BRNN) [20], where two
separate recurrent hidden layers scan the input sequences in
opposite directions. The two hidden layers are connected to the
same output layer, which therefore has access to context informa-
tion in both directions. The amount of context information that the
network actually uses is learned during training, and does not
have to be specified beforehand. In this paper we use a combina-
tion of the principle of bidirectional networks and the LSTM
technique (i.e., bidirectional LSTM). Of course the usage of bidirec-
tional context implies a short look-ahead buffer, meaning that
recognition cannot be performed truly on-line. However, for many
speech recognition tasks it is sufficient to obtain an output, e.g., at
the end of an utterance, so that both the forward and the back-
ward context can be used during decoding.

In recent years, the LSTM technique has been successfully
applied for a variety of pattern recognition tasks, including
phoneme classification [8], emotion recognition [13,21], hand-
writing recognition [22,23], and driver distraction detection [24].

2.2. BLSTM modeling for continuous speech recognition

Previous approaches towards continuous speech recognition
exploiting BLSTM context-modeling concentrated on appending a
discrete BLSTM feature to the (continuous) acoustic feature vector.
This additional feature b, encodes the framewise phoneme
prediction generated via a BLSTM network, i.e., it corresponds to
the index of the most active output activation which in turn
corresponds to a certain phoneme at a given time step (see [14]
for formulas). Applying the resulting extended feature vector
¥ = [X¢; be], that contains MFCC features x, and the BLSTM pho-
neme estimate b, was shown to boost recognition performance of
keyword detectors [12] and continuous ASR systems [14]. Further
performance gains could be obtained by employing a multi-stream

HMM to model x; and b, as two independent data streams [15]
which allows to introduce different stream weights for low-level
acoustic features and BLSTM phoneme predictions. Modeling long-
range feature-level context via bidirectional Long Short-Term
Memory could outperform simple feature frame stacking, as it is
done in conventional Tandem ASR systems [6]. Thus, the applica-
tion of BLSTM appears to be a promising method to generate
enhanced Tandem features for speech recognition.

3. System overview
3.1. BLSTM feature extraction

The flowchart in Fig. 3 provides an overview over our ASR
system employing BLSTM feature extraction. Cepstral mean and
variance normalized MFCC features, including coefficients 1-12,
logarithmized energy, as well as first and second order temporal
derivatives, build a 39-dimensional feature vector which serves as
input for our BLSTM network. We use the common framerate of
10 ms and a window size of 25 ms. The BLSTM network is trained
on framewise phoneme targets and thus generates a vector of
output activations whose entries correspond to estimated pho-
neme posteriors. Since the network uses a ‘softmax’ activation
function for the output layer, the output activations are approxi-
mately gaussianized via mapping to the logarithmic domain. The
number of BLSTM features per time frame corresponds to the
number of distinct phoneme targets (41 for the COSINE experi-
ment, see Section 5). Merging BLSTM features and the original
normalized MFCC features into one large feature vector, we obtain
80 Tandem features that are processed via principal component
analysis (PCA) in order to decorrelate and compress the feature
space by using only 40 principal components as features. The final
feature vector is forwarded to an HMM-based ASR system gen-
erating the word hypothesis.

Figs. 4(a)-5(b) show the processing steps for an example
speech sequence. The MFCC feature vectors are hardly correlated
and approximately follow a Gaussian distribution (Fig. 4(a)). Due
to the softmax activation function generating the outputs of the
BLSTM phoneme predictor, the network tends to produce sharp
spikes that indicate the presence of a particular phoneme at
a particular timestep (Fig. 4(b)). To gaussianize the outputs, we
apply the logarithm (Fig. 5(a)). Finally, we merge BLSTM and MFCC
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Fig. 3. Tandem BLSTM front-end incorporated into an HMM-based ASR system.
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Fig. 4. Input and output of a BLSTM phoneme predictor processing a speech
sequence. (a) Normalized MFCC features (including first and second order deriva-
tives) over time. (b) Raw output activations of the BLSTM network.

features and decorrelate the resulting feature vector sequence via
PCA (Fig. 5(b)).

3.2. Bottleneck-BLSTM front-end

The Bottleneck-BLSTM feature extractor investigated in this
paper can be seen as a combination of bidirectional LSTM model-
ing for improved context-sensitive Tandem feature generation and
Bottleneck front-ends. The Bottleneck principle allows to generate
Tandem feature vectors of arbitrary size by using the activations
of the hidden (Bottleneck) layer as features - rather than the
logarithmized output activations corresponding to the estimated
phoneme or phoneme state posteriors. Since we focus on bidirec-
tional processing, we have two Bottleneck layers: one within the
network processing the speech sequence in forward direction
and the other within the network for backward processing.
Fig. 6 shows the system flowchart of our ASR system based on
BN-BLSTM features. Again, 39 cepstral mean and variance normal-
ized MFCC features are extracted from the speech signal. These
features serve as input for a BN-BLSTM network that is trained on
framewise phoneme targets. During feature extraction, the activa-
tions of the output layer are ignored; only the activations of the
forward and backward Bottleneck layers are processed (i.e., the
memory block outputs of the Bottleneck layers). Together with the
original MFCC features, the forward and backward Bottleneck layer
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Fig. 5. Post-processing of BLSTM features: Mapping to the logarithmic domain (a),
subsequent concatenation of MFCC features, and PCA transformation (b). Only the
principal components corresponding to the 40 largest eigenvalues are shown.

activations are concatenated to one feature vector which is then
decorrelated by Principal Component Analysis (PCA).

Fig. 7 illustrates the detailed structure of the applied Bottleneck-
BLSTM front-end. The input activations of the network correspond
to the normalized MFCC features. Three hidden LSTM layers are used
per input direction. Best performance could be obtained when using
a hidden layer of size 78 (two times the number of MFCC features) as
first hidden LSTM layer, a second hidden layer of size 128, and a
comparably narrow third hidden layer, representing the Bottleneck
(size 20-80). Network parameters such as learning rate, momentum,
and initialization weights have not been tuned but were set
according to past experiments on LSTM-based phoneme prediction,
e.g., as in [6]. In all our experiments, we use identical topologies for
forward and backward Bottleneck layers. The connections between
the Bottleneck layers and the output layer are depicted in gray,
indicating that the activations of the output layer (o,) are only used
during network training and not during BN-BLSTM feature extrac-
tion. To obtain the final decorrelated feature vectors, PCA is applied
on the joint feature vectors consisting of forward and backward
Bottleneck layer activations and MFCC features x,.

4. Spontaneous speech corpora

We optimized and evaluated our BLSTM feature extraction
scheme on the ‘COnversational Speech In Noisy Environments’
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Fig. 6. Bottleneck-BLSTM front-end incorporated into an HMM-based ASR system.
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Fig. 7. Architecture of the Bottleneck-BLSTM front-end.

(COSINE) corpus [17] which is a relatively new database containing
multi-party conversations recorded in real world environments.
The COSINE corpus has also been used in [14,15,6] which allows
us to compare the proposed front-end to the previously intro-
duced concepts for BLSTM-based feature-level context modeling in
continuous ASR.

The COSINE recordings were captured on a wearable recording
system so that the speakers were able to walk around during
recording. Since the participants were asked to speak about any-
thing they liked and to walk to various noisy locations, the corpus
consists of natural, spontaneous, and highly disfluent speaking
styles partly masked by indoor and outdoor noise sources such as
crowds, vehicles, and wind. The recordings were captured with
multiple microphones simultaneously, however, to match most
application scenarios, we focused on speech recorded by a close-
talking microphone. We used all ten transcribed sessions, contain-
ing 11.40 h of pairwise English conversations and group discussions
(37 speakers). For our experiments, we applied the recommended
test set (sessions 3 and 10) which comprises 1.81 h of speech.
Sessions 1 and 8 were used as validation set (2.72 h of speech) and
the remaining six sessions made up the training set. The vocabulary
size of the COSINE corpus is 4.8k.

To verify whether word accuracy improvements obtained via
BLSTM features can also be observed for other spontaneous speech
scenarios, experiments were repeated applying the Buckeye corpus
[18] (without further optimizations). The Buckeye corpus contains

recordings of interviews with 40 subjects, who were told that they
were in a linguistic study on how people express their opinions. The
corpus has been used for a variety of phonetic studies as well as for
ASR experiments [25]. Similar to the COSINE database, the con-
tained speech is highly spontaneous. The 255 recording sessions,
each of which is approximately 10 min long, were subdivided into
turns by cutting whenever a subject's speech was interrupted by the
interviewer, or once a silence segment of more than 0.5 s length
occurred. We used the same speaker independent training, valida-
tion, and test sets as defined in [25]. The lengths of the three sets
are 20.7 h, 2.4 h, and 2.6 h, and the vocabulary size is 9.1k.

5. Experiments and results
5.1. Tandem BLSTM front-end

At first, four different variants of our proposed Tandem BLSTM-
HMM recognizer (see Section 3.1) were trained and evaluated
on the COSINE corpus. The underlying BLSTM network was the
same as employed for generating the discrete phoneme prediction
feature in [6], i.e., the network consisted of three hidden layers per
input direction (size of 78, 128, and 80) and each LSTM memory
block contained one memory cell. We trained the network on the
standard Carnegie Mellon University (CMU) set of 39 different
English phonemes with additional targets for silence and short
pause, using backpropagation through time [26] and a learning
rate of 107>, As a common means to improve generalization for
RNNs, we added zero mean Gaussian noise with standard devia-
tion 0.6 to the inputs during training. Prior to training, all weights
were randomly initialized in the range from —0.1 to 0.1. Input and
output gates used tanh activation functions, while the forget gates
had logistic activation functions. Training was aborted as soon as
no improvement on the COSINE validation set could be observed
for at least 50 epochs. Finally, we chose the network that achieved
the best framewise phoneme error rate on the validation set.

Initially, we used only the first 40 principal components of
the PCA-processed Tandem feature vector as input for the HMM
recognizer, i.e., the principal components corresponding to the 40
largest eigenvalues. Hence, the HMM system was based on the
same number of features as the previously proposed BLSTM-based
recognizers [14,15,6]. In conformance with [6], the HMM back-end
consisted of left-to-right HMMSs with three emitting states per
phoneme and 16 Gaussian mixtures per state. We applied tied-
state cross-word triphone models with shared state transition
probabilities and a back-off bigram language model, all trained on
the training partition of the COSINE corpus.

In Table 1, the results on the COSINE test set are summarized.
Exclusively applying the raw output activations as BLSTM features
leads to a word accuracy (WA) of 40.76%. A slight improvement
can be observed when taking the logarithm of the estimated
phoneme posteriors (WA of 41.24%). Decorrelation via PCA further
increases the word accuracy to 44.18% for 40 principal components.
Finally, the best Tandem BLSTM-HMM performance is observed
for a system as shown in Fig. 3, i.e, an HMM processing PCA-
transformed feature vectors that contain both the original MFCC
features and the logarithmized BLSTM activations (WA of 48.51% for
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Table 1

COSINE test set: word accuracies (WA) obtained for Tandem BLSTM-HMM model-
ing with and without taking the logarithm (log) of the BLSTM output activations,
decorrelation via PCA, and including MFCC features in the final feature vector (prior
to PCA); results are obtained using only the first 40 principal components.

Model architecture log PCA MFCC WA (%)
Tandem BLSTM-HMM X X X 40.76
Tandem BLSTM-HMM v/ X X 41.24
Tandem BLSTM-HMM v/ Ve X 44.18
Tandem BLSTM-HMM v v/ v/ 48.51
multi-stream BLSTM-HMM |[6] - X v 48.01
multi-stream BLSTM-HMM [15] - X v/ 46.50
discrete BLSTM feature [14] - X v 45.04
HMM - X Ve 43.36

40 principal components). This system prevails over the initial [15]
and enhanced [6] versions of a multi-stream BLSTM-HMM model-
ing MFCCs and a discrete BLSTM phoneme prediction feature as
two independent data streams. Also a comparable single-stream
HMM system modeling the BLSTM prediction as additional discrete
feature (WA of 45.04% [14]) as well as a baseline HMM processing
only MFCC features (43.36%) is outperformed by our Tandem
BLSTM-HMM.

5.2. Bottleneck-BLSTM front-end

For BN-BLSTM feature extraction according to the flowchart in
Fig. 6, we evaluated a number of different Bottleneck network
architectures. At first, we considered a BLSTM network with a
first and third hidden layer of size 128 and a second (Bottleneck)
layer of sizes 20, 40, and 80. Best performance could be obtained
with a relatively large Bottleneck of size 80. Next, we trained and
validated networks such as the one depicted in Fig. 7, i.e., net-
works consisting of a first and second hidden layer of size 78 and
128, respectively, with the third hidden layer used as Bottleneck -
again evaluating sizes 20, 40, and 80. Network training parameters
were set exactly as for the Tandem BLSTM front-end (see Section
5.1). Again, we used only the first 40 principal components as final
feature vector. The best word accuracy on the COSINE test set was
49.51% and was achieved with a 78-128-80 hidden layer topology,
using the activations of the third hidden layer as features. Thus,
prior to PCA, the extended BN feature vector is composed of 199
features (80 activations from the forward hidden layer, 80 activa-
tions from the backward hidden layer, and 39 MFCC features).
Note that the best hidden layer topology for the BN-BLSTM front-
end was the same as used for Tandem front-end investigated in
Section 5.1.

Fig. 8 shows the effect the number of PCA coefficients used
as features has on recognition performance for evaluations on the
COSINE test set. When applying Tandem BLSTM features, we
observe comparable word accuracies for feature vector dimen-
sionalities between 35 and 45, with two maxima for 37 coeffi-
cients (WA of 48.73%) and 40 coefficients (WA of 48.51%). When
employing the BN-BLSTM feature extractor, we can see a clear
global maximum of WA for 39-dimensional feature vectors (WA
of 49.92%). For feature vector sizes larger than 37, the Bottleneck
system prevails over the Tandem BLSTM-HMM.

5.3. Effect of LSTM and bidirectional modeling

To investigate the effect of Long Short-Term Memory and bidirec-
tional modeling, we replaced the (BN-)BLSTM networks in Figs. 3
and 6 by unidirectional LSTM networks and bi- or unidirectional
RNNSs, respectively. Optimizations of the hidden layer topology were
carried out for each network type individually. For experiments on

50 4

49 —

48 —

WA [%]

47 A

- BLSTM Features
== BN-BLSTM Features

46 —

45 T T T T T T T T T 1
35 36 37 38 39 40 41 42 43 44 45

number of PCA coefficients

Fig. 8. Word accuracy (WA) on the COSINE test set as a function of the number of
principal components; results are obtained using PCA-transformed feature vectors
that contain logarithmized BLSTM activations and MFCC features.

Table 2

Framewise phoneme accuracies (FPA) and word accuracies (WA) for different
recognition systems processing activations from the (third) hidden layer (Bottle-
neck), activations from the output layer (Tandem), discrete BLSTM phoneme
predictions [6,14], or conventional MFCCs (HMM). Training and evaluation on the
COSINE database or on the Buckeye corpus. Results for Bottleneck and Tandem
systems are based on 39-dimensional feature vectors.

Model architecture COSINE Buckeye
FPA (%) WA (%) FPA(%) WA (%)

Bottleneck BLSTM-HMM 69.96 49.92 69.89 58.21
Bottleneck LSTM-HMM 61.79 45.94 61.52 52.53
Bottleneck BRNN-HMM 56.93 41.39 53.40 49.28
Bottleneck RNN-HMM 48.88 40.74 47.05 48.78
Tandem BLSTM-HMM 69.96 48.23 69.89 57.80
Tandem LSTM-HMM 61.79 46.68 61.52 53.86
Tandem BRNN-HMM 56.93 40.67 53.40 48.64
Tandem RNN-HMM 48.88 40.14 47.05 48.21
Multi-stream BLSTM-HMM [6] 69.96 48.01 69.89 56.61
Discrete BLSTM feature [14] 66.41 45.04 69.89 55.91
HMM 56.91 43.36 53.20 50.97

the COSINE database, all LSTM, BRNN, and RNN-based front-ends
applied the 78-128-80 hidden layer topology which led to the best
result for each network type. Prior to using the Tandem and Bottle-
neck features for continuous ASR, we evaluated the framewise
phoneme accuracy (FPA) of the underlying neural network architec-
tures. As can be seen in the second column of Table 2, bidirectional
LSTM networks perform notably better than unidirectional LSTM
nets and LSTM architectures outperform conventional RNNs.

All word accuracies shown in Table 2 are based on feature
vectors of size 39 (except for the results taken from [14,6], which
are obtained using 39+1 features, see Section 2.2). The third
column of Table 2 shows the word accuracies for systems trained
and evaluated on the COSINE corpus. When applying bidirectional
processing, front-ends using Bottleneck activations from the third
hidden layer outperform Tandem systems processing the logarith-
mized output activations. For both front-end types, RNN architec-
tures cannot compete with LSTM architectures, which shows the
importance of long-range context modeling in challenging spon-
taneous and disfluent speech scenarios. The Bottleneck BLSTM
features (leading to a WA of 49.92%, see Section 5.2) prevail
over comparable BLSTM features based on continuous output
activations (48.23%), as well as over the multi-stream BLSTM-
HMM technique [6] applying combined continuous-discrete mod-
eling of MFCC features and BLSTM phoneme predictions (48.01%).



The performance difference between the front-ends applying
Bottleneck BLSTM features and BLSTM features derived from the
output activations is statistically significant at the 0.002 level
when using a z-test as described in [27]. For comparison, the last
two rows of Table 2 again show the performance of the contin-
uous—discrete BLSTM Tandem system introduced in [14] (45.04%)
and the word accuracy of a baseline HMM processing only MFCC
features (43.36%).

To collect further evidence for the obtainable ASR performance
gains when applying the proposed Bottleneck-BLSTM front-end,
we repeated our experiments, training and evaluating on the
Buckeye corpus (see Section 4). Since the transcriptions of the
Buckeye corpus also contain the events laughter, noise, vocal noise,
and garbage speech, the size of the network output layers was
increased by four from 41 to 45. Thus, we also increased the size of
the third hidden layer from 80 to 90 to have roughly twice as
many memory blocks as phoneme targets in the last hidden layer.
Apart from that, no further modifications and optimizations (such
as adaptation of the number of PCA coefficients) were carried out,
aiming for a realistic performance assessment that shows how
well a system designed for the COSINE task generalizes to other
spontaneous speech scenarios. As shown in the last column of
Table 2, the baseline HMM achieves a word accuracy of 50.97%
which is comparable to the result reported in [25] (49.99%).
Accuracies for the Buckeye experiment are notably higher than
for the COSINE task since the Buckeye corpus contains speech
which is less disfluent and noisy than in the COSINE database.
Performance can be increased to up to 58.21% when applying our
BN-BLSTM feature extraction. General trends are similar to the
COSINE experiment: Again, the Bottleneck-BLSTM principle pre-
vails over the BLSTM multi-stream approach employed in [6].

Finally, we examined whether part of the performance gap
between RNN and BLSTM network architectures can be attributed
to the higher number of trainable weights in the BLSTM networks
rather than to the more effective context learning abilities of
BLSTM front-ends. To this end, we trained an MLP that consists of
three layers with sizes 321, 527 and 330, resulting in a network
with 370 345 weights. The ratio of the sizes of the hidden layers
is similar to the BLSTM network with the 78-128-80 hidden layer
topology and the total number of weights is comparable to the
BLSTM network applied for the COSINE experiment which has
369 249 weights. As the word accuracy obtained with the resulting
MLP front-end is 42.72%, which is slightly lower than for the
baseline HMM trained and evaluated on COSINE, we can conclude
that simply increasing the size of the network does not lead to
better recognition performance.

6. Conclusion

We showed how speech recognition in challenging scenarios
can be improved by applying bidirectional Long Short-Term
Memory modeling within the recognizer front-end. BLSTM net-
works are able to incorporate a flexible, self-learned amount of
contextual information in the feature extraction process which
was shown to result in enhanced probabilistic features, prevailing
over conventional RNN or MLP features. In contrast to our earlier
studies on BLSTM-based ASR systems, which exclusively used a
discrete BLSTM phoneme estimate as additional feature, this paper
investigated the benefit of generating feature vectors from the
continuous logarithmized and PCA-transformed vector of BLSTM
output activations. Fusing this concept with the Bottleneck tech-
nique enables the generation of a well decorrelated and compact
feature space that carries information complementary to the
original MFCC features. The experiments presented in this paper
focused on the recognition of spontaneous, conversational, and
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partly disfluent, emotional, or noisy speech which usually leads to
very poor ASR performance. Our BN-BLSTM technique is able
to increase word accuracies from 43.36 to 49.92% and from 50.97
to 58.21% for the COSINE and the Buckeye task, respectively,
and outperforms previous attempts to use BLSTM for continuous
speech recognition as presented in a series of recent publications
[14,15,6].

Future work should focus on hierarchical BLSTM topologies and
on networks trained on phoneme state targets as alternative to
phoneme targets. To exploit information from different probabil-
istic feature extractors, future studies should consider joint decod-
ing of multiple phoneme prediction streams, e.g., via techniques
for hybrid fusion such as asynchronous HMMs [28] or multi-
dimensional Dynamic Time Warping [29]. Furthermore, BLSTM-
based recognizer back-ends such as the Connectionist Temporal
Classification technique [30] deserve attention in future ASR
system development. Language modeling with BLSTM networks
could be an effective way to enhance word-level context usage.
Finally, we plan to develop an on-line version of the proposed
(unidirectional) ASR front-end as an extension of the multi-stream
ASR framework that is part of our real-time speech processing
toolkit openSMILE [31].
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