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Abstract This paper deals with speech enhancement in
noisy reverberated environments where multiple speakers
are active. The authors propose an advanced real-time
speech processing front-end aimed at automatically
reducing the distortions introduced by room reverberation
in distant speech signals, also considering the presence of
background noise, and thus to achieve a significant
improvement in speech quality for each speaker. The
overall framework is composed of three cooperating
blocks, each one fulfilling a specific task: speaker diar-
ization, room impulse responses identification and speech
dereverberation. In particular, the speaker diarization
algorithm pilots the operations performed in the other two
algorithmic stages, which have been suitably designed and
parametrized to operate with noisy speech observations.
Extensive computer simulations have been performed by
using a subset of the AMI database under different realistic
noisy and reverberated conditions. Obtained results show
the effectiveness of the approach.
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Introduction

Speech-based Human—Machine interfaces have a large
variety of application possibilities, as confirmed by the
increasing scientific and commercial interest worldwide. A
remarkable one is represented by multiparty meetings:
Here, the speech signals have to be captured and processed
in order to extract and likely interpret the information
contained therein. The acoustic conditions in this kind of
scenario are generally characterized by the presence of
multiple active speakers (sometimes also simultaneously)
in addition to the reverberation effect, due to convolution
with room impulse responses (IRs) and the background
noise. This results in a certain quality degradation of the
acquired speech signals, and a strong signal processing
intervention is required on purpose [39]. Moreover, another
important issue in this type of systems is represented by the
real-time constraints: The speech information often needs
to be processed while the audio stream becomes available,
making the complete task even more challenging.

Several solutions based on multiple-input multiple-out-
put (MIMO) systems have been proposed in the literature to
address the dereverberation problem under blind conditions
[29]. The issue in multiparty meetings consists in coordi-
nating the blind estimation of room IRs with the speech
activity of different speakers, also taking the real-time
constraints into account. That is why in this work a real-
time speaker diarization algorithm has been implemented
to inform when and how the blind channel estimation



algorithm has to operate. Once the IRs are estimated, the
dereverberation algorithm can finalize the process and
allows to yield speech signals of significantly improved
quality. Furthermore, the information provided by the
speaker diarizer allows the adaptive filters in the derever-
beration algorithm to work only when speech segments of
the same speaker occur at the same channel.

The authors [35, 37] have recently developed a real-time
framework able to jointly separate and dereverberate signals
in multi-talker environments, but the speaker diarization
stage has been used at most as an oracle and not as a real
algorithm. In [1, 36], the speaker diarization system has been
included, but it is not able to work in blind mode, since it
needs the knowledge of microphone position. The present
contribution is aimed to face this issue and represents an
additional step in the automatization process of the overall
speech enhancement framework in real meeting scenarios.

Another important aspect that makes this contribution
different from previous ones is the system capability to
work in the presence of noise. There is a florid literature on
noise reduction [2, 22, 25] and dereverberation [29] tech-
niques in speech processing applications. Some scientists
have recently developed speech enhancement algorithms
able to jointly face both problems [8, 24, 42], but the issue
of realizing a real-time framework operating with multiple
speakers active in such realistic acoustic scenario has not
been adequately addressed so far, up to the authors’
knowledge. This justifies the paper objective, which is
mainly targeted to suitably design the algorithms operating
within the proposed speech enhancement framework to
robustly behave also in the presence of background noise,
always present in multiparty meeting scenarios.

In order to evaluate the achievable performance, several
computer simulations under realistic noisy and reverber-
ated acoustic conditions have been performed employing a
subset of the AMI corpus [6]. The speech quality
improvement, assessed by means of two different objective
indexes, allowed the authors to positively conclude about
the approach effectiveness.

The paper outline is the following. In “The proposed
Speech Enhancement Framework,” the overall speech
enhancement framework, aimed at separating and dere-
verberating the speech sources, even in the presence of
background noise, is described. “Computer Simulations” is
targeted to discuss the experimental setup and performed
computer simulations. Conclusions are drawn and future
work ideas highlighted in “Conclusions”.

The Proposed Speech Enhancement Framework

Assuming M independent speech sources and N micro-
phones, the relationship between them is described by an
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M x N MIMO FIR (Finite Impulse Response) system.
According to such a model and denoting (-)" as the
transpose operator, the following equations (in the time and
z domain) for the n-th microphone signal hold:

M
xn(k) = Zhr{msm(kvl‘h) (1)
Xn(Z) = Hnm(Z)Sm(Z)v (2)
m=1

hnm:Lh_l]T is the L,-taps IR
between the n-th microphone and m-th source s,,(k,L;) =
[Sm(k) Sp(k — 1) ... su(k — Ly + 1)]", with (m=1,2,...,
M,n=1,2,...,N). The objective is to recover the original
clean speech sources by means of a “context-aware”
speech dereverberation approach: Indeed, such a technique
has to automatically identify who is speaking, accordingly
estimate the unknown room IRs and then apply a knowl-
edgeable dereverberation process to restore the original
speech quality. To achieve such a goal, the proposed
framework consists of three main stages: speaker diariza-
tion (SDiar), blind channel identification (BCI) and speech
dereverberation (SDer). As aforementioned, the proposed
approach recalls what already published by the same
authors of this contribution in the recent past [35, 37], but
with two noteworthy differences:

where hy,, = [yno Bum - - -

e A real speaker diarization algorithm has never been
included into the speech enhancement framework
operating in multiparty meetings: Indeed in [37], the
SDiar has been assumed to operate according to an
oracle fashion. Here, SDiar takes as input the micro-
phone observables and for each frame, the output P, is
1 if the m-th source is the only active, and O otherwise.
In such a way, the framework is able to detect when to
perform or not to perform the required operation. Both
the BCI and the SDer take advantage of this informa-
tion, activating the estimation and the dereverberation
process, respectively, only when the right speaker is
present in the right channel. It is important to point out
that the usage of speaker diarization algorithm allows to
consider the system composed by the only active source
and the N microphones as a single-input multiple-
output (SIMO), which can be blindly identified in order
to perform the dereverberation process;

e The presence of noise has never been addressed in
previous publications: The authors want to show in this
work that the proposed framework is able to efficiently
operate also under such acoustic conditions, making the
simulated scenario even more realistic. Some modifi-
cations have been applied to the original BCI and SDer
algorithms in order to suitably deal with noise presence,
as it will be clearer later on.
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Fig. 1 Block diagram of the proposed framework

The block diagram of the proposed framework is shown
in Fig. 1. The three aforementioned algorithmic stages are
now briefly described.

Blind Channel Identification Stage

Considering a SIMO system for a specific source s, a
BCI algorithm aims to find the IRs vector h, =
W . h% . ---h% .]" by using only the microphone sig-
nals x,(k). In order to ensure this, two identifiability con-
ditions are assumed satisfied [46]:

1. The polynomial formed from h,,,  are co-prime, that
is, the room transfer functions (RTFs) H,,+(z) do not
share any common zeros (channel diversity);

2. C{s(k)} >2L, + 1, where C{s(k)} denotes the linear
complexity of the sequence s(k).

This stage performs the BCI through the robust normal-
ized multichannel frequency-domain least mean square
(RNMCFLMS) algorithm [15] that is a noise robust version
of the popular UNMCFLMS [18]. In addition, it is well
suited to satisfy the real-time constraints imposed by the case
study since it offers a good compromise between fast con-
vergence, adaptivity and low computational complexity.

Here, a brief review of the UNMCFLMS and of the
RNMCFLMS algorithms is reported in order to understand
the motivation of this choice in the proposed front-end.
Refer to [18] and [15] for details.

The derivation of UNMCFLMS is based on cross-relation
criteria [46] using the overlap-save technique [30]. The fre-
quency-domain cost function for the g-th frame is defined as

N—-1 N
T(@) =" ehq)e.lq)

n=1 i=n+1

3)

where e

=ni

between the n-th and i-th channels, and (-)" denotes the

(g) is the frequency-domain block error signal

Hermitian transpose operator. The update equation of the
UNMCFLMS is expressed as

~10 ~10 _
h,, (q+1)=h,,(q) — p[Pu(q) + 0Lor,1,]

N (4
x ; DY (q)el?(q), :

i=1,...N

where 0 < p <2 is the step-size, 0 is a small positive

~ ~ T

number,  h,0.(¢) = Far, o, [hnm*(q) 01th] &, (q) =
7 v

Favan s {Filuea@) | P @ =S

D7 (q)D,(g). and F denotes the discrete Fourier

transform (DFT) matrix. The frequency-domain error
function e,;(g) is given by

€,i(q) = Dy, (9) B, (4) = Dy (@)D (9) (5)

where the diagonal matrix

D, (q) = diag(F{[x,(qLy — L) x,(qLy — Ly + 1) - - -
xa(qLy + Ly = 1)]'}) (6)

is the DFT of the g-th frame input signal block for the n-th
channel.

From a computational point of view, the UNMCFLMS
algorithm ensures an efficient execution of the circular
convolution by means of the fast Fourier transform (FFT).
In addition, it can be easily implemented for a real-time
application since the normalization matrix P,,:(q) +
oIy, <1, is diagonal, and it is straightforward to compute its
inverse.

Though UNMCFLMS allows the estimation of long IRs,
it requires a high input signal-to-noise ratio (SNR). When
additive noise is present, it is possible to see that the
UNMCFLMS rapidly diverges from the optimal solution.
Such a misconvergence is associated with the non-uniform



spectral attenuation of the estimated impulse response
[14, 16]. In order to avoid this problem in [15], it is pro-
posed to use a modified cost function defined as

Jmod(q) = Jr(q) + B(q)J»(q) (7)

where J{q) and J,(q) are the original and penalty cost
functions, respectively, and f5(q) is the Lagrange multiplier.
The penalty cost function is formulated as

NL;, . 2
maximize J,(q) = H hi(Q)’ (8)
i=1
' . 2 2 —~ 2 1
SubJeCt to ’hl(q)‘ +‘ﬁ2(q)‘ + -+ ‘ﬁNLh(q)‘ :N—Lh
)

where Eq. 9 comes from the unit norm constraint imposed
in the previous update equation. The coupling factor,
P(q), is estimated such that the gradient of J,;,,q(¢) becomes
zero in the steady-state condition.

This gives V J{gq) = p(q@)V J,(¢), and premultiplying
both sides by JII;I(q), it is possible to obtain f(g) as

VI (q)VIr(9)
(ZAG]

Considering the modified cost function of Eq. 7, the
update equation for the RNMCFLMS is then

Blq) = : (10)

~10 ~10

h,, (g+1)=h,,.(q) — pPuw(q) + Shor,z,] '
N
x Y D (q)er(q) (11)
n=1

+pﬁk(q)v‘][7nm* (q)7 i= 17"'7N

where f5;(¢g) is estimated similar to Eq. 10 but using the
UNMCFLMS algorithm update parameters.

Speech Dereverberation Stage

Given the SIMO system H,,:(z) corresponding to the
specific source s,,+, a set of inverse filters G- (z) can be
found by using the multiple-input/output inverse theorem
(MINT) [27] such that

S Hype (2)Gone (2) = 1, (12)

n=1

assuming that the RTFs do not have any common zeros. In
the time-domain, the inverse filter vector denoted as g, is
calculated by minimizing the following cost function:

C=|Hug, — v, (13)

where || - || denote the /,-norm operator and

v=10,---,0,1,---,0]". (15)

d

The vector v is the target vector, that is, the Kronecker
delta shifted by an appropriate modeling delay
(0 < d < NL)) while H,- = [Hy,+, - -, Hy] where H,,-
is the convolution matrix of the IR between the source s},

and n-th microphone. When the matrix H,,- is given, the
inverse filter set can be calculated as

gm* = H:rn*v (16)

where ()T denotes the Moore—Penrose pseudoinverse. By
setting L; so that matrix H,, is square, a filter set with the
minimum length is obtained.

Considering the presence of disturbances, that is, addi-
tive noise or RTFs fluctuations, the cost function Eq. 13 is
modified as follows [17]:

gm*”zv (17)

where the parameter y(> 0), called regularization param-
eter, is a scalar coefficient representing the weight assigned
to the disturbance term. It should be noticed that Eq. 17 has
the same form of Tikhonov regularization for ill-posed
problems [9]. Its value has been set to 0.1 in all simulations
described in the following.

Let the RTF for the fluctuation case be given by the sum

2
C=|Huwg, —v|[+y

of two terms, the mean RTF (H,,-) and the fluctuation from
the mean RTF (H,), and let E(H’.H,,) = yL In this
case, a general cost function, embedding noise and fluc-
tuation case, can be derived:

C= gZ,}HTHgm* — gZ,}HTV — VTHgm* +viv+ ygf;l* LI
(18)
where

H— {E’” (noise case)

H, (fluctuation case). (19)

The filter that minimizes the cost function in Eq. 18 is
obtained by taking derivatives with respect to g,. and
setting them equal to zero. The required solution is

g, = (HTH +1)'"H'v. (20)

The usage of Eq. 20 to calculate the inverse filters
requires a matrix inversion that, in the case of long IRs, can
result in a high computational burden. Instead, an adaptive
algorithm [34] has been adopted to satisfy the real-time
constraints. It is based on the well-known steepest-descent
technique, whose recursive estimator has the form
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5o(g+ 1) = g9 - “Lc 1)

Moving from Eq. 18 through simple algebraic
calculations, the following expression is obtained:

VC = =2[H" (v~ Hg,-(q)) — 78 (9)]. (22)
Substituting Eq. 22 into Eq. 21, the following holds

g (q+1) =2, (q) + ul@[H (v — Hg, () — 18, ()]
(23)

where u(q) is the step-size.

The convergence of the algorithm to the optimal solution is
guaranteed if the usual conditions for the step-size in terms of
autocorrelation matrix H? H hold. However, the achievement
of the optimum can be slow if a fixed step-size value is chosen.
The algorithm convergence speed can be increased following
the approach in [12], where the step-size is chosen in order to
minimize the cost function at the next iteration. The analytical
expression obtained for the step-size is the following:

B e’ (g)e(q)
ua) = e’ (q) (H"H + y1)e(q)

(24)

where

e(q) = H'[v — Hg,. (4)] — 18, (q)-

In using the previously illustrated algorithm, different
advantages are obtained: The regularization parameter,
which takes into account the presence of disturbances,
makes the dereverberation process more robust to noise and
to estimation errors due to the BCI algorithm [17]; the real-
time constraint can be met also in the case of long IRs since
no matrix inversion is required. Finally, the complexity of
the algorithm has been decreased computing the required
operation in the frequency-domain using FFTs.

Speaker Diarization Stage

The algorithm taken here as reference is the one proposed
in [41], which consists in segmenting live recorded audio

into speaker-homogeneous regions with the goal of
answering the question “who is speaking now?”. Current
state-of-the-art speaker diarization systems are based on
clustering approaches, usually combining hidden Markov
models (HMMs) and the Bayesian Information Criterion
metric [11, 45]. Despite their state-of-the-art performance,
such systems have the drawback of operating on the entire
signals, making them unsuitable to work online as required
by the proposed framework. For the system to work online,
the question has to be answered on small chunks of the
recorded audio data, and the decisions must not take longer
than real time. In order to do that, two distinct operating
modes are foreseen for the SDiar system (Fig. 2): the
training and the online recognition one.

In training mode, the user is asked to speak for one
minute. The voice is recorded and transformed in the mel-
frequency cepstral coefficient (MFCC) features space. The
speech segments detected by means of a ground-truth
Voice Activity Detector (acting as SDiar entry-algorithm in
both operating modes) are then used to train a Gaussian
mixture model (GMM), by means of the expectation—
maximization (EM) algorithm. The number of Gaussians is
100 and the accuracy threshold value (to stop EM itera-
tions) equal to 10~*. Such values have been empirically
determined on meetings IS1004a-d of the AMI corpus.

In the actual recognition mode, the system records and
processes chunks of audio as follows: in the first stage,
MEFCC features are extracted and cepstral mean subtraction
(CMS) is applied, to deal with stationary channel effects. In
the subsequent classification step, the likelihood for each
set of features is computed against each set of Gaussian
Mixtures obtained in the training step. As stated in [41],2 s
chunks of audio and a frame-length of 25 ms (with frame-
shift equal to 10 ms) have been used, meaning that a total
of 200 frames are examined to determine if an audio seg-
ment belongs to a certain speaker in the non-speech model.
The decision is reached using majority vote on the likeli-
hoods: Every feature vector in the current segment is
assigned to one of the known speaker model based on the
maximum likelihood criterion. The model that has the

Training
x, (k) ) Feature
a . . P
Extraction » GMM Training
Recognition W
SPKy | SPKy | .. | sPK,
x”(k) ’ Feature .| Identification ‘ ! ‘ 3 ‘ ‘ J ) .—>pl
Extraction 7| (Majority Vote) » Demultiplexer | :
»2y

Fig. 2 The speaker diarization block scheme: “SPK,,” are the speaker identities labels assigned to each chunk



majority of vectors assigned determines the speaker iden-
tity on the current segment.

The “Demultiplexer” block shown in Fig. 2 associates
each speaker label to a distinct output and sets it to “1” if
the speaker is the only active, and “0” otherwise.

Computer Simulations

The overall framework depicted in Fig. 1 has been devel-
oped on a freeware software platform, namely NU-Tech
[3], suitable for real-time audio processing.’

The acoustic scenario under study consists of an array of
five microphones placed on the meeting table (located in a
small office) and four speakers around them, as depicted in
Fig. 3. A similar setup is used in the AMI [6] sub-corpus
addressed in simulations described later on. Such a sub-
corpus contains the “IS” meetings, well suited for the
evaluation of algorithms working in multiparty conversa-
tional speech scenarios: Indeed, they have been used in
[41] to test the performance of the speaker diarization
system.

The headset recordings of this database have been used
as original speech sources and then convolved with IRs
generated using the RIR Generator tool [13], thus syn-
thetically generating the microphone signals. As back-
ground noise added at the microphone level, two options
have been chosen: white and colored (pink), both uncor-
related over the different channels. Three different rever-
beration conditions have been taken into account
corresponding to Ty = 120, 240, 360 ms, respectively,
with IRs 1024 taps long. Four different (segmental) SNR
values have been considered, that is, SNR = 10, 20, 30, 40
dB. SNR = oo stands for the no-additive noise case study.
FIR filters used in BCI and SDer stages are as long as the
simulated IRs: The real-time factor corresponding to this
parametrization is equal to 0.6, split into 0.15 for SDiar and
0.45 for both BCI and SDer. It must be noted that the extra-
computational burden due to the employment of noise
robust algorithms is negligible [15], and therefore, the real-
time factor does not depend on the choices made above for
the speech enhancement framework stages.

Two quality indexes have been considered for evalua-
tion purposes. The first one is the normalized segmental
signal-to-reverberation ratio (NSegSRR), which is defined
as follows [29]:

! NU-Tech allows the developer to focus on the algorithm imple-
mentation without worrying about the interface with the sound card.
The ASIO protocol is supported to guarantee low latency times. NU-
Tech architecture is plug-in based: An algorithm can be implemented
in C++ language to create a NUTS (NU-Tech Satellite) that can be
plugged in the graphical user interface.
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Fig. 3 Room setup

Table 1 Diarization Error Rates (in percentage) for non-processed
audio files of meeting IS7009b in all addressed acoustic conditions in
the presence of additive white and colored noise

SNR (dB)
Teo (ms) 10 20 30 40 0 Average
White noise
120 28.21 16.50 11.67 8.36 6.36 14.22
240 32.20 17.29 11.32 9.38 6.61 15.36
360 34.38 19.77 12.68 9.52 7.16 16.70
Average 31.60 17.85 11.89 9.09 6.71 1543
Colored noise
120 30.02 16.82 11.17 8.08 6.36 14.49
240 35.05 19.02 11.09 8.57 6.61 16.07
360 34.53 20.39 11.38 7.7 7.16 16.23
Average 33.20 18.74 11.21 8.12 6.71 15.60
0 T T T T
+T60:120 ms
+T60=240 ms
21 —6— T=360ms
4}
o -6}
z
z
z 8
10+
_12 L
_14 ! 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

frames

Fig. 4 NPM convergence performance over three different reverber-
ation case studies. The SNR is equal to co
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Fig. 5 White noise case study. NPM (left column) and NSegSRR (right column) performance of all addressed speech enhancement framework
configurations under the different acoustic conditions. Averaged values over all speakers are considered

Sm
NSCgSRR: 1010g10<”(1/0(|i§—”is”>7 m = 1,...,M
m m||2

(25)

where, s,, and §,, are the desired direct-path signal and
recovered speech signal, respectively, and o is a scalar
assumed stationary over the duration of the measurement.
Of course, in calculating the NSegSRR value, the involved
signals are assumed to be time-aligned. The higher the
NSegSRR value, the better it is.

For the BCI stage, a channel-based measure called
normalized projection misalignment (NPM) [28] is

employed:
NPM(g) = 201080 1421, (26)
where

h"h(g) -
e(g) =h——=———h 27
(q) () (q) (27)
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Fig. 6 Colored noise case study. NPM (left column) and NSegSRR (right column) performance of all addressed speech enhancement framework
configurations under the different acoustic conditions. Averaged values over all speakers are considered

is the projection misalignment vector, h is the real IR

~

vector, whereas h(g) is the estimated one at the g-th iter-
ation, that is, the frame index. In this case, the lower the
NPM value, the better it is.

Experimental Results

Computer simulations discussed in this section are related
to the meeting IS1009b of the corpus [6]. It has a total

length of 33 m and 15 s, and all the four participants are
female speakers. The amount of speaking time for each
speaker, including overlap, is 7 m and 47 s, 5m and 10 s, 7
m and 20 s, 9 m and O s for speaker s;, s,, s3 and sy,
respectively, whereas the total overlap is 3 m and 5 s.

As stated in previous section, twelve distinct acoustic
scenarios have been addressed for each noise type, corre-
sponding to the combination of the three aforementioned
Teo and SNR values: For each of them, the non-processed
and processed cases have been evaluated. Moreover, two
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Table 2 NSegSRR values for non-processed audio files of meeting
1S1009b (containing four female speakers) in all reverberation and
SNR conditions—White noise case study

To (ms) 51 52 53 S4
SNR = 10 dB

120 —8.18 —7.23 —12.44 —-7.93

240 —10.24 —8.78 —26.60 —16.53

360 —11.06 —9.42 —32.42 —19.24
SNR =20 dB

120 —-7.97 —6.95 —11.86 —7.43

240 —8.91 —8.62 —21.31 —16.01

360 —10.46 —-9.01 —30.48 —18.16
SNR = 30 dB

120 —-7.91 —6.48 —10.10 —6.62

240 —8.38 —7.96 —20.64 —14.38

360 —10.21 —8.46 —29.62 —17.87
SNR = 40 dB

120 —6.84 —5.88 —9.04 —-5.39

240 —8.26 —7.12 —19.74 —13.46

360 —9.06 —-791 —28.45 —15.41
SNR = 0

120 —4.98 —4.77 —6.78 —4.18

240 —6.11 —6.45 —20.06 —9.59

360 —6.61 —7.56 —27.55 —11.76

operating modes for the SDiar system have been consid-
ered: oracle (diarization coincides with manual AMI
annotations) and real (speakers’ activity is detected by
means of the algorithm described in “Speaker Diarization
Stage™)

The SDiar performance has been measured by the
diarization error rate’ (DER). DER is defined by the fol-
lowing expression:

Zf:l dur(s)(max(Niet(s), Nhyp(s)) — Neorect (5))

DER = S
D oy dur(s)Neeg (s)

(28)

where S is the total number of segments in which no
speaker change occurs, Npei(s) and Nyyp(s) indicate the
number of speakers in the reference and in the hypothesis,
and Neorec(s) indicates the number of speakers that speak
in the segment s and have been correctly matched between
the reference and the hypothesis. As recommended by the
National Institute for Standards and Technology (NIST),
evaluation has been performed by means of the “md-eval”
tool with a collar of 0.25 s around each segment to take
into account timing errors in the reference.

Simulations have been accomplished in all different
acoustic scenarios, and related results are shown in

2 http://www.itl.nist.gov/iad/mig/tests/rt/2004-fall/

Table 1: They clearly show a strong dependence on the
presence of noise (both for white and colored case studies)
and a lower but still clear dependence on the reverberation.
The error obtained in the clean speech case study is equal
to 6.51%.

The behavior of the BCI algorithm has been prelimi-
narily addressed on an audio file containing speech from a
single speaker. Figure 4 shows its rate of convergence in
the three different reverberation cases when SNR = oo.
NPM values have to be referred to an initial value of about
0 dB, obtained by initializing the overall channel IRs
vector to satisfy the unit norm constraint [18]. Curves
related to other SNR case studies have not been depicted
for the sake of conciseness: However, NPM values
obtained at convergence are reported for all acoustic sce-
narios in tables below. BCI algorithm convergence is
assumed to be reached in the last two seconds of speaking
activity.

Then, the overall system performance has been finally
evaluated and related results are reported in Figs. 5, 6.
They compare the performance of the speech enhancement
framework (both oracle and real SDiar operating modes)
and the non-processing option (i.e., when the proposed

Table 3 Oracle Speaker Diarization case study: NPM and NSegSRR
values for dereverberated audio files of meeting 1S71009b (containing
four female speakers) in all reverberation and SNR conditions—White
noise case study

Tqo NPM (dB)

NSegSRR (dB)

(ms)

S1 So 53 Sy S1 S2 $3 Sy
SNR = 10 dB
120 —094 —0.58 —0.61 —098 3.73 4.14 351 229
240  —0.88 —0.60 —0.58 —0.79 3.44 092 338 2.19
360  —0.79 —0.77 —0.56 —0.66 3.11 033 296 2.02
SNR =20 dB
120 —524 —242 —131 —2.89 434 487 395 331
240 3.5 —147 —1.12 —1.87 397 106 3.78 3.27
360  —191 —081 —0.69 —123 370 053 324 3.54
SNR = 30 dB
120 —740 —177 —455 —58 578 491 423 4.16
240  —548 —144 —27 =393 558 115 4.17 4.03
360 —325 —1.13 —1.12 —2.08 436 078 3.36 3.97
SNR = 40 dB
120 -89 —297 —6.04 —7.92 621 541 4.64 489
240  —6.08 —204 —378 —537 628 122 4.61 4.69
360 —3.75 —145 —121 —280 6.07 084 4.01 4.62
SNR = oo
120 —1323 —3.09 —6.16 —9.02 6.65 583 511 6.67
240  —1096 —1.70 —6.74 —10.19 7.00 129 5.68 6.69
360 —11.52 —190 —7.83 —12.69 687 107 525 5.54
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Table 4 Real Speaker

Diarization case study: NPM Teo (ms) NPM (dB) NSegSRR (dB)
and NSegSRR values for 51 5 53 S4 51 5> 53 S4
dereverberated audio files of
meeting IS1009b (containing SNR =10 dB
four female speakers) in all 120 —075  —088  —0.60  —0.60 0.84 1.17 0.68 0.46
Ziﬁﬁfgﬁ;?&ﬁﬂi igi case 240 —064  —04 025  —049  -249  —283  -232 309
study 360 —0.17  —041  —0.19  —043  —497  -551  —785  —6.67
SNR = 20 dB
120 —124 230  -260  —223 1.74 1.88 0.73 0.38
240 -1.07  -102  -158  —148  —115  —202  —138  —232
360 —1.17  —094  —041  —065 —422  —474  —696  —5.17
SNR = 30 dB
120 -552 —123  —351  —5.69 246 2.60 1.24 1.16
240 369  —047  —24 —344  —077  —161  —1.18  —147
360 —297  —023  —057 —133 -394  -336  —661  —4388
SNR = 40 dB
120 —8.21 —136  —140  —7.80 271 2.68 1.87 3.89
240 -607  —06 —064  —427  —052  —114  —100  —0.96
360 —436  -051  —041  —215  —336  —303  —588  —44l
SNR = 0o
120 1227  —069  —199  —7.80 352 297 221 8.11
240 —647  —020  —108  —405  —0.17  —1.13  —0.84 0.25
360 —448  —011  —067  —275  —306  —423  —504  —290

speech enhancement front-end is not used) in terms of
NPM and NSegSRR, respectively, for white and colored
noise case studies. Averaged values over all speakers are
reported in these graphs. Note that in the unprocessed case,
there is no IR estimation, and therefore, the NPM value is
always equal to 0 dB.

Looking at these experimental results, it can be easily
concluded that consistent NPM and NSegSRR improve-
ments are registered in processed audio files due to the use
of the proposed algorithmic framework. When the real
speaker diarization system is employed, the speech
enhancement framework performance decreases: This is
mainly due to the occurrence of speaker errors (i.e., the
confusion of one speaker identity with another one), which
makes the BCI algorithm convergence problematic, thus
reducing the dereverberation capabilities of the SDer stage.
Nevertheless, still significant improvements are obtained
with respect to the results attained in the non-processed
case study (Figs. 5, 6). That said, there is space for
improvements and some refinements are foreseen in the
near future to increase the framework robustness to the
speaker diarization errors. Moreover, it must also be
underlined that IRs could be estimated during the SDiar
training phase (performed using 60s of speech for each
speaker), thus accelerating the overall system convergence
fulfillment in the real testing phase. However, it must be
stressed the fact that the IRs can be estimated continuously

even if some changes, such as speaker movements, occur in
the room.

With regard to the background noise impact, it is evident
that performance degrades as soon as the SNR decreases,
but always a significant improvement with respect to the
no-processing solution can be registered in all acoustic
conditions and for both white and colored noise case
studies. It must be underlined that this behavior is guar-
anteed by the robustness to noise of employed adaptive
algorithms within BCI and SDer stages. For instance,
in contrast to the RNMCFLMS solution adopted, the
UNMCFLMS algorithm diverges even at high SNR values,
and therefore, its usage would not lead to the overall results
obtained in this work.

It is also worth mentioning that the system performance
dependence on SNR is much more evident than the one on
Teso, as expected. Indeed, the reverberation effect is com-
pensated by the SDer stage, whereas the noise impact is
just tolerated: Future efforts will be targeted to face this
aspect.

The dependence of NPM and NSegSRR on the speakers
active in the meeting has been also evaluated, and related
results are reported in Tables 2, 3 and 4. In particular,
Table 2 regards the NSegSRR results obtained when the
proposed speech enhancement front-end is not used (as
mentioned above, the NPM value is always equal to 0 dB
in this case). In Tables 3, 4, the NPM and NSegSRR results
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for each meeting participant and all addressed acoustic
conditions, both in oracle and real operating modes, are
detailed. A certain variability of the evaluation indexes
with speaker activity is registered which likely depends on
the properties of the recorded speech of the database and on
the related speaking duration. However, performance var-
ies coherently over the different Tgo and SNR conditions
for each speaker: This consequently yields the regular
curves plotted in Figs. 5, 6. These results are relative to the
white noise case study: same conclusions can be drawn in
the colored one.

Further simulations have been conducted by considering
two other meetings, precisely IS71008b and IS1000b that
have a total duration of 25 m, 5s and 32 m, 22s,
respectively. The DER percentages for these meetings and
the 1S1009b, subject of previous simulations, are reported
in Table 5. The related NSegSRR results averaged over the
three reverberation conditions, for the white noise case
study, are shown in Table 6: A similar behavior is attain-
able when additive colored noise is considered in the
simulated scenario. Looking at these results, it can be
easily concluded that a relevant performance improvement
with respect to the unprocessed case study is achievable for
the two new meetings, confirming what observed in sim-
ulations related to IS1009b. Again, the system shows a
certain robustness to the noise presence and its perfor-
mance increase with the SNR value. It must be observed
that a certain variability of absolute NSegSRR values are
registered over the three meetings, in correspondence with
the different behavior of the SDiar sub-system, as reported
in Table 6.

Table 5 Diarization error rate (in percentage) values for three AMI
meetings for all addressed SNR values and the unprocessed case

Meeting SNR (dB) Avg
10 20 30 40 00

IS1009b 31.60 17.85 11.89 9.09 6.71 15.43

IS1008b 11.30 9.13 6.80 4.73 3.93 6.92

IS1000b 2222 17.81 11.20 8.64 8.41 14.97

Table 6 NSegSRR values for three AMI meetings for all addressed
SNR values and the unprocessed case

Meeting SNR (dB) Avg Avg
(Unproc.)
10 20 30 40 00
IS1009 —-2.72 —-194 -136 -0.76 —-0.03 —-136 —12.15
IS1008b —1.57 —1.02 -0.55 —-0.05 035 —-0.56 —10.75
IS1000b —2.13 —1.50 -0.85 —0.35 0.00 —-096 -—11.71

Conclusions

In this work, an advanced multichannel algorithmic frame-
work to enhance the speech quality in multiparty meetings
scenarios has been developed. The overall architecture is
able to blindly identify the impulse responses and use them to
dereverberate the distorted speech signals available at the
microphone. A speaker diarization algorithm is part of the
framework and is needed to detect the speakers’ activity and
provide the related information to steer the blind channel
estimation and speech dereverberation operations to opti-
mize the performance. All these algorithmic blocks are able
to operate also in the presence of background noise. The
algorithms work in real time, and a PC-based implementa-
tion of the overall system has been discussed in this contri-
bution. Several computer simulations, based on a subset of
the AMI corpus and considering different noisy and rever-
berated acoustic conditions, have been carried out. Related
results have shown a significant improvement in perfor-
mance with respect to the no-processing option, thus proving
the effectiveness of the developed system and its suitability
for applications in real-life human—-machine interaction
scenarios.

As future works, adequate procedures will be integrated
in the current framework to reduce the impact of noise
presence by means of noise reduction algorithms. Two
possible intervention schemes can be foreseen within the
speech enhancement front-end on purpose: at the input
level, to maximize the performance of the BCI and the
speaker diarization stages, and at the output level, to
enhance the quality of the signal to be delivered out of the
front-end.

Moreover, the speech separation unit will be also inte-
grated in the future, in order to automatically recover the
speech content coming from overlapping speakers. Note
that the employment of suitable Speech Overlap Detection
algorithms [4, 19] within the real-time speaker diarization
block is needed on purpose. Some interesting investiga-
tions have been made by the authors in the past [35, 37],
but never applied to the realistic scenarios addressed. This
will likely allow a significant improvement in terms of
speech intelligibility [21, 23, 26], which will be adequately
evaluated [10].

Last but not least, the application of the proposed
framework to automatic speech recognition will be ana-
lyzed: Some work has already been done by the authors
[37], but more efforts are needed to take the noise presence
into account and to suitably integrate the framework with
the feature extraction front-end [31, 40]. Other relevant
application scenarios to be investigated in the near future
are the keyword spotting [43, 44], the activity detection
[32], the dominance estimation [20, 33], the emotion
understanding and recognition [5, 7, 38].
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