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1. Introduction

As speech recognition systems have matured over the last decades,
automatic emotion recognition (AER) can be seen as going one step
further in the design of natural, intuitive, and human-like computer
interfaces. Multimodal human-machine communication systems that
not only take into accountwhat the user says but alsohow the user com-
municates, are usually perceived asmore natural andmore enjoyable to
use [1]. Examples for successful applications of socially competent
human–computer interaction via automatic emotion recognition can
be found in the areas of human–robot communication, call center dialog
systems, computer games, and conversational agents [2–4]. Since most
of today's computer systems are equipped with microphones and
cameras, audio and video are themost important non-obtrusivemodal-
ities based on which affect recognition can be performed. Audio and
video channels can provide complementary information and tend to
improve recognition performance if they are used in a combinedmulti-
modal setup [5]. This led to a large number of studies investigating
audiovisual emotion recognition (e.g., [6]).

The accuracy of automatic emotion recognition heavily depends
on the considered scenario: Acted, prototypical emotions recorded
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in a laboratory environment typically lead to high recognition rates
that can competewith human performance in classifying these affective
states [7]. These conditions, however, do not reflect real-life scenarios in
which non-prototypical spontaneous emotions have to be modeled in
an open-microphone setting [8], i.e., the systemhas to listen and observe
(time-) continuously. Such challenges demand for ‘second generation’
AER systems that focus on realistic data and are able to account for
the complexity, subtlety, continuity, and dynamics of human emotions
[9]. Currently,we are observing a shift frommodeling prototypical emo-
tional categories such as anger or happiness to viewing human affect in a
continuous orthogonal way by defining emotional dimensions including
for example arousal and valence. This allows researchers to model
emotions either in a fully value-continuous way (e.g., via regression
approaches as in [10,11]) or by using discretized emotional dimensions,
for example for the discrimination of high vs. low arousal or positive vs.
negative valence [12,13]. Systems applying the latter approach have the
advantage of detecting a defined set of user states which can be easily
used as input for automatic dialog managers that have to decide for an
appropriate system response given a certain affective state of the user
[4].

The 2011 Audio/Visual Emotion Challenge [6] focuses on exactly
these kinds of discretized emotional dimensions. More specifically,
this challenge was organized to provide research teams with unified
training, development and test data sets that can be used to compare
individual approaches applying a defined test scenario and defined
performance measures. The task was to classify two levels of arousal,
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expectation, power, and valence from audiovisual data as contained in
the SEMAINE database [14]. Compared to rather ‘friendly’ test condi-
tions as considered in the early days of emotion recognition research
[15], this scenario is exceedingly challenging and typically leads to
results from below chance-level accuracies to around 70% accuracy
for a two-class task.

One approach towards reaching acceptable recognition performance
even in challenging conditions is the modeling of contextual informa-
tion. Even for humans it can be difficult to judge a person's emotional
state from a short isolated utterance. Thus, modern AER is influenced
by the growing awareness that context plays an important role in ex-
pressing and perceiving emotions [16]. Human emotions tend to evolve
slowly over time which motivates the introduction of some form of
context-sensitivity in emotion classification frameworks. Up to now,
most recognition systems only consider feature-level context within a
spoken utterance or video segment, e.g., via the Markov assumption
when applying Hidden Markov Models (HMM) foremotion recognition
from framewise low-level features. Yet, recent studies show that also
higher-level context modeling between successive utterances increases
the accuracy of AER systems [17].

Among various classification frameworks that are able to exploit
turn-level context, so-called Long Short-TermMemory (LSTM)networks
[18] tend to be best suited for long-range context modeling in emotion
recognition. Unlike conventional recurrent neural network (RNN) archi-
tectures, LSTM is able to incorporate an arbitrary, self-learned amount of
context into the decoding process. They were shown to prevail over
standard RNNs for recognition tasks that presume the ability to learn
long-range temporal dependencies between network input activations
as they overcome the vanishing gradient problem (see [19]). First
attempts to use LSTM for speech processing concentrate on phoneme
recognition and keyword spotting [20–23]. These studies show that
modeling not only past but also future context via bidirectional Long
Short-Term Memory (BLSTM) networks can further enhance context-
sensitive sequence processing. Recent publications reveal that also
continuous automatic speech recognition (ASR) benefits from LSTM
modeling [24,25]. First experiments on (unidirectional) LSTM-
based continuous emotion recognition from speech can be found in
[26]. This study focuses on the recognition of both, continuous and
discretized levels of arousal and valence, showing that LSTM architec-
tures outperform Support Vector Machines (SVM), Support Vector
Regression (SVR), and Conditional Random Fields (CRF). Further gains
in speech-based affective computing could be obtained with combined
acoustic-linguistic modeling, improved LSTM architectures including
so-called forget gates (see Section fsec:classification), and bidirectional
processing [17].

Apart from preliminary experiments using facial marker informa-
tion as additional input modality [13] and a recent study on subject
dependent recognition of arousal and valence [27], LSTM architectures
have hardly been applied for audiovisual emotion recognition. In this
article, we propose an LSTM-based emotion classification framework
which exploits acoustic, linguistic, and visual information. Focusing
on the Audiovisual Sub-Challenge of the 2011 Audio/Visual Emotion
Challenge, we investigate which modalities contribute to the discrimi-
nation between high and low levels of arousal, expectation, power,
and valence. Furthermore, we analyze which emotional dimensions
benefit the most from unidirectional and bidirectional Long Short-
TermMemorymodeling. By comparing our resultswith all other contri-
butions to the Audiovisual Sub-Challenge task, we provide an overview
over recent approaches towards audiovisual emotion recognition as
well as over their strengths and weaknesses with respect to the
modeling of the different emotional dimensions.

The audio feature extraction front-end applied in our study is based
on our open-source toolkit openSMILE [28]which is able to extract large
sets of prosodic, spectral, and voice quality low-level descriptors (LLD)
combinedwith various statistical functionals in real-time. Linguistic fea-
tures, including non-linguistic vocalizations such as laughing, breathing,
and sighing are extracted with an ASR engine optimized for real-time
emotional speech recognition. Our method to compute low-level facial
movement features was inspired by [29] and requires only one monoc-
ular camera. The computation time per frame is about 50 ms, i.e., almost
real-time.

We evaluate our audiovisual LSTM technique on both, the develop-
ment set and the official test set of the Audiovisual Sub-Challenge. This
allows us to compare our results to various other methods proposed for
this task so far, including Support Vector Machines [6,30], extreme
learning machine based feedforward neural networks (ELM-NN) [31],
AdaBoost [32], Latent-Dynamic Conditional Random Fields (LDCRF)
[33], Gaussian Mixture Models (GMM) [34], and a combined system
consisting of Multilayer Perceptrons (MLP) and HMMs [35].

The article is structured as follows: Section 2 provides an overview of
the SEMAINE database and the challenge task, Section 3 details our
methods for acoustic, linguistic, and visual feature extraction, Section 4
reviews the principle of Long Short-Term Memory, and Section 5 con-
tains our experimental results.

2. The SEMAINE database

The freely available audiovisual SEMAINE corpus1 [14]was recorded
to study natural social signals that occur in conversations between
humans and artificially intelligent agents. It has been used as training
material for the development of the SEMAINE system [4] – an emotion-
ally sensitive multimodal conversational agent.

The scenario used during the creation of the database is called the
SensitiveArtificial Listener (SAL). It involves a user interactingwith emo-
tionally stereotyped characterswhose responses are stock phrases keyed
to the user's emotional state rather than the content ofwhat he/she says.
For the recordings, the participants are asked to talk in turn to four char-
acters. These characters are Prudence, who is sensible; Poppy, who is
happy; Spike, who is angry; and Obadiah, who is sad and depressive.

The data used for the 2011 Audio/Visual Emotion Challenge2 is
based on the ‘Solid-SAL’ part of the SEMAINE database, i.e., the users
do not speak with artificial agents but instead with human operators
who pretend to be the agents (Wizard-of-Oz setting). Further details
on the interaction scenario can be found in [6].

Video was recorded at 49.979 frames per second at a spatial resolu-
tion of 780×580 pixels and 8 bits per sample, while audio was recorded
at 48 kHz with 24 bits per sample. Both, the user and the operator were
recorded from a frontal view by both a greyscale camera and a color
camera. In addition, the user is recorded by a greyscale camera posi-
tioned on one side of the user to capture a profile view of the whole
scene, including their face and body. Audio and video signals were syn-
chronized with an accuracy of 25 μs.

The 24 recordings considered in the Audio/Visual Emotion Challenge
consisted of three to four character conversation sessions each andwere
split into three speaker independent partitions: a training, development,
and test partition each consisting of eight recordings. As the number
of character conversations varies between recordings, the number of
sessions is different per set: The training partition contains 31 sessions,
while the development and test partitions contain 32 sessions. Table 1
shows the distribution of data in sessions, video frames, and words for
each partition.

In our experiments we exclusively focus on the Audiovisual Sub-
Challenge of the emotion challenge. Thus, our test set consists only of
the sessions that are intended for this sub-challenge, meaning only 10
out of the 32 test sessions.

For the challenge, the originally continuous affective dimensions
arousal, expectation, power, and valencewere redefined as binary classi-
fication tasks by testing at every framewhether they are above or below
average. As argued in [36], these four dimensions account for most of
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Table 1
Overview of the SEMAINE database as used for the 2011 Audio/Visual Emotion Challenge
[6].

Train Develop Test Total

# Sessions 31 32 32 95
# Frames 501 277 449 074 407 772 1 358 123
# Words 20 183 16 311 13 856 50 350
Avg. word duration [ms] 262 276 249 263
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the distinctions between everyday emotion categories. Arousal is the
individual's global feeling of dynamism or lethargy and subsumes
mental activity as well as physical, preparedness to act as well as
overt activity. Expectation also subsumes various concepts that can be
separated as expecting, anticipating, being taken unaware. Power sub-
sumes two related concepts, power and control. Valence subsumes
whether the person rated feels positive or negative about the things, peo-
ple, or situations at the focus of his/her emotional state. Fig. 1 shows ex-
ample screenshots for low and high arousal, expectation, power, and
valence. In Fig. 2, a series of word-level screenshots of a user and the
corresponding valence annotation can be seen. A detailed description
on the annotation process can be found in [6].

The word timings were obtained by running an HMM-based speech
recogniser in forced alignment mode on the manual transcripts of the
interactions. The recognizer used tied-state cross-word triphone left-
right (linear) HMM models with 3 emitting states and 16 Gaussian
mixture components per state.

3. Feature extraction

3.1. Audio feature extraction

Our acoustic feature extraction approach is based on a large set of
low-level descriptors and derivatives of LLD combined with suited
statistical functionals to capture speech dynamics within a word. All
Fig. 1. Examples for low and high arousa
features and functionals are computed using our on-line audio analysis
toolkit openSMILE [28]. The audio feature set identical to the 2011
Audio/Visual Emotion Challenge baseline acoustic feature set applied
in [6] and consists of 1941 features, composed of 25 energy and spectral
related low-level descriptors×42 functionals, 6 voicing related LLD×32
functionals, 25 delta coefficients of the energy/spectral LLD×23 func-
tionals, 6 delta coefficients of the voicing related LLD×19 functionals,
and 10 voiced/unvoiced durational features. Details on the LLD and
functionals are given in Tables 2 and 3, respectively. The set of LLD
covers a standard range of commonly used features in audio signal anal-
ysis and emotion recognition. The functional set has been based on sim-
ilar sets, such as the one used for the Interspeech 2011 Speaker State
Challenge [37], but has been manually reduced to avoid LLD/functional
combinations that produce values which are constant, contain very
little information and/or a high amount of noise. One example for a
LLD/functional combination that contains no information is ‘minimum
pitch’ which is always zero.

3.2. Linguistic and non-linguistic feature extraction

Linguistic features are extracted using the SEMAINE 3.0 ASR system
[4]. It applies openSMILE as front-end to extract 13 Mel-Frequency
Cepstral Coefficients (MFCC) together with first and second order tem-
poral derivatives every 10 ms (window size 25 ms). TheHMMback-end
is based on the open-source Julius decoder [38]. Both, a back-off bigram
language model and tied-state triphone acoustic models were trained
on the COSINE corpus [39], the SAL database [40], and the training set
of the SEMAINE database [14]. All of these corpora contain spontaneous,
conversational, and partly emotional speech. The phoneme HMMs
consist of three states with 16 Gaussian mixtures per state. Models for
non-linguistic vocalizations (laughing, breathing and sighing) consist
of nine emitting states.

Typically, one (key)word is detected for every audio chunk (which
correspond to single words), however the recognizer is not restricted
to detect exactly one word, thus insertions and deletions are possible.
l, expectation, power, and valence.
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Fig. 2. Series of word-level screenshots of a user together with the corresponding valence annotation.

Table 3
Set of all 42 functionals.

Statistical functionals (23)

(Positiveb) arithmetic mean, root quadratic mean, standard deviation, flatness,
Skewness, kurtosis, quartiles, and inter-quartile ranges,
1%, 99% percentile, percentile range 1%–99%
Percentage of frames contour is above: min+25%, 50%, and 90% of the range
Percentage of frames contour is rising,
Max, mean, min segment lengthc, standard deviation of segment lengthc
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From the detected sequence of words a bag-of-words vector is com-
puted. The general procedure is as follows:

• a word list (also including non-linguistic vocalizations) is built from
all the recognized words in the training and development set,

• words that occur less than 10 times in the union of training and de-
velopment set are removed from the word list,

• the dimensionality of the bag-of-words vector equals the size of the
remaining word list (141 words),

• for the current chunk a bag-of-words vector is built by setting each
element corresponding to a detected word to the word confidence
score; all other elements in the vector are set to zero; if the recog-
nizer output for one word is empty, all elements of the vector are
set to zero.

3.3. Visual feature extraction

Generally, a large variety of purely visual emotion recognition sys-
tems has been presented in recent years, including combinations of
Local Binary Patterns and Support Vector Machines [41], methods
based on deformed grids and SVMs [42], Haar-like features modeled
via AdaBoost [43], approaches using Gabor filters and non-negative
matrix factorization [44], and variable-intensity models [45]. An over-
view of different visual emotion recognition techniques is given in
[46]. Further audiovisual approaches have been presented in [47–51].

For the Video Sub-Challenge of the 2011 Audio/Visual Emotion Chal-
lenge, a variety of purely vision-based emotion recognition approaches
were presented. In Table 4, we give a brief overview over these
methods. Cruz et al. [52] proposed an approach that registers the face
with an avatar and subsequently computes Local Phase Quantization
(LPQ) features. Ramirez et al. [33] extract high-level features such as
eye gaze direction, smile intensity, and head tilt. Glodek et al. [35] use
Gabor filters to extract video features. Similarly, Dahmane et al. [53]
employ Gabor filter energy to extract visual features.

In this study, we focus on the extraction of facial movement fea-
tures as input for context-sensitive LSTM-based emotion classifica-
tion from video. The face is detected with a Viola–Jones detector
[54] and tracked with a camshift tracker that is based on a probability
Table 2
31 acoustic low-level descriptors (LLD).

Energy & spectral (25)

Loudness (auditory model based), zero crossing rate,
Energy in bands from 250–650 Hz, 1 kHz–4 kHz,
25%, 50%, 75%, and 90% spectral roll-off points,
Spectral flux, entropy, spectral variance, skewness, kurtosis,
Psychoacousitc sharpness, harmonicity, MFCC 1–10
Voicing related (6)
F0 (Sub-harmonic summation (SHS) followed by Viterbi smoothing),
Probability of voicing, jitter, shimmer (local), jitter (delta: “jitter of jitter”),
Logarithmic Harmonics-to-Noise Ratio (logHNR)
image built from a color histogram of the facial pixels. Subsequently,
the face is cut out and rotated so that it is upright, before the optical
flow with respect to the previous frame is computed. The optical
flow field is subdivided into 49 subregions and the average in x-
and y-direction is computed. Compared to [29], our method is faster
and also extracts head tilt in addition to facial movement features.
Furthermore, unlike the Audio/Visual Emotion Challenge baseline
video feature extractor [6] which is based on dense local appearance
descriptors, our approach does not rely on correct eye detection. Note
that the video-based methods presented as Video Sub-Challenge con-
tributions (see Table 4 [52,33,35,53]) do not compensate for head tilt.
In our approach, this problem is addressed with ellipse fitting and
subsequent tilt rectification.

3.3.1. Baseline video feature extractor
The baseline video feature extractor for the 2011 Audio/Visual

Emotion Challenge [6] works as follows: First, the face position is
detected by a Viola Jones face detector which computes a squared win-
dow containing the face. To refine the detected face region, the location
of the right eye (prx, pry) and the position of the left eye (plx, ply) are
detected. To this aim, a Haar-cascade object detector is applied. Once
the two eyes are detected, the image can be rotated by angle α so that
the eyes lie on a horizontal line. The image is scaled so that the distance
between the eyes is exactly 100 pixels. Subsequently, a squared face
region of 200×200 pixels is cropped out so that the middle of the
right eye is at (prx, pry)=(80,60).

Uniform Local Binary Patterns (LBP) [55] are used as dense local
appearance descriptors. Consisting of eight binary comparisons per
Regression functionalsa (4)
Linear regression slope, and approximation error (linear),
Quadratic regression coefficient a, and approx. error (linear)
Local minima/maxima related functionalsa (9)
Mean and standard deviation of rising and falling slopes (minimum to maximum),
Mean and standard deviation of inter maxima distances
Amplitude mean of maxima
Amplitude mean of minima
Amplitude range of maxima
Othera, c (6)
Linear prediction gain, linear prediction coefficients 1–5

a Not applied to delta coefficient contours.
b For delta coefficients the mean of only positive values is applied, otherwise the

arithmetic mean is applied.
c Not applied to voicing related LLD.
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Table 4
Approaches proposed for the Video Sub-Challenge of the 2011 Audio/Visual Emotion
Challenge.

Reference Method

[52] Viola–Jones+LPQ
[33] Omron OKAO Vision software (high-level features)
[35] Gabor filters
[53] Gabor filter energy
Our approach Viola–Jones+segmented optical flow and head tilt
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pixel, they are fast to compute. By employing uniform LBPs instead of
full LBPs and aggregating the LBP operator responses in histograms
taken over regions of the face, the dimensionality of the features is
rather low (59 dimensions per image block). The registered face
region is divided into 10×10 blocks, resulting in 5900 features. The
baseline method also uses head tilt α and the distance between the
eyes in the original image d=||pr pl||2. Here, the variables Pr and Pl
denote the position of the right and left eyes.

3.3.2. Proposed visual feature extraction method
In order to compute the visual low-level features applied in our

proposed LSTM-based audiovisual emotion recognition framework we
go through the steps depicted in the block diagram in Fig. 3. Note that
we only use data from the frontal view color camera. In Block 1 the
face is detected by a Viola Jones face detector [54] (currently one of the
best face detectors [56]). From the detected face a histogram is built for
tracking (Block 2 in Fig. 3). The face that has been detected in the first
frame is cut out and transformed into the hue-saturation-value (HSV)
color space and the entries of the histogramM are computed:

M h; s; vð Þ ¼ ∑
x;y

1 if TH x; yð Þ ¼ h∩TS x; yð Þ ¼ s
∩TV x; yð Þ ¼ v

0 else

8<
: ð1Þ

where T is the detected face region that is taken as template. The indices
h, s, and v denote hue, saturation, and value, respectively. Each of the
three components of the HSV color model has 20 bins in the histogram.
For each pixel I(x,y) in the current image the probability of a facial pixel
can be approximated by

Pf x; yð Þ ¼ M IH x; yð Þ; IS x; yð Þ; IV x; yð Þð Þ
N

; ð2Þ

with N being the number of template pixels that have been used to
create the histogram. The face is considered as detected when there is
a sufficiently large amount of facial pixels in the upper half of the
image. Subsequently, the face is tracked with a camshift tracker [57]
Fig. 3. Basic steps for the computation
which takes the probability image as input. The location, the size, and
the orientation of the face are computed according to [57]. One advan-
tage of the camshift tracker is that it is comparatively robustwhich is im-
portant for a reliable facial movement feature extraction. Furthermore, it
operates fast and also computes the tilt of the head, as can be seen in
Fig. 3.

Subsequently, the face is cut out and the tilt is undone (Block 3). The
face in the up-right pose is compared to the previous frame. Note that
we use the tilt θ itself as one facial low-level feature. In Block 4, 98 facial
movement features are extracted as follows. The optical flow between
the rectified face and the face of the previous frame is computed. As
an example, Fig. 4 depicts a subject that opens its mouth. In this case
the y-values of the rectangles of the lip region are high.

The cut out face is then subdivided into 7×7=49 rectangles. For
each of these rectangles the average movement in x- and y-direction
is computed. These movements are further features in addition to the
tilt θ, so that we extract a total of 99 visual low-level features per
frame. The computation of the low-level features takes 50 ms per
frame for a C++ implementation on a 2.4 GHz Intel i5 processor with
4 GB RAM.

In order tomap the sequence of frame-based video features to a sin-
gle vector describing theword-unit, statistical functionals are applied to
the frame-based video features and their first order delta coefficients.
This step is conceptually the same as for the audio features, except
that different functionals are used, considering the different properties
of the video features. Note thatwords shorter than250 ms are expanded
to 250ms which means that the time windows containing very short
words can contain (fractions of) other words. The following functionals
are applied to frame-based video features: arithmetic mean (for delta
coefficients: arithmetic mean of absolute values), standard deviation,
5% percentile, 95% percentile, and range of 5% and 95% percentile.
Fewer functionals as for audio features are used to ensure a similar
dimensionality of the video feature vector and the audio feature vec-
tor. The resulting per-word video feature vector has 5×2×99=990
features.

Fig. 5 shows the importance of the subregions of the face for the
video-based discrimination between high and low arousal, expecta-
tion, power, and valence. Importance was evaluated employing the
ranking-based information gain attribute evaluation algorithm imple-
mented in the Weka toolkit [58]. As input for the ranking algorithm,
we used all 990 features extracted from each instance in the training
set together with the ground truth annotation of the respective emo-
tional dimension. In Fig. 5, the shading of the facial regions indicates
the importance of the features corresponding to the respective re-
gion. As expected, the small remaining background parts are less im-
portant than the subregions containing facial information. Within the
face, the eye regions contain slightly more information. Overall, we
of the low-level visual features.
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Fig. 4. Example for optical flow computation: between the frames there is a substantial change in the mouth region.
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observe that relevant information about a subject's emotional state
can be found in multiple regions of the face and not just in the
upper or lower face, corresponding to the eye and mouth region,
respectively.

4. Classification

Widely used classifiers operating on static word- or turn-level fea-
ture vectors are, e.g., Support Vector Machines or Multilayer Percep-
trons. Context-dependent classification frameworks are mostly
based on Hidden Markov Models, as for example the approach pro-
posed by the winners of the Audio Sub-Challenge of the 2011
Audio/Visual Emotion Challenge [59]. To exploit context between
successive speech segments for improved audiovisual emotion recog-
nition, this study considers recurrent neural network architectures
which take into account past observations by cyclic connections in
the network's hidden layer. For off-line sequence labeling problems,
also future context can be modeled via bidirectional RNNs (BRNN). Bi-
directional networks have access to both, past and future observa-
tions by applying two hidden layers, one for forward processing and
one for backward processing. These two hidden layers are connected
to the same output layer (see [60] for details). For emotion recogni-
tion BRNNs can be employed whenever the real-time constraint can
be relaxed, i.e., when focusing on off-line processing or when a
short latency is tolerable, so that the system can be operated with a
look-ahead buffer.

In our experiments we investigate a more advanced technique for
neural network based context modeling. It is based on the Long
Fig. 5. Importance of facial regions for video feature extraction according to the ranking-ba
[58]. Information gain is evaluated for each emotional dimension. The shading of the facial r
Short-Term Memory principle originally introduced in [18] and im-
proved in [61]. LSTM networks use so-called memory blocks instead
of conventional hidden cells which allows them to access and model
a self-learned amount of long-range temporal context. Each memory
block consists of one or more memory cells and multiplicative input,
output, and forget gates. The cell input is scaled by the activation of
the input gate, the output by the activation of the output gate, and
the previous cell value by the activation of the forget gate. Thus, the
network can perform read, write, and reset operations, and – unlike
traditional RNNs which are affected by the vanishing gradient problem –

has access to an arbitrary amount of context information. Fig. 6
shows the basic architecture of an LSTM memory block with one
memory cell.

The initial version of the LSTM architecture proposed in [18] con-
tained only input and output gates to enable an architecture that can
store and access activations via gate activations. Later, in [61], the
authors found that for long sequences it is beneficial to allow the
memory cells to reset themselves whenever the network needs to for-
get past inputs. This led to the inclusion of the so-called forget gates. In
our experiments we exclusively consider the enhanced LSTM version
including forget gates. The overall effect of the gate units is that the
LSTM memory cells can store and access information over long pe-
riods of time and thus avoid the vanishing gradient problem. For in-
stance, as long as the input gate remains closed (corresponding to
an input gate activation close to zero), the activation of the cell will
not be overwritten by new inputs and can therefore be made avail-
able to the net much later in the sequence by opening the output
gate. Consequently, the number of memory blocks in the network
sed information gain attribute evaluation algorithm implemented in the Weka toolkit
egions indicates the importance of the features corresponding to the respective region.

image of Fig.�5
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Fig. 6. LSTMmemory block consisting of one memory cell: the input, output, and forget
gates collect activations from inside and outside the block which control the cell
through multiplicative units (depicted as small circles); input, output, and forget
gate scale input, output, and internal state respectively; fi, fg, and fo denote activation
functions; the recurrent connection of fixed weight 1.0 maintains the internal state.
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specifies how many different (weighted) inputs can be stored at each
timestep to influence future output activations.

LSTM networks have shown remarkable performance in a variety
of pattern recognition tasks, including phoneme classification [20],
handwriting recognition [62], keyword spotting [63], affective com-
puting [17], and driver distraction detection [64]. Further details on
the LSTM technique and on its bidirectional extension (BLSTM) can
be found in [62]. In [65], a methodology for determining the amount
of temporal context information relevant for emotion recognition is
proposed and evaluated.

Fig. 7 shows the overall system architecture of our LSTM-based
audio-visual emotion recognition framework applying early (i.e.,
feature-level) fusion. The openSMILE audio feature extractor provides
framewise MFCC features for the speech recognition module as well
as statistical functionals of acoustic features for the LSTM network.
In addition to audio features, the network also processes the linguistic
feature vector provided by the ASR system and video features com-
puted by the facial feature extractor to generate the current emotion
prediction.

5. Experiments and results

5.1. Audio/visual emotion challenge

All experiments are carried out on the Audiovisual Sub-Challenge
task as described in Section 2. To gain first insights concerning the
Fig. 7. System architecture for early fusion o
optimal combination of modalities (i.e., acoustic, linguistic, and visual
features) and the number of training epochs needed for LSTM net-
work training, we performed initial experiments using the training
set for network training and the development set for testing, before
we focused on the actual challenge task which consists in training
on the union of the training and the development set and testing on
the test set. The task is to discriminate between high and low AROUSAL,
EXPECTATION, POWER, and VALENCE. As the class distribution in the training
set is relatively well balanced, the official challenge measure is
weighted accuracy, i.e., the recognition rates of the individual classes
weighted by the class distribution. However, since the instances of
the development and test sets are partly unbalanced with respect to
the class distributions, we also report unweighted accuracies (equiv-
alent to unweighted average recall). This imbalance holds in particu-
lar for the Audio and Audio-Visual Sub-Challenge as they consider
word-level modeling rather than frame-based recognition.

5.2. Experimental settings

We investigate the performance of both, bidirectional LSTMs and
unidirectional LSTM networks for fully incremental on-line audiovisual
affect recognition. Separate networks were trained for each emotional
dimension. The following modality combinations were considered:
acoustic features only, video features only, acoustic and linguistic fea-
tures (including non-linguistic vocalizations), acoustic and video fea-
tures, as well as acoustic, (non-)linguistic, and video features.

As in our previous studies on affective computing (e.g., [13]), all
LSTM networks consist of 128 memory blocks. Each memory block
contains one memory cell. The number of input nodes corresponds
to the number of different features per speech segment and the num-
ber of output nodes corresponds to the number of target classes, i.e.,
we used two output nodes representing high and low AROUSAL, EXPEC-
TATION, POWER, and VALENCE, respectively. A commonmethod to improve
generalization and to prevent over-fitting of neural networks to the
training data is to add a small amount of noise to the inputs at each
training epoch. In our experiments, we added zero mean Gaussian
noise with standard deviation 0.6 to the inputs during training. All
networks were trained using a learning rate of 10−5. As for standard
feedforward neural networks, the learning rate for LSTM network
training defines how ‘aggressively’ the network weights are updated
in the direction of the negative error gradient during application of
the gradient decent algorithm. The bidirectional networks consist of
two hidden layers (one for forward and one for backward processing)
with 128 memory blocks per input direction. Parameters such as
learning rate and the number of memory blocks were configured
according to our experience with similar recognition tasks [17,13].
To validate whether better recognition performance can be obtained
when changing the number of memory blocks, we evaluated hidden
layer sizes of between 80 and 160 memory blocks on the develop-
ment set. Yet, for none of the modality combinations a modified
f acoustic, linguistic, and video features.
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hidden layer size could significantly outperform networks using the
default setting of 128 memory blocks. The resulting number of vari-
ables that need to be estimated during network training is equivalent
to the number of weights in the network, e.g., an LSTM network that
processes the full feature set consisting of acoustic, linguistic, and
video information has 2 094 210 weights.

As abort criterion for training we periodically evaluated the classi-
fication performance on the development set and used the network
which achieved the best results on the development set. The number
of training epochs needed until the best performance was reached
was around 30 epochs for recognition of EXPECTATION, POWER, and
VALENCE, and 60 epochs for AROUSAL classification. All input features
were mean- and variance normalized with means and variances com-
puted from the training set.

Alternatively to early fusion of modalities on the feature level, we
also consider a simple late fusion (LF) technique which consists in
training separate networks for each modality and summing up the
output activations of the respective networks before deciding about
the estimated class that can be inferred from the highest (overall)
output activation.

5.3. Results and discussion

Table 5 shows both, weighted accuracies (WA) and unweighted
accuracies (UA) obtained when training on the training set of the
2011 Audio/Visual Emotion Challenge and testing on the develop-
ment set. Results are shown for BLSTMs, LSTM networks, and for the
SVM approach applied in [6]. We consider various modality combina-
tions as mentioned in Section 2. Note that the results for SVMs pro-
cessing audio and video data are missing as they are not reported in
[6]. For the Audiovisual Sub-Challenge, the development set data
has been used in [6] only to train the fusion engine – this, however,
is not necessary in our experiments since we focus on early fusion
and on a simple late fusion scheme that does not require training.

The performance difference between unidirectional and bidirec-
tional LSTM networks is comparatively small. In some cases (e.g., clas-
sification of AROUSAL using acoustic and linguistic features), LSTM
networks perform even slightly, but not significantly better than
BLSTM nets. This means that modeling only past context does not
necessarily downgrade recognition results compared to bidirectional
modeling, which is important for incremental on-line applications
in which future context is not available due to real-time constraints.
The performance of the different feature groups (acoustic, linguistic,
Table 5
Development set of the Audiovisual Sub-Challenge; no feature selection: weighted
accuracies (WA) and unweighted accuracies (UA) for the discrimination of high and
low AROUSAL, EXPECTATION, POWER, and tscvalence using acoustic (A), linguistic (L), and
video (V) features combined with different classifiers. LF: late fusion; the best weighted
accuracies for each emotional dimension are highlighted.

AROUSAL EXPECTATION POWER VALENCE Mean

Classifier Features WA UA WA UA WA UA WA UA WA

BLSTM A 68.5 69.3 64.3 53.5 66.1 53.3 66.3 56.1 66.3
BLSTM A+L 67.8 69.0 64.8 52.0 65.5 53.9 66.3 56.2 66.1
LSTM A 68.5 68.6 66.1 55.9 64.7 56.1 65.6 55.2 66.2
LSTM A+L 68.2 68.8 65.2 51.9 66.2 55.0 63.8 55.9 65.9
SVM [6] A 63.7 64.0 63.2 52.7 65.6 55.8 58.1 52.9 62.7
BLSTM V 62.3 62.9 62.3 51.8 55.2 53.0 63.3 60.5 60.8
LSTM V 60.3 61.3 60.4 57.7 57.0 50.4 64.0 57.9 60.4
SVM [6] V 60.2 57.9 58.3 56.7 56.0 52.8 63.6 60.9 59.5
BLSTM A+V 67.7 68.0 63.1 53.4 60.6 55.0 67.2 61.8 64.7
BLSTM A+L+V 66.9 67.0 66.2 57.3 63.4 52.3 65.9 61.5 65.6
LSTM A+V 68.0 67.5 65.7 57.7 63.8 54.7 65.5 59.5 65.8
LSTM A+L+V 67.4 66.8 65.3 56.7 61.7 54.2 67.6 62.8 65.5
BLSTM (LF) A+V 67.9 69.3 65.0 53.2 64.0 55.5 69.8 61.3 66.7
BLSTM (LF) A+L+V 67.0 68.6 65.7 51.6 63.6 55.7 69.8 61.2 66.5
LSTM (LF) A+V 62.6 64.3 67.6 57.6 65.1 56.0 68.2 57.7 65.9
LSTM (LF) A+L+V 66.3 67.4 63.9 58.1 66.0 53.9 66.4 58.2 65.7
video) heavily depends on the considered emotional dimension. For
AROUSAL, the best WA of 68.5% is obtained for acoustic features only,
which is in line with previous studies showing that audio is the
most important modality for assessing AROUSAL [13]. However, the
classification of EXPECTATION seems to benefit from including visual
information as the best WA (67.6%) is reached for LSTM networks ap-
plying late fusion of audio and video modalities. Similar to AROUSAL,
POWER is best classified via speech-based features. Bidirectional net-
works for classifying extscpower cannot be enhanced by linguistic
features, however, for unidirectional modeling WA significantly
increases from 64.7% to 66.2% when using linguistics in addition to
audio features. For VALENCE, the inclusion of video information helps,
leading to a WA of 69.8% when using BLSTM networks and audiovisual
data. The effectiveness of the emotion recognition approaches using
only video information also depends on the emotional dimension. For
AROUSAL and EXPECTATION, BLSTM modeling of facial movement features
prevails, while for POWER and VALENCE, we observe slightly, but not signif-
icantly better results for SVM-based classification of local appearance
descriptors as proposed in [6] and for unidirectional LSTM modeling.
On average the best performance on the development set is obtained
for bidirectional processing and acoustic and visual features (mean
WA of 66.7%). Yet, in this case there is no significant difference between
bi- and unidirectional processing, as LSTM networks achieve almost the
same WA on average (66.5%). For each emotional dimension, context
modeling via LSTM increases accuracies compared to the static SVM-
based technique applied in [6]. Furthermore, late fusion tends to prevail
over early fusion.

To investigate whether a smaller feature space leads to better recog-
nition performance,we repeated all evaluations on the development set
applying a Correlation based Feature Subset Selection (CFS) [66] for
each modality combination. The corresponding results can be seen in
Table 6. For most settings, CFS does not significantly improve the aver-
age weighted accuracy. However, for recognition based on video only,
CFS leads to a remarkable performance gain, increasing the average
WA from 60.4% to 65.8% for unidirectional LSTM networks.

The results for the official Audiovisual Sub-Challenge test set can be
seen in Table 7. Networks were trained on the training and develop-
ment set. According to optimizations on the development set, the num-
ber of training epochswas 60 for networks classifying AROUSAL and 30 for
all other networks. Networks processing video data only are based on a
video feature set reduced via CFS, whereas for all other networks, we
did not apply CFS. All network parameters (number of memory blocks,
learning rate, etc.) were identical to the previous set of experiments on
the development set. We compare BLSTM and LSTM modeling to all
Table 6
Development set of the Audiovisual Sub-Challenge; CFS feature selection: weighted
accuracies (WA) and unweighted accuracies (UA) for the discrimination of high and
low AROUSAL, EXPECTATION, POWER, and xtscvalence using acoustic (A), linguistic (L), and
video (V) features combined with different classifiers. LF: late fusion; the best weighted
accuracies for each emotional dimension are highlighted.

AROUSAL EXPECTATION POWER VALENCE Mean

Classifier Features WA UA WA UA WA UA WA UA WA

BLSTM A 71.3 70.2 66.2 51.0 66.0 56.4 65.9 60.6 67.4
BLSTM A+L 73.7 74.4 66.1 53.1 64.6 55.7 65.8 57.2 67.6
LSTM A 70.4 69.8 67.7 54.6 64.9 58.8 63.1 55.3 66.5
LSTM A+L 71.9 71.1 63.1 55.5 66.6 56.3 64.7 56.9 66.6
BLSTM V 59.8 58.8 66.2 50.1 64.1 57.5 63.3 56.0 63.4
LSTM V 62.7 61.5 66.0 50.1 70.2 62.4 64.3 52.7 65.8
BLSTM A+V 67.8 69.5 64.3 52.3 60.1 57.0 64.7 58.8 64.2
BLSTM A+L+V 69.9 70.7 63.3 50.4 61.9 56.1 61.4 55.9 64.1
LSTM A+V 69.7 70.8 64.5 52.0 63.5 56.8 62.4 53.0 65.0
LSTM A+L+V 70.4 71.3 65.7 53.3 63.5 55.9 62.9 53.2 65.6
BLSTM (LF) A+V 68.5 67.5 66.7 50.4 64.2 52.7 69.1 60.6 67.1
BLSTM (LF) A+L+V 72.3 72.3 66.6 50.9 64.4 54.0 67.9 58.5 67.8
LSTM (LF) A+V 65.7 63.7 67.4 52.1 68.0 58.6 66.8 54.8 67.0
LSTM (LF) A+L+V 64.8 63.5 67.1 54.9 68.1 57.3 65.7 56.4 66.4



Table 7
Test set of the Audiovisual Sub-Challenge: weighted accuracies (WA) and unweighted accuracies (UA) for the discrimination of high and low AROUSAL, EXPECTATION, POWER, and VALENCE

using acoustic (A), linguistic (L), and video (V) features combined with different classifiers. LF: late fusion; the best weighted accuracies for each emotional dimension are
highlighted.

Classifier Features AROUSAL EXPECTATION POWER VALENCE Mean

WA UA WA UA WA UA WA UA WA

BLSTM A 69.2 69.1 63.1 54.6 59.6 52.9 68.7 57.4 65.2
LSTM A 71.2 71.2 57.6 48.7 57.4 50.4 68.7 59.5 63.7
SVM [30] A 59.8 59.7 63.6 50.0 57.9 48.4 70.2 54.9 62.9
ELM-NN [31] A 52.0 52.3 63.7 50.1 62.2 50.7 69.1 50.0 61.8
AdaBoost [32] A 57.6 57.5 62.2 49.6 54.2 47.9 60.3 47.6 58.6
LDCRF [33] A 60.9 60.4 53.2 44.1 56.8 45.7 60.9 45.8 57.9
GMM [34] A 55.3 55.2 56.1 50.7 49.1 45.3 50.9 48.4 52.9
BLSTM V 43.1 42.9 68.6 62.0 44.8 41.0 51.7 52.4 52.1
LSTM V 48.6 48.7 65.6 60.2 37.6 35.8 60.8 52.2 53.1
SVM [52] V 47.8 47.4 62.0 54.8 57.9 47.4 69.6 50.2 59.3
LDCRF [33] V 53.2 53.1 46.8 43.2 57.3 50.5 59.3 50.7 54.1
BLSTM A+V 58.3 58.1 64.1 59.5 46.9 45.4 51.1 45.4 55.1
BLSTM A+L+V 58.8 58.6 60.8 54.8 46.9 44.0 57.1 50.2 55.9
LSTM A+V 56.3 56.2 61.6 54.1 46.7 45.8 61.2 53.9 56.5
LSTM A+L+V 57.9 57.8 64.0 58.6 47.6 44.8 55.7 47.9 56.3
SVM [6] A+V 67.2 67.2 36.3 48.5 62.2 50.0 66.0 49.2 57.9
LDCRF [33] A+V 65.6 65.3 53.4 49.2 62.9 58.3 59.5 49.6 60.3
MLP [35] A+V 54.1 54.3 58.5 57.8 42.7 40.0 44.8 35.9 50.0
BLSTM (LF) A+V 69.5 69.4 63.6 54.5 55.8 49.3 69.6 59.2 64.6
BLSTM (LF) A+L+V 63.3 63.2 62.9 53.0 53.1 48.4 57.6 46.9 59.2
LSTM (LF) A+V 67.8 67.8 58.3 48.9 57.5 50.3 68.7 59.3 63.1
LSTM (LF) A+L+V 70.3 70.3 62.5 52.2 56.0 50.4 69.2 58.5 64.5
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other approaches proposed for the Audiovisual Sub-Challenge, includ-
ing Support Vector Machines [6,30], extreme learning machine based
feedforward neural networks [31], AdaBoost [32], Latent-Dynamic
Conditional Random Fields [33], Gaussian Mixture Models [34], and a
combined system consisting of MLPs and HMMs [35]. Note, however,
that these classification techniques do not necessarily use the same
set of audio (and video) features, thus, Table 7 compares the overall
approaches of different research groups rather than the effectiveness
of the different classifiers. Similar to our experiments on the develop-
ment set, audio features lead to the best result for AROUSAL classification.
When applying LSTM modeling we reach a WA of 71.2% which is the
best result reported for this task so far. Also for BLSTM-based classifica-
tion of EXPECTATION using facial movement features, the obtained WA of
68.6% is higher than what is reported for other techniques. For POWER,
we were not able to outperform audiovisual classification with Latent-
Dynamic Conditional Random Fields as proposed in [33]. For VALENCE,
the audio features used in [30] lead to the highest accuracy (70.2%).
When computing the average WA, we find that a remarkable average
performance can be obtained for systems exclusively processing audio
data (for an overview over the statistical significance of the perfor-
mance difference between the audio-based approaches, see Table 8).
This suggests that even though video information helps for some
emotional dimensions (such as EXPECTATION), on average acoustic fea-
tures contribute the most to the assessment of affective states in the
SEMAINE scenario. Interestingly, in our evaluations on the test set, the
performance gap between early and late fusion of modalities via LSTM
Table 8
Statistical significance of the average performance difference between the audio-based
classification approaches denoted in the column and the approaches in the table header
(evaluations on test set of the Audiovisual Sub-Challenge); ‘−’: not significant; ‘o’ signifi-
cant at 0.1 level; ‘+’: significant at 0.05 level; ‘++’: significant at 0.001 level. Significance
levels are computed according to the z-test described in [67].

LSTM SVM ELM-NN AdaBoost LDCRF GMM [34]

BLSTM o + ++ ++ ++ ++
LSTM − + ++ ++ ++
SVM [30] − ++ ++ ++
ELM-NN [31] + ++ ++
AdaBoost [32] − ++
LDCRF [33] ++
networks is significantly more pronounced than in our initial experi-
ments on the development set. The average WA values we obtain for
BLSTMs (65.2%) and LSTMs (63.7%) processing acoustic features prevail
over all other approaches applied for this task by the challenge partici-
pants. Thus, we can conclude that the LSTM architecture is well suited
for modeling affect in human conversations and that the exploitation
of long-range temporal context not only helps humans to judge a con-
versational partner's emotional state but also increases the accuracy of
automatic affect sensing in human–computer interaction.
6. Conclusion and future work

In this article, we proposed an automatic emotion recognition
framework exploiting acoustic, linguistic, and visual information in
affective interactions. We aimed to improve recognition performance
by modeling the temporal continuity of human affect via a suited
machine learning technique. As previous studies report excellent
results for speech-based emotion recognition using Long Short-Term
Memory neural networks [17], we built a system based on LSTM long-
range temporal context modeling in order to discriminate between
high and low levels of AROUSAL, EXPECTATION, POWER, and VALENCE using
statistical functionals of a large set of acoustic low-level descriptors,
linguistic information (including non-linguistic vocalizations), and
facial movement features. To get an impression of the effectiveness of
context-sensitive LSTM-based audiovisual emotion recognition com-
pared to other recently published approaches, we train and evaluate
our system on data sets defined in the 2011 Audio/Visual Emotion Chal-
lenge and strictly adhere to the challenge conditions. For the emotional
dimensions AROUSAL and EXPECTATION, our framework leads to the best
accuracies reported so far (71.2% and 68.6%, respectively). Averaged
over all four emotional dimensions, we obtain a (weighted) accuracy
of 65.2% via bidirectional LSTM modeling of acoustic features, which is
higher than all other average accuracies reported for this task in litera-
ture up to now. The absolute values of the reported accuracies seem low
in comparison to easier scenarios, such as the discrimination of acted,
prototypical emotions. However, the considered scenario reflects realis-
tic conditions in natural interactions and thus highlights the need for
further research in the area of affective computing in order to get closer
to the human performance in judging emotions.
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Our future research in the area of video feature extraction will
include the application of multi-camera input to be more robust to
head rotations. We plan to combine the facial movements of the 2D
camera sequences to predict 3D movement. For this purpose we
intend to employ a deformable 3Dmodel. Further, we want to evaluate
advanced network architectures in the back-end, such as bottleneck
networks [68]. Another possibility to increase recognition performance
is to allow asynchronities between audio and video, e.g., by applying
hybrid fusion techniques like asynchronous HMMs [69] or multi-
dimensional dynamic timewarping [48]. Finally, it would be interesting
to fuse the results of all challenge participants tomake use of the poten-
tially complementary information generated by the individual tech-
niques. To obtain the best possible recognition performance, future
studies should also investigate which feature-classifier combinations
lead to the best results, e.g., by combining the proposed LSTM frame-
work with other audio or video features proposed for the 2011 Audio/
Visual Emotion Challenge.
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