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Without doubt, there is emotional information in almost any kind of sound received by
humans every day: be it the affective state of a person transmitted by means of speech;
the emotion intended by a composer while writing a musical piece, or conveyed by a musi-
cian while performing it; or the affective state connected to an acoustic event occurring in
the environment, in the soundtrack of a movie, or in a radio play. In the field of affective
computing, there is currently some loosely connected research concerning either of these
phenomena, but a holistic computational model of affect in sound is still lacking. In turn,
for tomorrow’s pervasive technical systems, including affective companions and robots, it
is expected to be highly beneficial to understand the affective dimensions of “the sound
that something makes,” in order to evaluate the system’s auditory environment and its
own audio output. This article aims at a first step toward a holistic computational model:
starting from standard acoustic feature extraction schemes in the domains of speech,
music, and sound analysis, we interpret the worth of individual features across these three
domains, considering four audio databases with observer annotations in the arousal and
valence dimensions. In the results, we find that by selection of appropriate descriptors,
cross-domain arousal, and valence regression is feasible achieving significant correlations
with the observer annotations of up to 0.78 for arousal (training on sound and testing on
enacted speech) and 0.60 for valence (training on enacted speech and testing on music).
The high degree of cross-domain consistency in encoding the two main dimensions of
affect may be attributable to the co-evolution of speech and music from multimodal affect
bursts, including the integration of nature sounds for expressive effects.

Keywords: audio signal processing, emotion recognition, feature selection, transfer learning, music perception,
sound perception, speech perception

1. INTRODUCTION
Without doubt, emotional expressivity in sound is one of the most
important methods of human communication. Not only human
speech, but also music and ambient sound events carry emotional
information. This information is transmitted by modulation of
the acoustics and decoded by the receiver – a human conversa-
tion partner, the audience of a concert, or a robot or automated
dialog system. By that, the concept of emotion that we consider
in this article is the one of consciously conveyed emotion (in
contrast, for example, to the “true” emotion of a human related
to biosignals such as heart rate). In speech, for example, a cer-
tain affective state can be transmitted through a change in vocal
parameters, e.g., by adjusting fundamental frequency and loud-
ness (Scherer et al., 2003). In music, we consider the emotion
intended by the composer of a piece – and by that, the per-
forming artist(s) as actor(s) realizing an emotional concept such
as “happiness” or “sadness.” This can manifest through acoustic
parameters such as tempo, dynamics (forte/piano), and instru-
mentation (Schuller et al., 2010). In contrast to earlier research on
affect recognition from singing (e.g., Daido et al., 2011), we focus
on polyphonic music – by that adding the instrumentation as a
major contribution to expressivity. As a connection between music

and speech emotion, for example, the effect of musical training on
human emotion recognition has been highlighted in related work
(Nilsonne and Sundberg, 1985; Thompson et al., 2004). Lastly, also
the concept of affect in sound adopted in this article is motivated
by the usage of (ambient) sounds as a method of communica-
tion – to elicit an intended emotional response in the audience
of a movie, radio play, or in the users of a technical system with
auditory output.

In the field of affective computing, there is currently some
loosely connected research concerning either of these phenom-
ena (Schuller et al., 2011a; Drossos et al., 2012; Yang and Chen,
2012). Despite a number of perception studies suggesting over-
lap in the relevant acoustic parameters (e.g., Ilie and Thompson,
2006), a holistic computational model of affect in general sound
is still lacking. In turn, for tomorrow’s technical systems, includ-
ing affective companions and robots, it is expected to be highly
beneficial to understand the affective dimensions of “the sound
that something makes,” in order to evaluate the system’s auditory
environment and its own audio output.

In order to move toward such a unified framework for affect
analysis, we consider feature relevance analysis and automatic
regression with respect to continuous observer ratings of the main
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dimensions of affect, arousal, and valence, across speech, music,
and ambient sound events. Thereby, on the feature side, we restrict
ourselves to non-symbolic acoustic descriptors, thus eliminating
more domain-specific higher-level concepts such as linguistics,
chords, or key. In particular, we use a well proven set of “low-
level” acoustic descriptors for paralinguistic analysis of speech (cf.
Section 2.3). Then, we address the importance of acoustic descrip-
tors for the automatic recognition of continuous arousal and
valence in a “cross-domain” setting. We show that there exist large
commonalities but also strong differences in the worth of indi-
vidual descriptors for emotion prediction in the various domains.
Finally, we carry out experiments with automatic regression on a
selected set of “generic acoustic emotion descriptors.”

2. MATERIALS AND METHODS
2.1. EMOTION MODEL
Let us first clarify the model of emotion employed in this article.
There is a debate in the field on which type of model to adopt
for emotion differentiation: discrete (categorical) or dimensional
(e.g., Mortillaro et al., 2012). We believe that these approaches are
highly complementary. It has been copiously shown that discrete
emotions in higher dimensional space can be mapped parsimo-
niously into lower dimensional space. Most frequently, the two
dimensions valence and arousal are chosen, although it can be
shown that affective space is best structured by four dimensions –
adding power and novelty to valence and arousal (Fontaine et al.,
2007). Whether to choose a categorical or dimensional approach is
thus dependent on the respective research context and the specific
goals. Here, we chose a valence× arousal dimensional approach
because of the range of affective phenomena underlying our stim-
uli. In addition for some of our stimulus sets only dimensional
annotations were available.

2.2. DATABASES
Let us now start the technical discussion in this article by a brief
introduction of the data sets used in the present study on arousal
and valence in speech, music, and sound. The collection of emo-
tional audio data for the purpose of automatic analysis has often
been driven by computer engineering. This is particularly true for
speech data – considering applications, for example, in human-
computer interaction. This has led to large databases of sponta-
neous emotion expression, for example, emotion in child-robot
interaction (Steidl, 2009) or communication with virtual humans
(McKeown et al., 2012), which are however limited to specific
domains. In contrast, there are data sets from controlled experi-
ments, featuring, for example, emotions expressed (“enacted”) by
professional actors, with restricted linguistic content (e.g., pho-
netically balanced pseudo sentences) with the goal to allow for
domain-independent analysis of the variation of vocal parame-
ters (Burkhardt et al., 2005; Bänziger et al., 2012). In the case of
polyphonic music, data sets are mostly collected with (commer-
cial) software applications in mind – for example, categorization
of music databases on end-user devices (“music mood recogni-
tion”; Yang and Chen, 2012). Finally, emotion analysis of general
sounds has been attempted only recently (Sundaram and Schle-
icher, 2010; Drossos et al., 2012; Schuller et al., 2012). In this light,
we selected the following databases for our analysis: the Geneva

Multimodal Emotion Portrayals (GEMEP) set as an example for
enacted emotional speech; the Vera am Mittag (VAM) database as
an example for spontaneous emotional speech “sampled” from a
“real-life”context; the“Now That’s What I Call Music”(NTWICM)
database for mood recognition in popular music; and the recently
introduced emotional sounds database.

2.2.1. Enacted emotion in speech: the Geneva multimodal emotion
portrayals (GEMEP)

The GEMEP corpus is a collection of 1260 multimodal expres-
sions of emotion enacted by 10 French-speaking actors (Bänziger
et al., 2012). GEMEP comprises 18 emotions that cover all four
quadrants of the arousal-valence space. The list includes the emo-
tions most frequently used in the literature (e. g., fear, sadness, joy)
as well as more subtle differentiations within emotion families (e.
g., anger and irritation, fear, and anxiety). Actors expressed each
emotion by using three verbal contents (two pseudo sentences and
one sustained vowel) and different expression regulation strategies
while they were recorded by three synchronized cameras and a sep-
arate microphone. To increase the realism and the spontaneity of
the expressions, a professional director worked with the respective
actor during the recording session in order to choose one scenario
typical for the emotion – either by recall or mental imagery – that
was personally relevant for the actor. Actors did not receive any
instruction on how to express the emotion and were free to use
any movement and prosody they wanted.

In the present research we consider a sub selection of 154
instances of emotional speech based on the high recognition rates
reported by Bänziger et al. (2012). For this set of portrayals per-
ceptual ratings of arousal and valence were obtained in the context
of a study on the perception of multimodal emotion expressions
(Mortillaro et al., unpublished). Twenty participants (10 male)
listened to each of these expressions (presented in random order)
and rated the content in terms of arousal and valence by using
a continuous slider. Participants were given written instructions
before the study. These instructions included a clear definition for
each dimension that was judged. Furthermore, right before they
started to rate the stimuli, they were asked whether they under-
stood the dimensions and the two anchors and were invited to ask
questions in case something was unclear. During the ratings the
name of the dimension (e.g., “activation”), a brief definition (e.g.,
“degree of physical/physiological activation of the actor”), and the
anchors (“very weak”and“very strong”) were visible on the screen.

2.2.2. Spontaneous emotion in speech: the VAM corpus
The VAM corpus (Grimm et al., 2008) was collected by the institute
INT of the University Karlsruhe, Germany, and consists of audio-
visual recordings taken from the German TV talk show “Vera am
Mittag”(English:“Vera at noon”– Vera is the name of the talk show
host). In this show, the host mainly moderates discussions between
guests, e.g.,by occasional questions. The corpus contains 947 spon-
taneous, emotionally rich utterances from 47 guests of the talk
show which were recorded from unscripted and authentic discus-
sions. There were several reasons to build the database on material
from a TV talk show: there is a reasonable amount of speech from
the same speakers available in each session, the spontaneous dis-
cussions between talk show guests are often rather affective, and
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the interpersonal communication leads to a wide variety of emo-
tional states, depending on the topics discussed. These topics were
mainly personal issues, such as friendship crises, fatherhood ques-
tions, or romantic affairs. At the time of recording, all subjects did
not know that the recordings were going to be analyzed in a study
of affective expression. Furthermore, the selection of the speak-
ers was based on additional factors, such as how emotional the
utterances were or which spectrum of emotions was covered by
the speakers, to assure a large spectrum of different and realistic
affective states. Within the VAM corpus, emotion is described in
terms of three basic primitives – valence, arousal, and dominance.
Valence describes the intrinsic pleasantness or unpleasantness of
a situation. Arousal describes whether a stimulus puts a person
into a state of increased or reduced activity. Dominance is not
used for the experiments reported in this article. For annotation
of the speech data, the audio recordings were manually segmented
to utterance level. A large number of human annotators were used
for annotation (17 for one half of the data, six for the other).

For evaluation an icon-based method that consists of an array
of five images for each emotion dimension was used. Each human
listener had to listen to each utterance in the database to choose
an icon per emotion dimension in order to best describe the emo-
tion heard. Afterward, the choice of the icons was mapped onto a
discrete five-point scale for each dimension in the range of +1 to
−1, leading to an emotion estimation (Grimm et al., 2007a).

2.2.3. Emotion in music: now that’s what i call music (NTWICM)
database

For building the NTWICM music database the compilation “Now
That’s What I Call Music!” (UK series, volumes 1–69) is selected.
It contains 2648 titles – roughly a week of total play time – and
covers the time span from 1983 to 2010. Likewise it represents very
well most music styles which are popular today; that ranges from
Pop and Rock music over Rap, R&B to electronic dance music as
Techno or House. While lyrics are available for 73% of the songs,
in this study we only use acoustic information.

Songs were annotated as a whole, i.e., without selection of char-
acteristic song parts. Respecting that mood perception is generally
judged as highly subjective (Hu et al., 2008), four labellers were
decided for. While mood may well change within a song, as change
of more and less lively passages or change from sad to a positive
resolution, annotation in such detail is particularly time-intensive.
Yet, it is assumed that the addressed music type – mainstream
popular and by that usually commercially oriented – music to be
less affected by such variation as, for example, found in longer
arrangements of classical music. Details on the chosen raters are
provided in Schuller et al. (2011b). They were picked to form
a well-balanced set spanning from rather “naïve” assessors with-
out instrument knowledge and professional relation to “expert”
assessors including a club disc jockey (DJ). The latter can thus
be expected to have a good relationship to music mood, and its
perception by the audiences. Further, young raters prove a good
choice, as they were very well familiar with all the songs of the cho-
sen database. They were asked to make a forced decision according
to the two dimensions in the mood plane assigning values in −2,
−1, 0, 1, 2 for arousal, and valence, respectively. They were further
instructed to annotate according to the perceived mood, that is, the

“represented” mood, not to the induced, that is, “felt” one, which
could have resulted in too high labeling ambiguity. The annota-
tion procedure is described in detail in Schuller et al. (2010), and
the annotation along with the employed annotation tool are made
publicly available1.

2.2.4. Emotion in sound events: emotional sound database
The emotional sound database (Schuller et al., 2012)2 is based
on the on-line freely available engine FindSounds.com3 (Rice and
Bailey, 2005). It consists of 390 manually chosen sound files out of
more than 10,000. To provide a set with a balanced distribution of
emotional connotations, it was decided to use the following eight
categories taken from FindSounds.com: Animals, Musical instru-
ments, Nature, Noisemaker, People, Sports, Tools, and Vehicles. With
this choice the database represents a broad variety of frequently
occurring sounds in everyday environment. The emotional sound
database was annotated by four labelers (one female, 25–28 years).
They were all post graduate students working in the field of audio
processing. All labelers are of Southeast-Asian origin (Chinese
and Japanese), and two reported to have musical training. For
the annotation these four listeners were asked to make a decision
according to the two dimensions in the emotion plane assigning
values on a five-point scale in {−2, −1, 0, 1, 2} for arousal and
valence. They were instructed to annotate the perceived emotion
and could repeatedly listen to the sounds that were presented in
random order across categories. Annotation was carried out indi-
vidually and independently by each of the labelers. For annotation,
the procedure as described in detail in Schuller et al. (2010) was
used – thus, the annotation exactly corresponds to the one used for
music mood (cf. above). The annotation tool can be downloaded
freely4.

2.2.5. Reliability and “gold standard”
For all four of the databases, the individual listener annotations
were averaged using the evaluator weighted estimator (EWE) as
described by Grimm and Kroschel (2005). The EWE provides
quasi-continuous dimensional annotations taking into account
the agreement of observers. For instance n and dimension d
(arousal or valence), the EWE yd

EWE ,n is defined by

yd
EWE ,n =

1
K∑

k=1
rk

K∑
k=1

rk yd
n,k , (1)

where K is the number of labellers, and yd
n,k is the rating of instance

n by labeller k in dimension d. Thus, the EWE is a weighted mean
rating with weights corresponding to the confidence in the label-
ing of rater k – in this study, we use the correlation coefficient rk of
rater k’s rating and the mean rating. By the first term in the above
equation, the weights are normalized to sum up to one, in order
to have the EWE in the same scale as the original ratings.

1http://openaudio.eu/NTWICM-Mood-Annotation.arff – accessed 27 Mar 2013
2http://www.openaudio.eu/Emotional-Sound-Database.csv – accessed 27 Mar 2013
3http://www.findsounds.com – accessed 27 Mar 2013
4http://www.openaudio.eu/wsh_mood_annotation.zip – accessed 27 Mar 2013
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The average rk (across the K raters) is depicted for arousal and
valence annotation in the four databases in Table 1. For VAM, we
observe that valence was more difficult to evaluate than arousal,
while conversely, on ESD, raters agree more strongly on valence
than arousal. In NTWICM, both arousal and valence have similar
agreement (r = 0.70 and 0.69). Results for GEMEP are in the same
order of magnitude, indicating some ambiguity despite the fact
that the emotion is enacted.

Furthermore, Table 1 summarizes the number of raters, num-
ber of rated instances, and length of the databases’ audio. It can be
seen that NTWICM is by far the largest regarding the number of
instances and audio length, followed by VAM, ESD, and GEMEP.
The huge differences in audio length are further due to the time
unit of annotation, which is similar for VAM, ESD, and GEMEP
(roughly 2–4 s of audio material), yet in NTWICM entire tracks
of several minutes length of popular music were rated.

Figure 1 shows the distribution of the arousal and valence
EWE ratings on the three databases considered. For the purpose
of this visualization, the quasi-continuous arousal/valence ratings
are discretized into five equally spaced bins spanning the interval
[−1, 1] on each axis, resulting in a discretization of the arousal-
valence space into 25 bins. The number of instances per bin is
counted. It is evident that in VAM, instances with low valence pre-
vail – this indicates the difficulty of creating emotionally balanced
data sets by sampling audio archives. Furthermore, we observe a
strong concentration of ratings in the “neutral” (center) bin of
the arousal-valence space. The enacted GEMEP database is over-
all better balanced in terms of valence and arousal ratings – yet
still, there seems to be a lack of instances with low arousal and
non-neutral valence rating, although some of the chosen emotion

categories (e.g., pleasure) would be expected to fit in this part.
For NTWICM, we observe a concentration in the first quadrant
of the valence-arousal plane, and a significant correlation between
the arousal and valence ratings (Spearman’s ρ= 0.61, p� 0.001).
This indicates a lack of, e.g., “dramatic” music with high arousal
and low valence in the chosen set of “chart” music. Finally, in ESD,
ratings are distributed all over the arousal and valence scales – as
shown in more detail by Schuller et al. (2012), this is due to the
different sound classes in the databases having different emotional
connotation (e.g., nature sounds on average being associated with
higher valence than noisemakers).

2.3. EXTRACTION OF ACOUSTIC DESCRIPTORS
In this article, the ultimate goal is automatic emotion recogni-
tion (AER) from general sound. In contrast to neighboring fields
of audio signal processing such as speech or speaker recognition,
which rely exclusively on rather simple spectral cues (Young et al.,
2006) as acoustic features, AER typically uses a large variety of
descriptors. So far no attempt has been made at defining a “stan-
dard” feature set for generic AER from sound, which may be due
to the facts that AER still a rather young field with about 15 years
of active research, and that emotion recognition is a multi-faceted
task owing to the manifold ways of expressing emotional cues
through speech, music, and sounds, and the subjective nature of
the task. Some of the currently best performing approaches for
automatic speech emotion recognition (Schuller et al., 2011a) use
a large set of potentially relevant acoustic features and apply a large,
“brute-force” set of functionals to these in order to summarize the
evolution of the contours of the acoustic features over segments
of typically a few seconds in length (Ververidis and Kotropoulos,

Table 1 | Database statistics.

Database Domain Agreement [r ] # Annot. # Inst. Length [h:m]

Arousal Valence

VAM Speech (spontaneous) 0.81 0.56 6–17 947 0:50

GEMEP Speech (enacted) 0.64 0.68 20 154 0:06

NTWICM Music 0.70 0.69 4 2648 168:03

ESD Sound 0.58 0.80 4 390 0:25

A B C D

FIGURE 1 | Distribution of valence/arousal EWE on the VAM (A), GEMEP (B), emotional sound (C), and NTWICM (D) databases: number of instances
per valence/arousal bin.
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2006). This is done to capture temporal dynamics in a feature vec-
tor of fixed length and has been shown to outperform modeling
of temporal dynamics on the classifier level (Schuller et al., 2009).
In the process of addressing various tasks in speech and speaker
characterization in a series of research challenges (Schuller et al.,
2009, 2013), various large sets for the speech domain have been
proposed. Little work, however, has been done on cross-domain
generalization of these features, which will be the focus of the
present study.

For the analysis reported on in this article, we use a well-evolved
set for automatic recognition of paralinguistic phenomena – the
one of the INTERSPEECH 2013 Computational Paralinguistics
Evaluation baseline (Schuller et al., 2013). In this set, supraseg-
mental features are obtained by applying a large set of statistical
functionals to acoustic low-level descriptors (cf. Tables 2 and 3).
The low-level descriptors cover a broad set of descriptors from
the fields of speech processing, Music Information Retrieval, and
general sound analysis. For example,Mel Frequency Cepstral Coef-
ficients (Davis and Mermelstein, 1980; Young et al., 2006) are
very frequently used in ASR and speaker identification. Further,
they are used in Music Information Retrieval. Spectral statistical
descriptors, such as spectral variance and spectral flux, are often
used in multi-media analysis, and are part of the descriptor set
proposed in the MPEG-7 multi-media content description stan-
dard (Peeters, 2004). They are thus very relevant for music and
sound analysis. Loudness and energy related features are obviously
important for all tasks. The same holds true for the sound quality
descriptors (which are used to discriminate harmonic and noise-
like sounds) and the fundamental frequency and psychoacoustic
sharpness. The latter is a well-known feature in sound analysis
(Zwicker and Fastl, 1999). Jitter and Shimmer are micro-prosodic
variations of the length and amplitudes (respectively) of the fun-
damental frequency for harmonic sounds. They are mainly used in
voice pathology analysis, but are also good descriptors of general
sound quality.

3. RESULTS
3.1. FEATURE RELEVANCE
Let us now discuss the most effective acoustic features out of the
above mentioned large set for single- and cross-domain emotion
recognition. To this end, besides correlation coefficients (r) of
features with the arousal or valence ratings, we introduce the cross-
domain correlation coefficient (CDCC) as criterion. As we strive
to identify features which carry similar meaning with respect to
emotion in different domains, and at the same time provide high
correlation with emotion in the domains by themselves, the pur-
pose of the CDCC measure is to weigh high correlation in single
domains against correlation deviations across different domains.
Let us first consider a definition for two domains i and j, namely

CDCC2
f ,i,j =

∣∣∣r (i)f + r
(j)
f

∣∣∣− ∣∣∣r (i)f − r
(j)
f

∣∣∣
2

(2)

where r (i)f is the correlation of feature f with the domain i, and

“domain” refers to the arousal or valence annotation of a certain
data set. We only consider the CDCC across the data sets (speech,
music, and sound), not CDCC across arousal and valence.

Table 2 | ComParE acoustic feature set: 64 provided low-level

descriptors (LLD).

Group

4 ENERGY RELATED LLD

Sum of auditory spectrum (loudness) Prosodic

Sum of RASTA-style filtered auditory spectrum Prosodic

RMS energy, zero-crossing rate Prosodic

55 SPECTRAL LLD

RASTA-style auditory spectrum, bands 1–26 (0–8 kHz) Spectral

MFCC 1–14 Cepstral

Spectral energy 250–650 Hz, 1 k–4 kHz Spectral

Spectral roll off point 0.25, 0.50, 0.75, 0.90 Spectral

Spectral flux, centroid, entropy, slope Spectral

Psychoacoustic sharpness, harmonicity Spectral

Spectral variance, skewness, kurtosis Spectral

6 VOICING RELATED LLD

F 0 (SHS and viterbi smoothing) Prosodic

Prob. of voice Sound quality

Log. HNR, Jitter (local, delta), Shimmer (local) Sound quality

Table 3 | ComParE acoustic feature set: functionals applied to LLD

contours (Table 2).

Group

FUNCTIONALS APPLIEDTO LLD/1 LLD

Quartiles 1–3, 3 inter-quartile ranges Percentiles

1% Percentile (≈min), 99% percentile (≈max) Percentiles

Percentile range 1–99% Percentiles

Position of min/max, range (max−min) Temporal

Arithmetic mean1, root quadratic mean Moments

Contour centroid, flatness Temporal

Standard deviation, skewness, kurtosis Moments

Rel. duration LLD is above 25/50/75/90% range Temporal

Rel. duration LLD is rising Temporal

Rel. duration LLD has positive curvature Temporal

Gain of linear prediction (LP), LP coefficients 1–5 Modulation

Mean, max, min, SD of segment length2 Temporal

FUNCTIONALS APPLIEDTO LLD ONLY

Mean value of peaks Peaks

Mean value of peaks – arithmetic mean Peaks

Mean/SD of inter peak distances Peaks

Amplitude mean of peaks, of minima Peaks

Amplitude range of peaks Peaks

Mean/SD of rising/falling slopes Peaks

Linear regression slope, offset, quadratic error Regression

Quadratic regression a, b, offset, quadratic error Regression

Percentage of non-zero frames3 Temporal

1Arithmetic mean of LLD/positive1 LLD. 2Not applied to voice related LLD except

F0. 3Only applied to F0.

It is obvious that the CDCC measure is symmetric in the sense
that CDCC2

f ,i,j = CDCC2
f ,j ,i , and that it ranges from −1 to 1.

If a feature f exhibits either strong positive or strong negative
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correlation with both domains, the CDCC will be near one, where
as it will be near −1 if a feature is strongly positively correlated
with one domain yet strongly negatively correlated with the other.
A CDCC near zero indicates that the feature is not significantly
correlated with both domains (although it might still be corre-
lated with either one). Thus, we can expect a regressor to show
similar performance on both domains if it uses features with high
CDCC.

Next, we generalize the CDCC2 to J domains by summing up
the CDCCs for domain pairs and normalizing to the range from
−1 to+1,

CDCCJ
f =

∑J
i=1

∑J
j=i+1

(∣∣∣r (i)f + r
(j)
f

∣∣∣− ∣∣∣r (i)f − r (i)f

∣∣∣)
J (J − 1)

. (3)

Intuitively, a regression function determined on features with
high CDCC J

f is expected to generalize well to all J domains.

In Tables 4 and 5, we now exemplify the CDCC3 across the
three domains on selected features, along with presenting their
correlation on the individual domains. Note that for the purpose
of feature selection, we treat the union of VAM and GEMEP as
a single domain (“speech”). Further, in our analysis we restrict
ourselves to those features that exhibit high (absolute) correla-
tion in a single domain (termed sound, speech, or music features
in the table), and those with high CDCC3 (termed cross-domain
features). Thereby we do not present an exhaustive list of the top
features but rather a selection aiming at broad coverage of feature
types. To test the significance of the correlations, we use t-tests
with the null hypothesis that feature and rating are sampled from
independent normal distributions. Two-sided tests are used since
we are interested in discovering both negative and positive corre-
lations. Significance levels are adjusted by Bonferroni correction,
which is conservative, yet straightforward and does not require
independence of the individual error probabilities.

Looking at the top sound arousal features (Table 4), we find
loudness to be most relevant – in particular, the (root qua-
dratic) mean, the linear regression offset (corresponding to a
“floor value”) and the 99-percentile. This is similar to the rank-
ing for speech. Interestingly, loudness is stronger correlated than
RMS energy, indicating the importance of perceptual auditory fre-
quency weighting as performed in our loudness calculation. For
music, these three loudness features are not as relevant, though
still significantly correlated.

The overall best speech arousal feature is the root quadratic
mean of spectral flux – indicating large differences of consecutive
short-time spectra – which is interesting since it is independent
of loudness and energy, which have slightly lower correlation (cf.
above). The “second derivative” of the short-time spectra (arith-
metic mean of 1 spectral flux) behaves in a similar fashion as
spectral flux itself. However, the correlation of these features with
arousal in sound and music is lower. Further, we find changes in
the higher order MFCCs, such as the root quadratic mean of delta
MFCC 14 to be relevant for speech and music arousal, relating to
quick changes in phonetic content and timbre. Finally, mean F0,
a “typical” speech feature characteristic for high arousal, is found
to be relevant as expected, but does not generalize to the other
domains.

The best music arousal features are related to mean peak dis-
tances – for example, in the loudness contour and the spectral
entropy contour resembling occurrence of percussive instruments,
indicating positive correlation between tempo and arousal. In con-
trast, the peak distance standard deviation is negatively correlated
with arousal – thus, it seems that “periodic” pieces of music are
more aroused, which can be explained by examples such as dance
music. However, it seems that all these three features have a mostly
musical meaning, since they only show weak correlations in sound
and speech. Yet, a notable feature uniting speech and music is
the (root quadratic) mean of the first MFCC, which is related
to spectral skewness: arguably, a bias toward lower frequencies
(high skewness) is indicative of absence of broadband (mostly
percussive) instruments, and “calm” voices, and thus low arousal.

Summarizing cross-domain features for arousal, we find that
the“greatest common divisor”of speech, sound, and music is loud-
ness (and – relatedly – energy), but the behavior of functional types
is interesting: the quadratic regression offset is much more rele-
vant in the case of music than the mean loudness, which is mostly
characteristic in speech and sound. In the NTWICM database of
popular music, in fact we often find parabola shaped loudness
contours, such that this offset indicates the intensity of the musi-
cal climax. A suitable cross-domain feature not directly related to
loudness or energy is the spectral flux quadratic regression offset
(the ordinate of the “high point” of spectral change).

Judging from the results in Table 5, we see that loudness is also
indicative of valence in sound, music, and speech, but the cor-
relations have different signs: on the one hand, loud sounds as
identified by high root quadratic mean of loudness are apparently
perceived as unpleasant, as are loud voices. For music, on the other
hand, loudness can be indicative of high valence (“happy” music).

Among relevant speech valence features, we find mean energy
(change) in the speech frequency range (1–4 kHz) and F0 (quar-
tiles 1 and 2) – F0,however, is a“speech only”feature which exhibits
low correlation in the other domains (similarly to the observations
for arousal above).

Music valence features overlap with music arousal features, due
to the correlation in the ratings. Among the music valence fea-
tures, the median first MFCC (related to spectral skewness – cf.
above) is particularly noticeable as it has “inverse” correlation on
speech and music – “percussive” music with a flat spectrum is con-
notated with positive emotion (high valence) while “noisy” voices
are characteristic of negative emotion (low valence).

Cross-domain features for valence are generally rarely signifi-
cant on the individual domains and hard to interpret – here, in
contrast to arousal, it seems difficult to obtain descriptors that
generalize across multiple domains.

We now move from discussion of single features to a broader
perspective on automatic feature selection for cross-domain emo-
tion recognition. To this end, we consider automatically selected
subsets of the ComParE feature set by the CDCC criteria. In par-
ticular, for each of arousal and valence, we choose the 200 features
that show the highest CDCC2 for the (sound, music), (sound,
speech), and (music, speech) pairs of domains. Furthermore, for
each of arousal and valence, we select a set of 200 features by
highest CDCC3 across all three of the sound, music, and speech
domains.
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Table 4 | Cross-domain feature relevance for arousal: top features ranked by absolute correlation (r ) for single domain, and CDCC across all

three domains (CDCC3).

Rank LLD Functional r CDCC3

Sound Music Speech

SOUND FEATURES

1 Loudness R.q. mean 0.59** 0.16** 0.75** 0.31

4 Loudness Lin. regr. offset 0.54** 0.27** 0.56** 0.36

6 Loudness 99-Percentile 0.53** 0.09 ° 0.67** 0.23

8 Energy R.q. mean 0.50** 0.07− 0.64** 0.21

SPEECH FEATURES

1 Spectral flux R.q. mean 0.38** 0.13** 0.76** 0.21

9 1 Spectral flux Arith. mean 0.25* 0.28** 0.68** 0.26

63 1 MFCC 14 R.q. mean 0.14− 0.32** 0.58** 0.20

97 F0 R.q. mean 0.17− 0.09o 0.55** 0.12

MUSIC FEATURES

1 Loudness Mean peak dist. 0.02− –0.58** –0.08− 0.01

2 Spectral ent. Mean peak dist. 0.04− –0.54** –0.16** 0.03

3 Loudness Peak dist. SD 0.02− –0.53** –0.10− 0.02

5 MFCC 1 R.q. mean –0.11− –0.53** –0.47** 0.23

CROSS-DOMAIN FEATURES

1 Loudness Quad.reg. offset 0.41** 0.37** 0.37** 0.37

4 Loudness Arith. mean 0.57** 0.18** 0.73** 0.31

5 Spectral flux Quad. reg. offset 0.32** 0.30** 0.45** 0.31

6 1 Energy 1–4 kHz Quartile 1 –0.32** –0.30** –0.59** 0.31

Significance denoted by **p<0.00, *p<0.01, °p<0.05, −p≥0.05; Bonferroni corrected p-values from two-sided paired sample t-tests.

Table 5 | Cross-domain feature relevance for valence: top features ranked by absolute correlation (r ) for single domain, and CDCC across all

three domains (CDCC3).

Rank LLD Functional r CDCC3

Sound Music Speech

SOUND FEATURES

1 Loudness Quartile 3 –0.31** 0.27** –0.21** –0.09

2 Loudness Rise time –0.30** –0.21** –0.04− 0.10

3 Loudness R.q. mean –0.29** 0.29** –0.23** –0.10

10 Spectral flux Skewness 0.27** –0.13** 0.11− –0.04

SPEECH FEATURES

1 F0 Quartile 2 0.05− –0.07− –0.31** –0.01

2 Energy 1–4 kHz Arith. mean –0.17− 0.23** –0.31** –0.07

4 1 Energy 1–4 kHz Arith. mean –0.08− 0.26** –0.30** –0.09

10 F0 Quartile 1 0.07− –0.14** –0.29** 0.00

MUSIC FEATURES

1 1 Loudness Mean peak dist. –0.02− –0.65** –0.03− 0.02

2 Loudness Mean peak dist. –0.12− –0.65** –0.04− 0.06

3 MFCC 1 Quartile 2 –0.04− –0.61** 0.24** –0.08

9 Spectral ent. Mean peak dist. 0.05− –0.57** 0.04− –0.02

CROSS-DOMAIN FEATURES

1 Spect. centroid Rise time –0.13− –0.16** –0.12− 0.12

2 Psy. sharpness Rise time –0.13− –0.16** –0.12− 0.12

5 Energy 250–650 Hz IQR 1–3 –0.14− –0.11** –0.15* 0.12

6 MFCC 13 IQR 1–3 –0.08− –0.20** –0.18** 0.12

Significance denoted by **p<0.001, *p<0.01, op<0.05), −p≥0.05; Bonferroni corrected p-values from two-sided paired sample t-tests.
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In Figure 2, we summarize the obtained feature sets by the share
of cepstral, prosodic, spectral, and voice quality LLDs, as well as by
the share of modulation, moment, peak, percentile, regression, and
temporal functionals (see Tables 2 and 3 for a list of descriptors
in each of these groups). We compare the cross-domain feature
sets to the full ComParE feature set as well as the “single domain”
feature sets that are obtained in analogy to the cross-domain fea-
ture sets by applying the CDCC2 to a 50% split of each corpus. A
feature group is considered particularly relevant for a recognition
task if its share among the selected features is larger than its share
of the full feature set.

We observe notable differences in the importance of differ-
ent LLD groups; it is of particular interest for the present study
to highlight the results for the considered cross-domain emotion
recognition tasks: cepstral features seem to be particularly relevant
for cross-domain speech and music emotion recognition. In con-
trast, cross-domain emotion recognition from speech and sound,
and from sound and music, are dominated by“prosodic”and spec-
tral cues such as loudness, sub-band energies, and spectral flux.
Regarding relevant functional types, the summarization reveals
less evident differences between the tasks; still, percentile type
functionals seem to be particularly promising for all of the tasks
considered.

3.2. AUTOMATIC CLASSIFICATION EXPERIMENTS
Finally, we demonstrate the predictive power of the obtained cross-
domain feature sets in automatic regression. In automatic regres-
sion, the parameters of a regression function on N-dimensional
feature vectors are optimized to model the assignment of L

“learning” vectors (e.g., feature vectors of emotional utterances)
to the gold standard (e.g., the arousal observer rating). Then, the
regression function is evaluated on a disjoint set of test vectors
and the correlation of the function’s predictions and the test set
gold standard is computed as a measure of how well the regression
function generalizes to “unseen” test data. In the present study,
it is of particular interest to consider cross-domain evaluation,
i.e., training on data from one domain (e.g., enacted speech) and
evaluating on another domain (e.g., sound). In this context, we
also treat spontaneous and enacted speech as different domains,
as such analysis is receiving increasing attention at the moment
(Bone et al., 2012) also due to practical reasons: for instance, it is
of interest to determine if training on “prototypical” data from a
controlled experiment (such as the GEMEP database) can improve
automatic emotion recognizers applied“in the wild,” e.g., to media
analysis (such as given by the VAM database). For reference, we also
consider within-domain regression in a twofold cross-validation
manner.

For each learning set, we determine a multivariate linear regres-
sion function by means of support vector regression (SVR) (Smola
and Schölkopf, 2004), which defines a real valued mapping

f (x) = wT x+ b (4)

of N -dimensional feature vectors x to a regression value f (x). w
is the normal vector of the N -dimensional hyperplane describing
the regression function, and b is a scalar offset. Specifically for
SVR, the primary optimization goal is flatness of the regression
function, which is defined as low norm of the weight vector w.
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FIGURE 2 | Feature relevance by LLD group (A: arousal, B: valence) and functional group (C: arousal, D: valence). Number of features in the top 200
features ranked by absolute correlation with gold standard for single domain and CDCC [equation (3)] for cross domain.
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This is related to the notion of sparsity and crucial to avoid
over-fitting of the model parameters in the present case of high
dimensional feature spaces. The trade-off between flatness of the
weight vector and deviation of the regression values from the gold
standard on the learning set is modeled as a free parameter C in
the optimization (cf. Smola and Schölkopf, 2004 for details). In
our experiments, C is set to 10−3 for within-domain regression
and 10−5 for cross-domain regression. The optimization problem
is solved by the frequently used Sequential Minimal Optimization
algorithm (Platt, 1999). To foster reproducibility of our research,
we use the open-source machine learning toolkit Weka (Hall et al.,
2009). Unsupervised mean and variance normalization of each
feature per database is applied since SVR is sensitive to feature
scaling.

In Table 6, the correlation coefficients (r) of automatic within-
domain and cross-domain regression with the arousal observer
ratings are displayed. First, we consider regression using the full
6373-dimensional ComParE feature set. In within-domain regres-
sion, results ranging from r = 0.54 (sound) up to r = 0.85 (enacted
speech) are obtained, which are comparable to previously obtained
results on sound, music, and spontaneous speech (Grimm et al.,
2007b; Schuller et al., 2011b, 2012). Especially the result for music
is notable, since we do not use any “hand-crafted” music features
such as chords or tempo. In cross-domain regression, significant
correlations are obtained except for the case of training on music
and evaluating on sound. However, the mean r across all training
and testing conditions (0.50) is rather low.

Considering automatic feature selection by CDCC2 for each
combination of two domains, results in Table 6B indicate a drastic
gain in performance especially for cross-domain regression. How-
ever, also the results in within-domain regression are improved.
All correlations are significant at the 0.1% level. Particularly,
using CDCC based feature selection robust regression (achiev-
ing r > 0.76) is possible across enacted and spontaneous speech.
Further, it is notable that the average result across the four testing
databases does not vary much depending on the training data-
base used, indicating good generalization capability of the selected
features. The overall mean r in this scenario is 0.65.

Finally, if we select the top features by CDCC3 on all databases
(treating speech as a single domain for the purpose of feature selec-
tion), it is notable that we still obtain reasonable results (mean r
of 0.58) despite the fact that the top features by CDCC3 exhibit
comparably low correlation with the target labels on the single
domains (cf. Table 4).

Summarizing the results for valence regression (Table 7), we
observe that using the full feature set, we cannot obtain reason-
able results in cross-domain regression. Among the cross-domain
results, the only significant positive correlations are obtained in
evaluation on spontaneous speech, however, these are lower than
the correlation of the single best speech features. Interestingly, we
observe significant negative correlations when evaluating on music
and training on another domain, which is consistent with the fact
that some of the music valence features are “inversely” correlated
with the target label in the other domains (cf., e.g., the discussion
of median MFCC 1 above). In the within-domain setting, it can be
observed that regression on valence in music is possible with high
robustness (r = 0.80). This is all the more noticeable since this

Table 6 | Results of within-domain and pair-wise cross-domain

support vector regression on arousal observer ratings for sound

(emotional sound database), music (NTWICM database), and

spontaneous and enacted speech (VAM/GEMEP databases).

r Test on Mean

Train on Sound Music Speech

Sp. En.

(A) FULL FEATURE SET

Sound 0.54** 0.14** 0.70** 0.64** 0.51

Music 0.11− 0.65** 0.46** 0.39** 0.40

Speech/Sp. 0.38** 0.37** 0.81** 0.80** 0.59

Speech/En. 0.20* 0.32** 0.60** 0.85** 0.49

Mean 0.30 0.37 0.64 0.67 0.50

(B) 200TASK-SPECIFIC FEATURES

Sound 0.59** 0.46** 0.76** 0.79** 0.65

Music 0.46** 0.67** 0.73** 0.75** 0.65

Speech/Sp. 0.54** 0.47** 0.83** 0.78** 0.66

Speech/En. 0.56** 0.46** 0.77** 0.85** 0.66

Mean 0.54 0.52 0.77 0.79 0.65

(C) 200 GENERIC FEATURES

Sound 0.56** 0.35** 0.78** 0.56** 0.56

Music 0.38** 0.66** 0.74** 0.63** 0.60

Speech/Sp. 0.44** 0.43** 0.82** 0.69** 0.59

Speech/En. 0.31** 0.45** 0.77** 0.78** 0.58

Mean 0.42 0.47 0.78 0.67 0.58

Significance denoted by **p<0.001, *p<0.01, −p≥0.05; Bonferroni corrected

p-values from two-sided paired sample t-tests. Full ComParE feature set (cf.

Tables 2 and 3); 200 top features selected by CDCC2 for specific within-domain

or cross-domain regression tasks; Generic features: 200 features selected by

CDCC3 across sound, music, and speech domains (cf.Table 4).

correlation is higher than the one obtained in arousal regression,
while for the other domains, valence seems to be harder to rec-
ognize than arousal. This can partly be attributed to the fact that
in the analyzed music data, the valence rating is correlated to the
arousal rating.

Concerning feature selection by CDCC2 (Table 7B), we observe
a boost in the obtained correlations (mean= 0.44, compared to
0.12 without feature selection). For instance, when training on
enacted speech and evaluating on music, we obtain a signifi-
cant r of 0.60. This result is interesting in so far as the best
selected feature for this particular cross-domain setting, namely
the flatness of the loudness contour, only exhibits a correlation of
0.28, respectively 0.27, with the valence rating on the NTWICM
(music) and GEMEP (enacted speech) databases. Thus, the 200
CDCC2-selected features for this regression task seem to be of
complementary nature. Furthermore, by applying feature selec-
tion in the within-domain setting, best results are obtained for
sound (r = 0.51), music (r = 0.82), and enacted speech (r = 0.50)
valence recognition. However, regarding the issue of enacted vs.
spontaneous speech, we find that regressors trained on one type do
not generalize well to the other, which is in contrast to the finding
for arousal.

www.frontiersin.org May 2013 | Volume 4 | Article 292 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Emotion_Science/archive


Weninger et al. Acoustics of emotion in audio

Table 7 | Results of within-domain and pair-wise cross-domain

support vector regression on valence observer ratings for sound

(emotional sound database), music (NTWICM database), and

spontaneous and enacted speech (VAM/GEMEP databases).

r Test on Mean

Train on Sound Music Speech

Sp. En.

(A) FULL FEATURE SET

Sound 0.40**
−0.11** 0.21**

−0.02− 0.12

Music −0.17 ° 0.80**
−0.13* 0.08− 0.15

Speech/Sp. 0.11− −0.15** 0.46** 0.21− 0.16

Speech/En. −0.06− −0.18** 0.12* 0.26o 0.03

Mean 0.07 0.09 0.17 0.13 0.12

(B) 200TASK-SPECIFIC FEATURES

Sound 0.51** 0.36** 0.27** 0.48** 0.41

Music 0.40** 0.82** 0.33** 0.52** 0.52

Speech/Sp. 0.30** 0.45** 0.44** 0.26o 0.36

Speech/En. 0.45** 0.60** 0.36** 0.50** 0.48

Mean 0.41 0.56 0.35 0.44 0.44

(C) 200 GENERIC FEATURES

Sound 0.26** 0.41** 0.27** 0.12− 0.27

Music 0.27** 0.75** 0.33** 0.25o 0.40

Speech/Sp. 0.20* 0.45** 0.35** 0.19− 0.30

Speech/En. 0.20** 0.44** 0.32** 0.23− 0.30

Mean 0.23 0.52 0.32 0.20 0.32

Significance denoted by **p< 0.001, *p<0.01, °p<0.05, −p≥0.05; Bonferroni

corrected p-values from two-sided paired sample t-tests. Full ComParE feature

set (cf. Tables 2 and 3); 200 top features selected by CDCC2 for specific within-

domain or cross-domain regression tasks; Generic features: 200 features selected

by CDCC3 across sound, music, and speech domains (cf.Table 5).

Finally,when applying the“generic valence feature set”obtained
from the CDCC3 ranking across sound, music, and speech, we
obtain an average correlation of 0.32. Results are considerably
below the CDCC2 results particularly for sound and enacted
speech. This – again – points at the difficulty of finding features
that generalize to valence recognition across domains. However,
it is notable that robust results (r = 0.75) are obtained in within-
domain music recognition using the generic feature set, of which
the “best” feature (rise time of spectral centroid) only has an
(absolute) correlation of 0.16 with the music valence rating.

4. DISCUSSION
We have presented a set of acoustic descriptors for emotion recog-
nition from audio in three major domains: speech (enacted and
spontaneous), music, and general sound events. Using these fea-
tures, we have obtained notable performances in within-domain
regression – particularly, these surpass the so far best pub-
lished results on the NTWICM database (Schuller et al., 2011b)
despite the fact that the latter study used hand-crafted music fea-
tures rather than the generic approach pursued in the present
paper.

We have found that it is rather hard to obtain features that are
equally well correlated across the three domains. For arousal, such
features comprise mostly loudness-related ones. In contrast, we
have not been able to obtain features that are significantly cor-
related with the valence rating in all domains. A further notable
result for valence is that some features have an “inverse” meaning
in different domains (i.e., significant correlations with different
signum), while this does not occur for arousal. It will be subject
of further research whether this is simply due to the correlation
of intended arousal and valence in popular music or to more
fundamental differences.

This phenomenon has motivated the introduction of a “cross-
domain correlation coefficient” which summarizes the differences
in correlation across multiple domains. Using this coefficient, we
were able to provide an automatic method of selecting generaliz-
ing features for cross-domain arousal and valence recognition.
In the result, cross-domain arousal and valence regression has
been proven feasible, achieving significant correlations with the
observer annotations.

The degree of cross-domain consistency in encoding the two
main dimensions of affect – valence and arousal – demonstrated in
this article is quite astounding. Music has often been referred to as
the “language of emotion” and a comprehensive review of empir-
ical studies on the expression of emotion in speech and music
(Juslin and Laukka, 2003) has confirmed the hypothesis that the
acoustic parameters marking certain emotions are quite similar
in music and speech (cf. also Ilie and Thompson, 2006). Scherer
(1991) has suggested that speech and emotion may have evolved
on the basis of primitive affect bursts serving similar commu-
nicative functions across many mammalian species. Ethological
work shows that expression and impression are closely linked,
suggesting that, in the process of conventionalization and ritual-
ization, expressive signals may have been shaped by the constraints
of transmission characteristics, limitations of sensory organs, or
other factors. The resulting flexibility of the communication code
is likely to have fostered the evolution of more abstract, symbolic
language, and music systems, in close conjunction with the evolu-
tion of the brain to serve the needs of social bonding and efficient
group communication.

As vocalization, which remained a major modality for analog
emotion expression, became the production system for the highly
formalized, segmental systems of language and singing, both of
these functions needed to be served at the same time. Thus, in
speech, changes in fundamental frequency (F0), formant structure,
or characteristics of the glottal source spectrum can, depending on
the language and the context, serve to communicate phonologi-
cal contrasts, syntactic choices, pragmatic meaning, or emotional
expression. Similarly, in music, melody, harmonic structure, or
timing may reflect the composer’s intentions, depending on spe-
cific traditions of music, and may simultaneously induce strong
emotional moods. This fusion of two signal systems, which are
quite different in function and in structure, into a single underlying
production mechanism, vocalization, has proven to be singularly
efficient for the purpose of communication, and the relatively high
degree of convergence as demonstrated by the correlations found
in our study suggests that it might be possible to identify elements
of a common code for emotion signaling. Recently, Scherer (2013)
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has reviewed theoretical proposals and empirical evidence in the
literature that help to establish the plausibility of this claim, in par-
ticular, the evolutionary continuity of affect vocalizations, showing
that anatomical structures for complex vocalizations existed before
the evidence for the presence of representational systems such as
language.

As to the cross-domain consistency with different kinds of envi-
ronmental sounds, it seems quite plausible to assume that once
speech and music were decoupled from actually occurring affect
bursts and took on representational functions, different kinds of
nature sounds were used in speech and music both for reference
to external events and expressive functions. It seems reasonable to
assume that the type of representational coding was informed by

the prior, psychobiological affect code, particularly with respect to
the fundamental affect dimensions of valence and arousal.

Empirical studies like the one reported here, using machine
learning approaches, may complement other approaches to exam-
ine the evolutionary history of affect expression in speech and
music by empirically examining, using large corpora of differ-
ent kinds of sound events, the extent to which auditory domains
exhibit cross-domain consistency and which common patterns are
particularly frequent.
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